
Propositional Logic:

Part II - Syntax & Proofs

0-0

Outline

• Syntax of Propositional Formulas

• Motivating Proofs

• Syntactic Entailment ` and Proofs

• Proof Rules for Natural Deduction

• Axioms, theories and theorems

• Consistency & completeness

1

Language of Propositional Calculus

Def: A propositional formula is constructed inductively from the

symbols for

• propositional variables: p, q, r, . . . or p1, p2, . . .

• connectives: ¬,∧,∨,→,↔

• parentheses: (,)

• constants: >,⊥

by the following rules:

1. A propositional variable or constant symbol (>,⊥) is a formula.

2. If φ and ψ are formulas, then so are:

(¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ)

Note: Removing >,⊥ from the above provides the def. of sentential

formulas in Rubin. Semantically > = T,

2

⊥ = F though often T, F are used directly in formulas when engineers

abuse notation.

3

WFF Smackdown

Propositional formulas are also called propositional sentences or

well formed formulas (WFF).

When we use precedence of logical connectives and associativity of

∧,∨,↔ to drop (smackdown!) parentheses it is understood that

this is shorthand for the fully parenthesized expressions.

Note: To further reduce use of (,) some def’s of formula use order

of precedence:

¬,∧,∨,
→

↔
instead of ¬,

∧

∨
,
→

↔

As we will see, PVS uses the 1st order of precedence.

4

BNF and Parse Trees

The Backus Naur form (BNF) for the definition of a propositional

formula is:

φ ::= p|⊥|>|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|(φ→ φ)

Here p denotes any propositional variable and each occurrence of φ

to the right of ::= represents any formula constructed thus far.

We can apply this inductive definition in reverse to construct a

formula’s parse tree. A parse tree represents a WFF φ if

i) the root is an atomic formula and nothing else (i.e. φ is p), or

ii) the root is ¬ and there is only one well formed subtree, or

iii) the root is ∧,∨,→ or ↔ and there are two well formed

subtrees.

Note: All leaf nodes will be atomic (e.g. p,⊥ or >)

5

Subformulas and Subtrees

Def: If φ is a propositional formula, the subformulas of φ are give

as follows:

• φ is a subformula of φ,

• if φ is ¬ψ then ψ is a subformula of φ,

• if φ is (φ1 ∧ φ2), (φ1 ∨ φ2), (φ1 → φ2), or (φ1 ↔ φ2), then both

φ1 and φ2 are subformulas of φ

• if ψ is a subformula of φ, then all subformulas of ψ are

subformulas of φ.

The subformulas of φ correspond to all of the subtrees of φ’s parse

tree.

Example: Consider p↔ (q ∧ ¬p→ q ∨ r). The fully parenthesized

formula is:

(p↔ ((q ∧ (¬p)) → (q ∨ r)))

6

Motivating Proofs

Limitations of Truth Tables

of rows in truth table = 2n where n = # of propositional

variables in formula

Formula with 10 propositional variables has truth table with

210 = 1024 rows - too big to do by hand!

Safety critical shutdown system with 3 redundant controllers each

with > 20 boolean inputs & majority vote logic on shutdown could

have specification of a propositional formula using > 3 · 20 = 60

boolean variables. Truth table would have 260 > 1.15 × 1018 rows!

Would require 2
60

8×109 = 144, 115, 188 > 144 million GB/column!!

7

Motivating Proofs (cont)

Formal proof systems provide a way of examining the structure or

syntax of formulas to determine the validity of an argument

without resorting to truth tables.

E.g. Know p, p→ q |= q (modus ponens - a.k.a →e). Therefore

c ∨ ¬d, c ∨ ¬d→ (a ∧ b↔ c) |= a ∧ b↔ c

Formal proof systems can decompose a problem into sub-problems

(sub-proofs) that are of a manageable size.

E.g. If φ1 . . . , φn |= ψ1 and φ1, . . . φn |= ψ2 then

φ1, . . . , φn |= ψ1 ∧ ψ2.

8

Proof Rules and Proofs

These are examples of valid rules of inference or proof rules. E.g.

Knowing that formulas φ and φ→ ψ are true allows us to infer or

deduce that ψ is true.

An example of an invalid rule of inference would be knowing that ψ

is true and φ→ ψ is true, we conclude φ. Why?

Def: A proof of ψ from premises φ1, . . . , φn is a finite sequence of

propositions ending with ψ, such that each member of the sequence

is either a premise (φi), or is derived from previous members of the

sequence by a valid rule of inference.

In this case we say that φ1, . . . , φn syntactically entails ψ and write

φ1, . . . , φn ` ψ

and say that φ1, . . . , φn ` ψ is a valid sequent.

9

Proof Rules of Natural Deduction

While there exists more than one proof system for propositional

(and predicate) logic Natural Deduction is one of the most useful

systems.

It formalizes rules of mathematical proof you are already familiar

with, e.g.,

To prove condition φ implies situation ψ, assume φ is true

and show that ψ follows.

While there are variations in natural deduction proof systems (e.g.,

see Rubin vs. Huth+Ryan), they all have the same basic elements:

- Rules to eliminate operators, and

- Rules to introduce operators.

10

Proof Rules: → e

We know that φ, φ→ ψ |= ψ, so we can use this as a proof rule.

If φ1, . . . φn ` φ and φ1, . . . φn ` φ→ ψ, then φ1, . . . φn ` ψ.

This rule is known as modus ponens or “implies (arrow)

elimination” which we will abbreviate by → e and summarize as

follows:

φ φ→ ψ

ψ
→ e

11

Proof Rules: → i

Another useful rule follow from the following useful fact:

φ |= ψ iff |= φ→ ψ

Thus φ1 . . . φn, φ ` ψ iff φ1 . . . φn ` φ→ ψ.

This rule is a form of the Deduction Theorem, a.k.a. conditional

premise or “implies (arrow) introduction”, denoted by → i, and

summarized as follows:

φ

...

ψ

——— → i

φ→ ψ

12

A First Formal Proof

Example: Show that p→ q, q → r ` p→ r

Proof:

row Premises Deduce Rule

1 p→ q, q → r ` p→ q Premise

2 p→ q, q → r, p ` p Assumption

3 p→ q, q → r, p ` q → e1, 2

4 p→ q, q → r, p ` q → r Premise

5 p→ q, q → r, p ` r → e3, 4

6 p→ q, q → r ` p→ r → i2 − 5

Note: We could show that:

p→ q, q → r, r → s ` p→ s

13

in just 8 rows, not 24 = 16 rows of truth table. Try it.

14

Proof Rules: ∧i

Its getting pretty tedious writing φ1, . . . , φn and I’m basically lazy

so henceforth I’ll write Γ (“Big gamma”), to represent this

sequence of premises.

Assume (1) Γ |= φ and (2) Γ |= ψ.

Then we must have Γ |= φ ∧ ψ. (why?)

So if (1) Γ ` φ and (2) Γ ` ψ then Γ ` φ ∧ ψ.

This result is known as part of the Rules of Adjunction, a.k.a.

“conjunction (and) introduction”, denoted by ∧i, and summarized

as follows:

φ ψ

φ ∧ ψ
∧ i

15

Proof Rules: ∧e1,∧e2

Consider the following pair of valid arguments:

(1) φ ∧ ψ |= φ and (2) φ ∧ ψ |= ψ

To paraphrase these arguments:

(1) says “When φ ∧ ψ is true, then φ is true.”

(2) says “When φ ∧ ψ is true, then ψ is true.”

So if Γ ` φ ∧ ψ then (1)Γ ` φ and (2)Γ ` ψ.

This and the previous result are known as the Rules of Adjunction.

We will call this part “conjunction (and) elimination”, denoted by

∧e1 and ∧e2 respectively, and summarized as follows:

φ ∧ ψ

φ
∧ e1

φ ∧ ψ

ψ
∧ e2

16

Proof Rules: ↔ e1,↔ e2

The rules we will use for dealing with ↔ are all based upon the

following semantics equivalent:

φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ) (1)

The rules for “if and only if elimination” follow from the valid

argument:

φ↔ ψ |= (φ→ ψ) ∧ (ψ → φ)

which in turn provides the valid arguments:

(1)φ↔ ψ |= φ→ ψ, and

(2)φ↔ ψ |= ψ → φ.

We denote ↔ elimination by ↔ e1 and ↔ e2 respectively, and

summarized as follows:

φ↔ ψ

φ→ ψ
↔ e1

φ↔ ψ

ψ → φ
↔ e2

17

Proof Rules: ↔ i

Let us now consider the other valid argument that follows from (1),

namely

(φ→ ψ) ∧ (ψ → φ) |= φ↔ ψ

which by the defs. of ∧ and |= is the same as:

(φ→ ψ), (ψ → φ) |= φ↔ ψ

This rule is also known as “double arrow introduction” which we

will denote by ↔ i and summarize as follows:

φ→ ψ ψ → φ

φ↔ ψ
↔ i

So if Γ ` φ→ ψ and Γ ` ψ → φ then Γ ` φ↔ ψ.

Example: Show ` (p→ (q → r)) ↔ (p ∧ q → r)

18

Proof Rules: ¬¬e and ¬¬i

It is easy to check that ¬¬φ ≡ φ. Hence:

(1)¬¬φ |= φ and (2)φ |= ¬¬φ

So we know:

(1) if Γ ` ¬¬φ then Γ ` φ, and

(2) if Γ ` φ the Γ ` ¬¬φ.

This results are known as “double negation elimination” and

“double negation introduction”, denoted by ¬¬e and ¬¬i

respectively, and summarized as follows:

¬¬φ

φ
¬¬e

φ

¬¬φ
¬¬i

19

Proof Rules: MT

Recall the proof rule → e.

φ φ→ ψ

ψ
→ e

If Γ ` φ and Γ ` φ→ ψ, then Γ ` ψ.

Suppose it is still the case that Γ ` φ→ ψ, but instead of Γ ` φ we

know that Γ ` ¬ψ. If φ were true, then by → e we would have ψ,

but since we have φ→ ψ and ¬ψ, we must have ¬φ.

This reasoning is borne out by the valid argument:

φ→ ψ,¬ψ |= ¬φ

The resulting proof rule is known as modus tollens or MT and

20

summarized as:

φ→ ψ ¬ψ

¬φ
MT

Example: Show p→ q, q → r ` ¬r → ¬p

21

Proof Rules: ∨i

Consider the following pair of valid arguments:

(1) φ |= φ ∨ ψ and (2) ψ |= φ ∨ ψ

To paraphrase these arguments:

(1) says “When φ is true, then φ or ψ is true.”

(2) says “When ψ is true, then φ or ψ is true.”

So if (1)Γ ` φ or (2)Γ ` ψ then, either way, Γ ` φ ∨ ψ.

We will call this “disjunction (OR) introduction” denoted ∨i1 or

∨i2 respectively and summarized as follows:

φ

φ ∨ ψ
∨ i1

ψ

φ ∨ ψ
∨ i2

22

Proof Rules: ∨e1,∨e2

Suppose we want to check if the following argument is valid

φ ∨ ψ |= χ

“When φ is true or ψ is true, then χ is true”

Then there are two cases that we must consider:

i) When φ is true, then χ is true (φ |= χ)

ii) When ψ is true, then χ is true (ψ |= χ)

This covers all possible case when φ ∨ ψ is true, including the case

when both are true.

23

Proof Rules: ∨e1,∨e2 (cont)

This rule is a form of the Rule of Alternative Proof, a.k.a.

“disjunction (or) elimination” denoted ∨e and summarized as

follows:

φ ∨ ψ

φ

...

χ

ψ

...

χ

——————— ∨ e

χ

How can we use it? To show Γ, φ ∨ ψ ` χ split proof. Show:

1. Γ, φ ` χ

2. Γ, ψ ` χ

24

Then we are done since Γ, φ ∨ ψ ` φ ∨ ψ. Thus

Γ, φ ∨ ψ ` χ iff Γ, φ ` χ and Γ, ψ ` χ

25

Proof Rules: ⊥e

Consider the following valid argument:

⊥ |= φ

⊥ is a valid argument for any formula! Why? Because you can’t

find a counter example in the truth table where ⊥ is true and φ is

false.

Ex falso quod libet!

(From false all things are possible!)

This rule is called “bottom elimination”, denoted ⊥e and

summarized as:

⊥

φ
⊥e

Thus if Γ ` ⊥ then Γ ` φ for any φ.

26

Proof Rules: ¬e

Consider the following semantic equivalence:

φ ∧ ¬φ ≡ ⊥

which represents that ⊥ is itself a contradiction. If both φ and ¬φ

are true, then we have an inconsistent set of premises. In fact when

ever φ is both true and false (since ¬φ is true), the ⊥ is also valid.

Although one might think that the following rule should be called

“bottom introduction”, to logicians perhaps this is too close to the

idea of “introducing inconsistencies” which is a “Bad ThingTm”,

hence they call it “negation elimination” denoted ¬e and

summarized as:

φ ¬φ

⊥
¬e

27

Proof Rules: ¬i

Let us assume that when we add φ to our premises Γ

Γ, φ |= ⊥

Then everywhere that all of the premises in Γ are true, φ must be

false. (Why?) Therefore we must have:

Γ |= ¬φ

In terms of syntactic entailment this will mean that if Γ, φ ` ⊥ then

Γ ` ¬φ.

This rule is often known as indirect proof, “negation (not)

28

introduction”, denoted by ¬i, and summarized as follows:

φ

...

⊥

——— ¬i

¬φ

29

Proof Rules: Copy

This rule is a bit of a kludge, but it will save us extra effort when

applied correctly.

Suppose a formula ψ appears on a previous line of our proof where

we had a sequence of premises Γ, i.e., Γ ` ψ.

Further suppose that our current sequence of premises (formulas on

the left of `) is Γ′.

Q: Can we use ψ on the current line of our proof (i.e., does Γ′ ` ψ)?

A: Yes, provided our current sequence of premises Γ′ contains all of

the formulas appearing in Γ.

E.g., p→ q, q → r ` p→ r

Therefore p→ q, q → r, r ` p→ r.

30

Proof Rules: LEM

This next rule is based upon the valid argument:

|= φ ∨ ¬φ

which say that a formula is either true, or it is false. There is no

middle ground.

Since φ ∨ ¬φ is a tautology, for any set of premises Γ |= φ ∨ ¬φ

(why?). Thus in using this rule in proofs we have Γ ` φ ∨ ¬φ.

It is an example of a derived rule, i.e., we can prove it from the

rules we have already seen (` p ∨ ¬p - try it!).

The “Law of the Excluded Middle” denoted LEM is summarized as:

φ ∨ ¬φ
LEM

Example: Show ` ¬(p ∧ q) ↔ ¬p ∨ ¬q.

31

Proof Rules: RAA

Two of the other rules we have seen so far, MT and ¬¬i, are also

derived rules. These derived rules are short cuts that represent

patterns of the other rules.

An additional derived rule that is useful is reductio ad absurdum

(RAA) that can be viewed as another form of ¬i.

It says that if Γ,¬φ ` ⊥ then Γ ` φ.

We summarize RAA as follows

¬φ
...

⊥

——— RAA

φ

32

Go back and compare this to the ¬i summary. You can use RAA

to shorten the previous example proof.

33

Proof Rules: Adding Your Own

In practice, people use many more proof rules than those we have

shown here. Provided they are based upon valid arguments, they

will result in valid proof rules.

E.g., It is easy to show p→ Q ≡ ¬p ∨ q. This could be used to add

the two proof rules:

φ→ ψ

¬φ ∨ ψ
→ 2∨

¬φ ∨ ψ

φ→ ψ
∨ 2 →

Thus Γ ` φ→ ψ iff Γ ` ¬φ ∨ ψ.

This is actually another example of a derived rule (i.e., we could

prove it from our existing rules and then just use it as a notational

short cut for that proof pattern.

Do we have “enough” proof rules (i.e. are they complete)? Are any

other valid proof rules derived rules? Do our rules “work correctly”

34

(i.e., are they consistent)?

35

Soundness:

Def: A proof system is sound (or consistent) if whenever Γ ` ψ,

then Γ |= ψ.

Our system of proof rules given above is sound. We can show this

via induction on the length of our proofs. This is an immediate

result of the fact that all of our proof rules are based upon valid

arguments.

Stating this more formally:

Theorem (Soundness): Let φ1, φ2, . . . , φn and ψ be a

propositional formulas. If φ1, φ2, . . . , φn ` ψ then

φ1, φ2, . . . , φn |= ψ.

If we let Γ represent φ1, . . . , φn then the above says: “If Γ ` ψ then

Γ |= ψ.”

36

Completeness:

Def: A proof system is complete if whenever Γ |= ψ, then Γ ` ψ.

Our system of proof rules given thus far is complete. We can show

this via induction on the height of the parse tree of ψ.

Stating this formally:

Theorem (Completeness): Let φ1, φ2, . . . , φn and ψ be a

propositional formulas. If φ1, φ2, . . . , φn |= ψ then

φ1, φ2, . . . , φn ` ψ.

If we let Γ represent φ1, . . . , φn then the above result together with

the previous one gives us the following corollary:

Corollary: Γ ` ψ iff Γ |= ψ.

37

