
Sequent Calculus & PVS

0-0

Outline

• Review

• Order of precedence & logical operators in PVS

• Sequent Calculus

• PVS commands: (FLATTEN), (SPLIT) & (BDDSIMP)

• Checking validity of arguments

• Checking consistency of premises

• Unprovable sequents & counter examples

1

Review: Key Results used by PVS

Commutative & Associative rules for ∧,∨

Implication: |= (φ→ ψ) ↔ ¬φ ∨ ψ

Iff: |= (φ↔ ψ) ↔ (φ→ ψ) ∧ (ψ → φ)

Double negation: |= φ↔ ¬(¬φ)

Identity rules: |= φ ∧ > ↔ φ, |= φ ∨ ⊥ ↔ φ

Dominance rules: |= φ ∨ > ↔ >, |= φ ∧ ⊥ ↔ ⊥

Rule of adjunction: ∧i

Γ ` ψ ∧ χ iff Γ ` ψ and Γ ` χ

Rule of alternative proof: ∨e

Γ, φ ∨ ψ ` χ iff Γ, φ ` χ and Γ, ψ ` χ

2

and Theorems:

Deduction Theorem: Γ, φ ` ψ iff Γ ` φ→ ψ

Completeness & Consistency: Γ ` ψ iff Γ |= ψ

3

introduction elimination

∧
φ ψ

φ ∧ ψ
∧ i

φ ∧ ψ

φ
∧ e1

φ ∧ ψ

ψ
∧ e2

∨
φ

φ ∨ ψ
∨ i1

ψ

φ ∨ ψ
∨ i2

φ ∨ ψ

φ

...

χ

ψ

...

χ

——————– ∨ e

χ

4

introduction elimination

→

φ

...

ψ

——— → i

φ→ ψ

φ φ→ ψ

ψ
→ e

↔
φ→ ψ ψ → φ

φ↔ ψ
↔ i

φ↔ ψ

φ→ ψ
↔ e1

φ↔ ψ

ψ → φ
↔ e2

5

introduction elimination

¬

φ

...

⊥

——— ¬i

¬φ

φ ¬φ

⊥

¬e

¬¬
φ

¬¬φ
¬¬i

¬¬φ

φ
¬¬e

⊥ see ¬e
⊥

φ
⊥e

6

Additional Proof Rules

φ→ ψ

¬φ ∨ ψ
→ 2∨

¬φ ∨ ψ

φ→ ψ
∨ 2 →

φ→ ψ ¬ψ

¬φ
MT

¬φ
...

⊥

——— RAA

φ

φ ∨ ¬φ
LEM

7

Order of Precedence in PVS

Recall: We use precedence of logical connectives and associativity

of ∧,∨,↔ to drop parentheses it is understood that this is

shorthand for the fully parenthesized expressions.

Rubin uses order of precedence:

¬,
∧

∨
,
→

↔

PVS uses order of precedence:

¬,∧,∨,→,↔

8

Logical Operators in PVS

Propositional constants and variables have type “bool” in PVS

bool={TRUE, FALSE}

¬ - NOT, not

∧ - AND, and, &

∨ - OR, or

→ - IMPLIES, implies, =>

↔ - IFF, iff, <=>

9

Sequent Calculus

φ1, φ2, . . . , φn ` ψ1 ∨ ψ2 ∨ . . . ∨ ψm

is another way of stating

φ1 ∧ φ2 ∧ . . . ∧ φn ` ψ1 ∨ ψ2 ∨ . . . ∨ ψm

In sequent calculus it is written as:

φ1

φ2

...

φn

ψ1

ψ2

...

ψm

10

There are implicit ∧’s between the premises and implicit ∨’s

between the conclusions.

Assuming all the φi’s are true, we are trying to prove at least one

ψj is true.

Def: We call φ1 ∧ . . . φn → ψ1 ∨ . . . ψm the characteristic formula

for the sequent because it is a tautology iff φ1, . . . , φn ` ψ1 ∨ . . . ψm

11

Proofs in Sequent Calculus

Proofs are done by transforming the sequent until one of the

following forms is obtained:

. . .

φ

φ

. . .

i.e. Γ, φ ` φ ∨ . . .

which is a case of Rule Premise and ∨i1

12

. . .

>

. . .

i.e. Γ ` > ∨ . . .

which is a case of Dominance of >

. . .

⊥

. . .

i.e. Γ,⊥ ` . . .

Which is a case of ⊥e.

13

Sequent Calculus Special Cases

No premises:
ψ1

...

ψm

iff ` ψ1 ∨ . . . ∨ ψm

No conclusions:

φ1

...

φn

iff φ1 ∧ . . . ∧ φn ` ⊥

You can always add/remove TRUE (>)to/from the premises or

FALSE (⊥) to/from the conclusions without changing the meaning

of the sequent.

Why? Hint: Indentity laws

14

PVS commands: (FLATTEN)

(FLATTEN) eliminates ∧ in the premises (by ∧e) and ∨ in the

conclusions (by ∨i1,∨i2):

φ1 ∧ φ2

...

ψ1 ∨ ψ2

...

becomes

φ1

φ2

...

ψ1

ψ2

...

15

(FLATTEN) also eliminates → in the conclusions:

φ

ψ1 → ψ2

becomes

φ

ψ1

ψ2

Why?

16

PVS commands: (FLATTEN)

(FLATTEN) eliminates negations:

φ1

¬ψ

ψ1

ψ2

becomes

φ1

ψ

ψ1

ψ2

Why? φ1 ` ¬ψ ∨ ψ1 ∨ ψ2 iff φ1 ` ψ → (ψ1 ∨ ψ2) iff φ1, ψ ` ψ1 ∨ ψ2

17

PVS commands: (FLATTEN)

Similarly φ1,¬φ ` ψ1 ∨ ψ2 iff φ1 ` ¬φ→ ψ1 ∨ ψ2 iff

φ1 ` ¬¬φ ∨ (ψ1 ∨ ψ2) iff φ1 ` φ ∨ (ψ1 ∨ ψ2)

φ1

¬φ

ψ1

ψ2

becomes

φ1

φ

ψ1

ψ2

18

PVS commands: (SPLIT)

(SPLIT) uses “AND introduction” (∧i) to “split” a ∧ in the

conclusions into two subproofs (i.e. Γ ` φ ∧ ψ iff Γ ` φ and Γ ` ψ)

...

φ ∧ ψ
...

↙ ↘
...

φ

...

...

ψ

...

(SPLIT) uses “OR elimination” (∨e) to “split” a ∨ in the premises

19

into two subproofs (i.e. Γ, φ ∨ ψ ` r iff Γ, φ ` r and Γ, ψ ` r)

φ ∨ ψ
...

...

↙ ↘

ψ

...

...

φ

...

...

20

(SPLIT) also splits ↔ in the conclusions since:

(φ↔ ψ) ≡ (φ→ ψ) ∧ (ψ → φ)

and splits → in the premises (why?).

.

21

PVS commands: (BDDSIMP)

The BDDSIMP command, in effect,

1. creates the truth table for the characteristic formula of the

sequent. If it is a tautology the proof is done because

|= φ→ ψ iff ` φ→ ψ iff φ ` ψ

(take φ : φ1 ∧ . . . φn and ψ : ψ1 ∨ . . . ψm). Otherwise BDDSIMP

2. obtains the CNF representation,

3. simplifies it with the help of the distributive law, and

4. applies the Rule of Adjunction to split the sequent into one

sub-proof for each uninterupted sequence of disjuncts and

flattens all negations.

NOTE: BDDs - (ordered) Binary Decision Diagrams, are type of data

structure representing a formula that can be algorithmically reduced to a

22

canonical representation.

23

(BDDSIMP) Example

Applying (BDDSIMP) to sequent ` p→ q ∧ r:

1. Create Truth Table for p→ q ∧ r.

2. Get DNF for ¬(p→ q ∧ r) then negate and “De Morgan it to

death” to get (full) CNF or write down CNF directly:

(¬p ∨ q ∨ r) ∧ (¬p ∨ q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ r)

3. Simplify to: (¬p ∨ q) ∧ (¬p ∨ r)

4. Split to get
¬p ∨ q

and
¬p ∨ r

then

flatten to
p

q
and

p

r

24

Fill in details of ` p→ q ∧ r (BDDSIMP) example.

25

Checking Validity of Arguments in PVS

By Theorems on Soundness and Completeness φ1, φ2, . . . φn |= ψ iff

|= φ1 ∧ . . . ∧ φn → ψ

i.e. φ1 ∧ . . . ∧ φn → ψ is a tautology.

Therefore to check if φ1, . . . , φn are a valid argument for ψ, use

PVS to prove the theorem:

V1: THEOREM φ1& . . .&φn IMPLIES ψ

26

Checking Consistency of Premises in PVS

The set of premises φ1, . . . , φn is inconsistent iff

φ1, . . . , φn ` ψ ∧ ¬ψ for some ψ iff φ1, . . . , φn ` ⊥

But then by the deduction theorem (→ i):

` φ1 → (φ2 → (φ3 → (. . .→ (φn → ⊥) . . .))

iff

` φ1 ∧ φ2 ∧ φ3 . . . ∧ φn → ⊥

iff

` ¬(φ1 ∧ φ2 ∧ φ3 . . . ∧ φn)

Therefore propositional premises φ1, . . . , φn are inconsistent iff you

can prove the PVS theorem:

V1: THEOREM φ1& . . .&φn IMPLIES FALSE or equivalently

V2: THEOREM ¬(φ1& . . .&φn)

27

Unprovable Sequents & Counter Examples

Consider the following example:

Use PVS to check if the argument following argument is valid &

find a counter example if it is not:

q → m ∨ v,m, v → q
?
|= q

E1 : THEOREM (q IMPLIES m OR v) & m &

(v IMPLIES q) IMPLIES q

Trying (BDDSIMP) gives unprovable sequent.

{-1} m

|-------

{1} q

{2} v

which has characteristic formula m→ (q ∨ v). This formula is false

28

when m = T and q = v = F . Check that this provides a counter

example showing the argument is not valid.

29

Example: Understanding PVS

Use PVS to show:

` ((p→ q) → q) → ((q → p) → p)

Explain the proof steps.

Solution: In PVS file we have

p,q:bool

a2i:theorem ((p=>q)=>q)=>((q=>p)=> p)

Invoking the prover:

|-------

{1} ((p => q) => q) => ((q => p) => p)

Rule? (FLATTEN)

30

Applying disjunctive simplification to

flatten sequent, this simplifies to:

a2i :

{-1} ((p => q) => q)

{-2} (q => p)

|-------

{1} p

31

Note that if

(p→ q) → q), (q → p) ` p

Then by → i

(p→ q) → q) ` (q → p) → p

And also by → i

` (p→ q) → q)

→ ((q → p) → p)

Thus it suffices to show

(p→ q) → q), (q → p) ` p

32

a2i :

{-1} ((p => q) => q)

{-2} (q => p)

|-------

{1} p

Rule? (SPLIT -1)

Splitting conjunctions,

this yields 2 subgoals:

a2i.1 :

{-1} q

[-2] (q => p)

|-------

[1] p

Rule? (SPLIT)

33

Splitting conjunctions,

this yields 2 subgoals:

a2i.1.1 :

{-1} p

[-2] q

|-------

[1] p

which is trivially true.

This completes the proof of a2i.1.1.

a2i.1.2 :

[-1] q

|-------

34

{1} q

[2] p

which is trivially true.

This completes the proof of a2i.1.2.

This completes the proof of a2i.1.

35

a2i.2 :

[-1] (q => p)

|-------

{1} (p => q)

[2] p

Rule? (split -1)

Splitting conjunctions,

this yields 2 subgoals:

a2i.2.1 :

{-1} p

|-------

[1] (p => q)

[2] p

36

which is trivially true.

This completes the proof of a2i.2.1.

This completes the proof of a2i.1.

a2i.2.2 :

|-------

{1} q

[2] (p => q)

[3] p

Rule? (flatten)

Applying disjunctive simplification

to flatten sequent.

37

This completes the proof of a2i.2.2.

This completes the proof of a2i.2.

Q.E.D.

38

Example: Laplante Real-Time Systems Design and

Analysis (3rd ed)

Consider the following excerpt from the Software Requirements

Specification for the nuclear monitoring system.

1.1 If interrupt A arrives, then task B stops executing.

1.2 Task A begins executing upon arrival of interrupt A.

1.3 Either Task A is executing and Task B is not, or Task B is

executing and Task A is not, or both are not executing.

These requirements can be formalized by rewriting each in terms of

their component propositions, namely:

p: interrupt A arrives

q: task B is executing

r: task A is executing

39

Rewriting the requirements in proposition logic yields:

1.1 p→ ¬q

1.2 p→ r

1.3 (r ∧ ¬q) ∨ (r ∧ ¬r) ∨ (¬q ∧ ¬r)

Note that 1.3 is semantically equivalent to ¬(q ∧ r).

We’ll use this shorter version to check if the requirements are

inconsistent. i.e.

p→ ¬q, p→ r,¬(q ∧ r) ` ⊥

If they are inconsistent, then no program exists that satisfies them

all. Conversely, if the requirements are consistent, we need to find a

counter example showing:

p→ ¬q, p→ r,¬(q ∧ r) 6|= ⊥

40

You can do this by hand, but in PVS we could use:

demo04 : THEORY

BEGIN

p, q, r: bool

Laplante: Theorem

(p=> NOT q) & (p =>r) & NOT(q & r) => FALSE

END demo04

Invoking the prover and running the (BDDSIMP) command results

in two unprovable sequents.

Laplante.1 :

{-1} r

|-------

{1} q

41

and

Laplante.2 :

|-------

{1} p

{2} r

The first has characteristic eqn. r → q which gives counter example

q = F and r = T . Checking the truth table we have a counter

example:

p q r p→ ¬q p→ r ¬(q ∧ r) ⊥

F F T T T T F

42

