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Motivation

Q: How do you

• define an infinite domain, or

• prove properties of an infinite domain?

A: Use induction.

Examples of infinite domains: Natural numbers

N, set of all predicate logic formulas, languages
generated by finite state automata, etc.

These can be defined recursively.
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Recall definition of predicate logic formulas:

Def: A formula is defined as follows:

1. If t1, . . . , tn are terms and P is an n-ary

predicate symbol P (t1, . . . , tn) is an (atomic)

formula.

2. If φ and ψ are formulas, so are:

(¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ)

> and ⊥ are also formulas.

3. If x is a variable and φ is a formula, then

so are (∀xφ) and (∃xφ).

Formula is defined in terms of itself.
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Misuse of Induction

Consider function f(n) = 1
100.00001n2−n3:

f(1) = 0.01
...
f(4) = 0.000651
f(5) = 0.000421
f(6) = 0.000296
...

Therefore for every n ≥ 1, f(n) ≤ 0.01.

Wrong! f(100) = 10

It is not sufficient to show φ is true for several

n to conclude ∀nφ.
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Peano Arithmetic

How do we define N rigorously?

Use 0 and successor function s : N → N. Can
define + and · in terms of s.

Then sM(n) = n+1 as expected.

1. 0 is a natural number.

2. If n is a natural number then so is s(n).

3. 0 is not a successor: ∀x(s(x) 6= 0)

4. Uniqueness of successors:

∀x∀y(s(x) = s(y)→ x = y)

5. Induction postulate: For any formula φ

φ[0/x] ∧ ∀y(φ[y/x]→ φ[s(y)/x])→ ∀xφ
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Addition & Multiplication

Can define + with axioms:

∀x(0 + x = x)

∀x∀y(x+ s(y) = s(x+ y))

How does this work?

1 + 1 = sM(0) +M sM(0)

= sM(sM(0) +M 0)

= sM(sM(0) = 2

Can similarly define multiplication with axioms:

∀x(x · 0 = 0)

∀x∀y(x · s(y) = x · y+ x)

Can also define <, etc.
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Mathematical Induction

Rule MI: Let φ be any formula of Peano Arith-

metic Then if

1. Base Step: ` φ[0/n], and

2. Inductive Step:

` ∀m(φ[m/n]→ φ[m+1/n])

Then ` ∀nφ by Rule MI.

Why is this a valid rule of inference? By 1 and

repeatedly applying ∀e followed by → e (modus

ponens) on 2 can create proof for any natural

number k.

Do informal proof using mathematical induc-

tion of:

∀n(2(n+2) ≤ (n+2)2)

7



Changing the Base Case

How do we prove 2n < n! for n ≥ 4 using

mathematical induction?

More generally, how do we show:

∀n(n ≥ n0 → φ)

1. Base Step: ` φ[n0/n]

2. Inductive Step: Show

` ∀m(m ≥ n0 ∧ φ[m/n]→ φ[m+1/n])

Then conclude ∀n(n ≥ n0 → φ) by Rule MI.

Ex. Informal proof of ∀n(n ≥ 4→ 2n < n!)
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Complete Induction

Thm: Complete Induction (CI) Let φ be a

formula of Peano Arithmetic s.t. x ∈ FV (φ)

and y, z do not occur in φ. Then

φ[0/x] ∧ ∀y[∀z(z ≤ y → φ[z/x])→ φ[y+1/x]]
→ ∀xφ

is a theorem of Peano Arithmetic (i.e. its true).

Interpretation: If you can show

1. φ is true at 0, and

2. By assuming φ is true for every natural

number upto and including y, you can prove

φ[y+1/x] is true.

Then conclude φ is true for every natural num-

ber.
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Complete Induction

Rule CI: Let φ be any formula of Peano Arith-

metic and x, y, z be variables as in the CI The-

orem. Then if

1. Base Step: ` φ[0/n], and

2. Inductive Step:

` ∀y[∀z(z ≤ y → φ[z/x])→ φ[y+1/x]]

Then ` ∀nφ by Rule CI.
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Application: Correctness of Loops

Assertion: Any statement about a program

state.

Def: Let C be a program statement or se-

quence of statements, {P} be precondition of

C, an assertion on the initial state and {Q}

be a postcondition, an assertion on the final

state. Then {P}C{Q} is a Hoare triple.

Ex 1: {True}a := b{a = b} or equivalently

{}a := b{a = b}.

Ex 2: {y 6= 0}x := 1/y{x = 1/y}

The While Rule: Let C be a piece of code

such that: {D ∧ I}C{I}. Then

{D ∧ I} while D do C {¬D ∧ I}

¬D is the exit condition and I is the loop in-

variant.
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Application: Correctness of Loops

Proof of While Rule:
Assume loop terminates in n iteration.

Must show ¬D ∧ I upon termination. But ¬D must be
true upon termination so remains to show I.

How? Induction.

Base case: I is true before entering loop so I true for
0 iterations

Inductive case: Assume I true after m iterations for
0 ≤ m < n.

Must show I is true after m + 1 iterations.

But D is true before executing C for the m + 1th time
since loop does not terminate after m iterations (m < n).

Also I is true before execution by inductive hyp.

{D ∧ I} is a precondtion for m + 1 execution C.

Therefore {I} is a postcondition since {D ∧ I} C {I}.

Q.E.D.
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Application: Correctness of Loops

Suppose you have a very RISCy CPU that uses

addition to do muliplication n ·a with the code:

sum:=0;

j:=0;

while j<>n

Begin

sum:=sum + a;

j:=j + 1;

End

Assume n ≥ 0. Take

D : j 6= n

I : 0 ≤ j ≤ n ∧ sum = j · a
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Application: Correctness of Loops

Checklist for proving loop correct:

1. I true before loop

2. I is loop invariant: {D ∧ I} C {I}

3. Execution terminates

4. Use ¬D ∧ I to prove desired property

(e.g. sum = n · a)
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