Induction	Outline • Motivation • Axioms for Natural Numbers • Mathematical Induction (Weak Induction) • Complete Induction (Strong Induction) • Application: Correctness of Loops
©2001 M. Lawford	1
Motivation Q: How do you • define an infinite domain, or • prove properties of an infinite domain? A: Use induction. Examples of infinite domains: Natural numbers N, set of all predicate logic formulas, languages generated by finite state automata, etc. These can be defined recursively.	 Recall definition of predicate logic formulas: Def: A <i>formula</i> is defined as follows: 1. If t₁,,t_n are terms and P is an n-ary predicate symbol P(t₁,,t_n) is an (<i>atomic</i>) <i>formula</i>. 2. If φ and ψ are formulas, so are: (¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), (φ ↔ ψ) ⊤ and ⊥ are also formulas. 3. If x is a variable and φ is a formula, then so are (∀xφ) and (∃xφ). Formula is defined in terms of itself.
2	3

Misuse of Induction

Consider function $f(n) = \frac{1}{100.00001n^2 - n^3}$: f(1) = 0.01

$$f(4) = 0.000651$$

 $f(5) = 0.000421$
 $f(6) = 0.000296$

Therefore for every $n \ge 1$, $f(n) \le 0.01$.

Wrong! f(100) = 10

It is not sufficient to show ϕ is true for several n to conclude $\forall n\phi.$

4

Addition & Multiplication

Can define + with axioms:

$$\forall x (0 + x = x)$$

$$\forall x \forall y (x + s(y) = s(x + y))$$

How does this work?

$$1+1 = s^{\mathcal{M}}(0) + {}^{\mathcal{M}}s^{\mathcal{M}}(0)$$
$$= s^{\mathcal{M}}(s^{\mathcal{M}}(0) + {}^{\mathcal{M}}0)$$
$$= s^{\mathcal{M}}(s^{\mathcal{M}}(0) = 2$$

Can similarly define multiplication with axioms:

$$\forall x(x \cdot 0 = 0)$$

 $\forall x \forall y (x \cdot s(y) = x \cdot y + x)$

Can also define <, etc.

6

Peano Arithmetic

How do we define \mathbb{N} rigorously?

Use 0 and successor function $s : \mathbb{N} \to \mathbb{N}$. Can define + and \cdot in terms of s. Then $s^{\mathcal{M}}(n) = n + 1$ as expected.

- 1. 0 is a natural number.
- 2. If *n* is a natural number then so is s(n).
- 3. 0 is not a successor: $\forall x(s(x) \neq 0)$
- 4. Uniqueness of successors:

 $\forall x \forall y (s(x) = s(y) \to x = y)$

5. Induction postulate: For any formula ϕ

 $\phi[0/x] \land \forall y(\phi[y/x] \to \phi[s(y)/x]) \to \forall x \phi$

5

Mathematical Induction

Rule MI: Let ϕ be any formula of Peano Arithmetic Then if

- 1. Base Step: $\vdash \phi[0/n]$, and
- 2. Inductive Step:

 $\vdash \forall m(\phi[m/n] \to \phi[m+1/n])$

Then $\vdash \forall n\phi$ by Rule MI.

Why is this a valid rule of inference? By 1 and repeatedly applying $\forall e$ followed by $\rightarrow e$ (modus ponens) on 2 can create proof for any natural number k.

Do informal proof using mathematical induction of:

$$\forall n(2(n+2) \le (n+2)^2)$$

7

Changing the Base Case

How do we prove $2^n < n!$ for $n \ge 4$ using mathematical induction?

More generally, how do we show:

 $\forall n (n \ge n_0 \to \phi)$

- 1. Base Step: $\vdash \phi[n_0/n]$
- 2. Inductive Step: Show

 $\vdash \forall m (m \ge n_0 \land \phi[m/n] \to \phi[m+1/n])$

Then conclude $\forall n (n \ge n_0 \rightarrow \phi)$ by Rule MI.

Ex. Informal proof of $\forall n (n \ge 4 \rightarrow 2^n < n!)$

8

Complete Induction

Thm: Complete Induction (CI) Let ϕ be a formula of Peano Arithmetic s.t. $x \in FV(\phi)$ and y, z do not occur in ϕ . Then

$$\phi[0/x] \land \forall y [\forall z (z \leq y \rightarrow \phi[z/x]) \rightarrow \phi[y + 1/x]] \
ightarrow \forall x \phi$$

is a theorem of Peano Arithmetic (i.e. its true).

Interpretation: If you can show

- 1. ϕ is true at 0, and
- 2. By assuming ϕ is true for every natural number upto and including y, you can prove $\phi[y + 1/x]$ is true.

Then conclude ϕ is true for every natural number.

9

Application: Correctness of Loops

Assertion: Any statement about a program state.

Def: Let *C* be a program statement or sequence of statements, $\{P\}$ be *precondition* of *C*, an assertion on the initial state and $\{Q\}$ be a *postcondition*, an assertion on the final state. Then $\{P\}C\{Q\}$ is a *Hoare triple*.

Ex 1: $\{True\}a := b\{a = b\}$ or equivalently $\{\}a := b\{a = b\}.$

Ex 2: $\{y \neq 0\}x := 1/y\{x = 1/y\}$

The While Rule: Let *C* be a piece of code such that: $\{D \land I\}C\{I\}$. Then

 $\{D \land I\}$ while D do C $\{\neg D \land I\}$

 $\neg D$ is the exit condition and I is the loop invariant.

Complete Induction

Rule CI: Let ϕ be any formula of Peano Arithmetic and x, y, z be variables as in the CI Theorem. Then if

- 1. Base Step: $\vdash \phi[0/n]$, and
- 2. Inductive Step:

$$\vdash \forall y [\forall z (z \leq y \rightarrow \phi[z/x]) \rightarrow \phi[y + 1/x]]$$

Then $\vdash \forall n\phi$ by Rule CI.

10

Application: Correctness of Loops

Proof of While Rule: Assume loop terminates in n iteration.

Must show $\neg D \wedge I$ upon termination. But $\neg D$ must be true upon termination so remains to show I.

How? Induction.

Base case: I is true before entering loop so I true for 0 iterations

Inductive case: Assume I true after m iterations for $0 \leq m < n.$

Must show I is true after m + 1 iterations.

But D is true before executing C for the m + 1th time since loop does not terminate after m iterations (m < n).

Also ${\it I}$ is true before execution by inductive hyp.

 $\{D \wedge I\}$ is a precondtion for m + 1 execution C.

Therefore $\{I\}$ is a postcondition since $\{D \land I\} \subset \{I\}$.

Q.E.D.

12

Application: Correctness of Loops

Suppose you have a very RISCy CPU that uses addition to do muliplication $n \cdot a$ with the code:

sum:=0; j:=0; while j<>n Begin sum:=sum + a; j:=j + 1; End

Assume $n \ge 0$. Take $D: j \ne n$

 $I: 0 \le j \le n \land sum = j \cdot a$

13

Application: Correctness of Loops

Checklist for proving loop correct:

- 1. I true before loop
- 2. I is loop invariant: $\{D \land I\} \subset \{I\}$
- 3. Execution terminates
- 4. Use $\neg D \land I$ to prove desired property (e.g. $sum = n \cdot a$)