Outline

- Motivation

Induction

Motivation

Q: How do you

- define an infinite domain, or
- prove properties of an infinite domain?

A: Use induction.

Examples of infinite domains: Natural numbers \mathbb{N}, set of all predicate logic formulas, languages generated by finite state automata, etc.

These can be defined recursively.

Recall definition of predicate logic formulas:

Def: A formula is defined as follows:

1. If t_{1}, \ldots, t_{n} are terms and P is an n-ary predicate symbol $P\left(t_{1}, \ldots, t_{n}\right)$ is an (atomic) formula.
2. If ϕ and ψ are formulas, so are:
$(\neg \phi),(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi),(\phi \leftrightarrow \psi)$
\top and \perp are also formulas.
3. If x is a variable and ϕ is a formula, then so are $(\forall x \phi)$ and $(\exists x \phi)$.

Formula is defined in terms of itself.

Misuse of Induction

Consider function $f(n)=\frac{1}{100.00001 n^{2}-n^{3}}$:

$$
\begin{aligned}
& f(1)=0.01 \\
& \vdots \\
& f(4)=0.000651 \\
& f(5)=0.000421 \\
& f(6)=0.000296 \\
& \vdots
\end{aligned}
$$

Therefore for every $n \geq 1, f(n) \leq 0.01$.

Wrong! $f(100)=10$

It is not sufficient to show ϕ is true for several n to conclude $\forall n \phi$.

Addition \& Multiplication

Can define + with axioms:
$\forall x(0+x=x)$
$\forall x \forall y(x+s(y)=s(x+y))$
How does this work?

$$
\begin{aligned}
1+1 & =s^{\mathcal{M}}(0)+{ }^{\mathcal{M}} s^{\mathcal{M}}(0) \\
& =s^{\mathcal{M}}\left(s^{\mathcal{M}}(0)+{ }^{\mathcal{M}} 0\right) \\
& =s^{\mathcal{M}}\left(s^{\mathcal{M}}(0)=2\right.
\end{aligned}
$$

Can similarly define multiplication with axioms:
$\forall x(x \cdot 0=0)$
$\forall x \forall y(x \cdot s(y)=x \cdot y+x)$
Can also define $<$, etc.

Peano Arithmetic

How do we define \mathbb{N} rigorously?

Use 0 and successor function $s: \mathbb{N} \rightarrow \mathbb{N}$. Can define + and . in terms of s.
Then $s^{\mathcal{M}}(n)=n+1$ as expected.

1. 0 is a natural number.
2. If n is a natural number then so is $s(n)$.
3. 0 is not a successor: $\forall x(s(x) \neq 0)$
4. Uniqueness of successors:

$$
\forall x \forall y(s(x)=s(y) \rightarrow x=y)
$$

5. Induction postulate: For any formula ϕ

$$
\phi[0 / x] \wedge \forall y(\phi[y / x] \rightarrow \phi[s(y) / x]) \rightarrow \forall x \phi
$$

Mathematical Induction

Rule MI: Let ϕ be any formula of Peano Arithmetic Then if

1. Base Step: $\vdash \phi[0 / n]$, and
2. Inductive Step:

$$
\vdash \forall m(\phi[m / n] \rightarrow \phi[m+1 / n])
$$

Then $\vdash \forall n \phi$ by Rule MI.
Why is this a valid rule of inference? By 1 and repeatedly applying $\forall e$ followed by $\rightarrow e$ (modus ponens) on 2 can create proof for any natural number k.

Do informal proof using mathematical induction of:

$$
\forall n\left(2(n+2) \leq(n+2)^{2}\right)
$$

Changing the Base Case

How do we prove $2^{n}<n$! for $n \geq 4$ using mathematical induction?

More generally, how do we show:

$$
\forall n\left(n \geq n_{0} \rightarrow \phi\right)
$$

1. Base Step: $\vdash \phi\left[n_{0} / n\right]$
2. Inductive Step: Show

$$
\vdash \forall m\left(m \geq n_{0} \wedge \phi[m / n] \rightarrow \phi[m+1 / n]\right)
$$

Then conclude $\forall n\left(n \geq n_{0} \rightarrow \phi\right)$ by Rule MI.

Ex. Informal proof of $\forall n\left(n \geq 4 \rightarrow 2^{n}<n!\right)$

Complete Induction

Thm: Complete Induction (CI) Let ϕ be a formula of Peano Arithmetic s.t. $x \in F V(\phi)$ and y, z do not occur in ϕ. Then

$$
\begin{aligned}
& \phi[0 / x] \wedge \forall y[\forall z(z \leqy \rightarrow \phi[z / x]) \rightarrow \phi[y+1 / x]] \\
& \rightarrow \forall x \phi
\end{aligned}
$$

is a theorem of Peano Arithmetic (i.e. its true).

Interpretation: If you can show

1. ϕ is true at 0 , and
2. By assuming ϕ is true for every natural number upto and including y, you can prove $\phi[y+1 / x]$ is true.

Then conclude ϕ is true for every natural number.

Complete Induction

Rule CI: Let ϕ be any formula of Peano Arithmetic and x, y, z be variables as in the CI Theorem. Then if

1. Base Step: $\vdash \phi[0 / n]$, and
2. Inductive Step:

$$
\vdash \forall y[\forall z(z \leq y \rightarrow \phi[z / x]) \rightarrow \phi[y+1 / x]]
$$

Then $\vdash \forall n \phi$ by Rule CI.

Application: Correctness of Loops

Assertion: Any statement about a program state.

Def: Let C be a program statement or sequence of statements, $\{P\}$ be precondition of C, an assertion on the initial state and $\{Q\}$ be a postcondition, an assertion on the final state. Then $\{P\} C\{Q\}$ is a Hoare triple.

Ex 1: $\{$ True $\} a:=b\{a=b\}$ or equivalently $\} a:=b\{a=b\}$.

Ex 2: $\{y \neq 0\} x:=1 / y\{x=1 / y\}$

The While Rule: Let C be a piece of code such that: $\{D \wedge I\} C\{I\}$. Then

$$
\{D \wedge I\} \text { while } D \text { do } C\{\neg D \wedge I\}
$$

$\neg D$ is the exit condition and I is the loop invariant.

Application: Correctness of Loops

Proof of While Rule:
Assume loop terminates in n iteration.
Must show $\neg D \wedge I$ upon termination. But $\neg D$ must be true upon termination so remains to show I.

How? Induction
Base case: I is true before entering loop so I true for 0 iterations

Inductive case: Assume I true after m iterations for $0 \leq m<n$.

Must show I is true after $m+1$ iterations.
But D is true before executing C for the $m+1$ th time since loop does not terminate after m iterations $(m<n)$.

Also I is true before execution by inductive hyp.
$\{D \wedge I\}$ is a precondtion for $m+1$ execution C
Therefore $\{I\}$ is a postcondition since $\{D \wedge I\} C\{I\}$.
Q.E.D.

Application: Correctness of Loops

Suppose you have a very RISCy CPU that uses addition to do muliplication $n \cdot a$ with the code:

```
sum: \(=0\);
j:=0;
while \(j<>n\)
        Begin
            sum:=sum + a;
            \(j:=j+1 ;\)
        End
```

Assume $n \geq 0$. Take
$D: j \neq n$
$I: 0 \leq j \leq n \wedge s u m=j \cdot a$

Application: Correctness of Loops

Checklist for proving loop correct:

1. I true before loop
2. I is loop invariant: $\{D \wedge I\} C\{I\}$
3. Execution terminates
4. Use $\neg D \wedge I$ to prove desired property (e.g. sum $=n \cdot a$)
