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Outline

e CAV: Computer Aided Verification

e Power Conditioning Overview

e PVS Specification

e Using PVS to debug the specification



Computer Aided Verification

What is CAV? . . . Prove, prove, prove!

Use tools to mathematically “prove” a design imple-
ments a well defined specification. E.g.

e Automated theorem proving of functional equiva-
lence (i.e. use PVS or IMPS to prove for all inputs
X: Spec(x) = Design(x))

e Model-checking automatically verifies that a Design
iIS @ model of a Spec written as a logical formula

Why use CAV Tools?

e Independent check of system unaffected by veri-
fier's expectations

e Domain coverage - Tools can often be used to
check ALL input cases

e Tools let you automate verification and reverifica-
tion

e Provide additional capabilities (e.g. generation of
counter example for debugging, type checking, ver-
ifying whole classes of systems, etc.)
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Example:
Reactor Shutdown System (SDS)

What is an SDS?
e watchdog system that monitors system parameters

e shuts down (trips) reactor if it observes "bad"” be-
havior

e process control is performed a separate Digital Con-
trol computer (DCC) - not as critical

Consider simple subsystem: Power Conditioning

e Many sensors have a Power threshold below (or
above) which readings are unreliable so it's “condi-
tioned out” for certain Power levels.

e A deadband is used to eliminate sensor ‘“chatter”

Idea: Use code reuse - write one general routine and

pass in sensor parameters for different sensors



General Power Conditioning Function

Power

Kin

Kout

|
FALSE

PwrCond(Prev:

a1 Time

bool, Power, Kin, Kout:posreal):bool =

Power < Kout | Kout < Power < Kin | Power > Kin

FALSE

Prev TRUFE

PVS (Prototype Verification System), a “proof assis-
tant” can automatically check for completeness (cover-
age) and determinism (disjointness) of tables.

i.e. PVS checks that a table defines a total function.



When Power:

e drops below Kout, sensor is unreliable so
it's “conditioned out” (PwrCond = FALSE).

e e&xceeds Kin, the sensor is “conditioned in”
and is used to evaluate the system.

e IS between Kout and Kin, the value of PwrCond
IS left unchanged by setting it to its previ-
ous value, Prev.

E.g. For the graph of Power above, PwrCond
would start out FALSE, then become TRUE
at time t1 and remain TRUE.



PVS Specification of a General PwrCond
Function

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool = TABLE

T %

| [Power<=Kout | Power>Kout & Power<Kin | Power>=Kin] |

e %

| FALSE | Prev | TRUE | |

e %
ENDTABLE

The above PVS specification of the PwrCond table pro-
duces the following proof obligations or “TCCs".

% Disjointness TCC generated (at line 14, column 55) for
% unfinished
PwrCond_TCC1: OBLIGATION
FORALL (Kin, Kout: posreal, Power):
NOT (Power <= Kout AND Power > Kout & Power < Kin) AND
NOT (Power <= Kout AND Power >= Kin) AND
NOT ((Power > Kout & Power < Kin) AND Power >= Kin);

% Coverage TCC generated (at line 14, column 55) for
% proved - complete

PwrCond_TCC2: OBLIGATION
FORALL (Kin, Kout: posreal, Power):

(Power <= Kout OR % Columni
(Power > Kout & Power < Kin) ¥, Column2
OR Power >= Kin) % Column3



Type-checking PwrCond

The coverage TCC is easily proved by PVS.
Thus we conclude that at least one column is
always satisfied for every input.

But attempting the Disjointness T CC fails, in-
dicating that the columns overlap. The re-
sulting unprovable sequent for the disjointness
TCC is:

PwrCond_TCC1 :

[-1] Kin!1 > 0

[-2] Kout!1l > 0O

[-3] Power!1l > 0

[-4] Power!1l <= Kout!1l
[-5] (Kin'1l <= Power!1)



Step 1: Characteristic Equation

Writing down the characteristic formula for the
unprovable sequent.

Kiny > 0A Kout1 > 0 A Powery > OA
Power1 < Kout1 A Kiny < Powery — L

which is equivalent to:

—(Power > 0A Kin > 0 A Kout > OA
Power < Kout N Kin < Power)

We know that an interpretation structure (i.e.,
a program) will satisfy this formula iff it satis-
fies the formula’s universal closure:

(VPower, Kin, Kout : posreal)
—(Power > 0 A Kin > 0 A Kout > OA (1)
Power < Kout N Kin < Power)



Step 2: Find a Counter Example

Find a counter example that makes the char-
acteristic formula false.

NOTE: The counter examples values for Kin,
Kout and Power must be of the type

posreal = {x : real|x > 0}

So, to make (1) false, we make —(1), if equiv-
alently the following true:

(dPower, Kin, Kout : posreal)

(Power > 0 A Kin > 0 A Kout > OA
Power < Kout N Kin < Power)

With a slight abuse of notation this simplifies
to:

(dPower, Kin, Kout : posreal)

(0 < Kin < Power < Kout)

e.g Take Kiny = 1, Kout1 = 3, Powery = 2



Step 3: Verify Counter Example

Verify that the counter example satisfies the
conditions of two or more columns of the table
for PwrCond.

In the case when Kin = 1, Kout = 3, Power =
2 we have the condition on column 1 and con-
dition 3 satisfied since:

1) Power < Kout because 2 < 3, and

i) Power > Kin because 1 < 2.
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Step 4: Find the Error Source

What implicit assumption did the designers make
regarding input arguments Kin and Kout that
led them to omit the counter example case
from the table?

They assumed that Kout < Kin.

Why is such an undocumented assumption dan-
gerous in a setting where code may be reused
by other developers?

When someone other than the code developer
reuses the code, they may not know about any
implicit assumption and may use the code in a
way that it was not intended for.

E.g. Suppose a sensor was only valid at low
values of Power. Someone may think that they
could just use function PwrCond with Kout >
Kin. In this case it is not specified what the
function will do!
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Step 5: Correct the Error

Problem: Determinism check fails when

Kin < Kout

Why? Implicit (undocumented) assumption
from diagram that Kin > Kout

Fix: Make assumption explicit.

How? Use dependent typing to create a new
version of the PwrCond table that makes the
assumed relation between Kin and Kout ex-
plicit and thereby rules out any counter exam-
ples like those above.

PwrCond (Prev:bool, Power, Kin:posreal,
Kout:{x:posreal| x<Kin}):bool = TABLE

h———— h

| [Power<=Kout | Power>Kout & Power<Kin | Power>=Kin] |

h———— e h

|  FALSE | Prev | TRUE ||

h———— e h
ENDTABLE



