
Predicate Logic - Introduction

c©2001 M. Lawford

Outline

• Motivation

• Predicates & Functions

• Quantifiers ∀,∃

• Coming to Terms with Formulas

• Quantifier Scope & Bound Variables

• Free Variables & Sentences

1

Motivation:

Specification of programs

Make requirements unambiguous.

E.g. For table meant to define a function f(x):

f(x) =
C1(x) C2(x) C3(x)
f1(x) f2(x) f3(x)

; condition
; action

i) The table is consistent (i.e. not contradic-

tory) - a sufficient condition is that there is

no “overlap” between column conditions:

∀x¬((C1(x) ∧ C2(x))
∨(C1(x) ∧ C3(x))
∨(C2(x) ∧ C3(x)))

ii) Table is complete - for all possible inputs,

an output is specified

∀x(C1(x) ∨ C2(x) ∨ C3(x))

2

Motivation:

Verification of programs:

E.g. How do you know you got 2A04 lab 2

right? When every input to program gives

same answer as table.

For all a, b, c prog(a, b, c) = table(a, b, c)

∀xa∀xb∀xc(prog(xa, xb, xc) = table(xa, xb, xc))

E.g. How do you show someone got 2A04 Lab

2 wrong? Show that there is at least one case

when program gives wrong (different from ta-

ble) answer.

∃xa∃xb∃xc(prog(xa, xb, xc) 6= table(xa, xb, xc))

or equivalently

¬∀xa∀xb∀xc(prog(xa, xb, xc) = table(xa, xb, xc))

3

Predicates & Functions

We will use the notation (u1, u2, . . . , un) for an

ordered n-tuple.

Def: Let A be a set. An n place predicate or

relation (over A) is a subset of An.

An n place predicate P is said to have an arity

of n and is also called an n-ary predicate.

n-ary predicate P can also be considered to

define a characteristic function:

P : An → {T, F}

P (u1, u2, . . . un) :=

{

T, if (u1, u2, . . . , un) ∈ P
F, if (u1, u2, . . . , un) 6∈ P

E.g. If A := R then ≤:= {(x, y)|x ≤ y} ⊂ R2
and ≤ (1,2) = T while ≤ (2,1) = F

Many mathematical predicates such as ≤ are

written using infix notation as 1 ≤ 2.

4

Predicates and Functions

Subset and characteristic function representa-

tions are often used interchangeably. Typi-

cally a given predicate symbol P has fixed arity

(number of arguments) n. To make this ex-

plicit formally the notation P n is often used.

We will assume that the arity of a predicate

is obvious from how it is used or the con-

text. E.g. P (x, y) is a binary predicate while

Q(u, v, x, y) is a 4-ary predicate.

Some logics (PVS) allow overloading of predi-

cate symbols:

P (x, y) might denote x ≤ y while

P (x, y, z) might denote x+ y = z.

The intended interpretation is clear from the

context.

5

Predicates and Functions

Def: f is a function of n variables or an n-

ary function if f is a subset of An+1 (f is

(n + 1) − ary relation over A) such that if

(u1, . . . , un, v1) ∈ f and (u1, . . . , un, v2) ∈ f then

v1 = v2. We denote this f : A
n → A.

Formally:

∀u1 . . . ∀un∀v1∀v2
(f(u1, . . . , un) = v1 ∧ f(u1, . . . , un) = v2 → v1 = v2)

PVS similarly allows one to overload function

symbols:

x,y,z:VAR nat

f(x,y):nat = x + y

f(x,y,z):nat = x * y * z

6

Quantifiers

∀ (FORALL) - Universal Quantifier

∀xP (x) - “For all x, P (x) holds (is true).
Also read as “For every x. . . ” “For each x. . . ”

∃ (EXISTS) - Existential Quantifier

∃xP (x) - “There exists an x such that P (x)
holds.”

Also read as “There is at least one x. . . ”
“There is an x satisfying P .”

Note: Order counts when you mix quantifiers!

“In every class there is a student with the high-

est mark.”

∀x∃y(C(x) ∧ S(y)→ H(x, y))

“There is a student such that in every class

she has the highest mark.”

∃y∀x(C(x) ∧ S(y)→ H(x, y))

7

Consider the following statement:

No student who likes math also likes Oscar.

This could be interpreted as:

For every x, if x is a student and x likes

math, then x doesn’t like Oscar.

∀x(S(x) ∧M(x)→ ¬L(x, o))

A seemingly equivalent statement would be:

For every x, if x is a student then it is

not the case that x likes math and likes

Oscar.

∀x(S(x)→ ¬(M(x) ∧ L(x, o)))

Are these statements really saying the same

thing?

7

Restriction of Quantifiers

Often want to restrict ourselves to considering

x’s of certain type.

∀x(P (x)→ Q(x))

∃x(P (x) ∧Q(x))

E.g. In Dilbert ∀x(Manager(x)→ Idiot(x))
∃x(Animal(x) ∧ ¬Glasses(x))

What is the relationship between these two

forms?

¬∀x(P (x)→ Q(x)) iff ∃x(P (x) ∧ ¬Q(x))

Why?

Note: Other styles of quantification

(∀x ∈ P)Q(x) or ∀x ∈ P : Q(x)

mean same as ∀x(P (x) → Q(x))

∃x(P (x) ∧ Q(x)) is also written:

(∃x ∈ P)Q(x) or ∃x ∈ P : Q(x)

read “There exists an x in P such that Q(x) holds.”

This starts to lead into Type Theory.

8

Language of Predicate Calculus

A predicate vocabulary consists of three sets

(C,F ,P) where each denotes respectively:

C - set of constant symbols

F - set of functions symbols

P - set of predicate symbols

We also have an arity associated with each

function and predicate symbol which we can

think of as a mapping:

arity : F ∪ P → N

where N denotes natural numbers {0,1,2, . . .}.

For our Oscar example: C = {o},F = ∅,

P = {L,M, S} and arity(L) = 2.

9

Language of Predicate Calculus (cont)

In addition to constants, function symbols and

predicate symbols our language will make use

of

Variables: e.g., u, v, w, x, y, z or u1, x4, etc.

Connectives: ¬,∧,∨,→,↔

Quantifiers: ∀,∃

as well as parentheses (,) and we’ll also usually

include the two special 0-ary predicate symbols

>,⊥.

Note: In PVS most strings of letters, numbers and

underscore can be defined to be a variable, constant,

function symbol or predicate. In fact a string can even

be several of these things at once!

PVS translates ∀ as FORALL and ∃ as EXISTS

10

Language of Predicate Calculus (cont)

There are now two sorts of objects we are deal-

ing with:

Terms: Variables such as x, constants such

as o and functions applied to these such as

f(x, o). All denote objects of our universe.

Formulas: Predicates P (x) and logical con-

nectives such as M(x) ∧ L(x, o) and quan-

tifiers over a variable applied to a formula

such as ∀xP (x). Once values are substi-

tuted for constants and free variables, these

formulas all denote truth values.

We now formally define terms and formulas.

11

Terms

Def: A term is defined as follows:

1. Any constant c ∈ C or variable is a term.

2. If t1, . . . , tn are terms and f ∈ F is an n-ary

function symbol (i.e. arity(f) = n) then

f(t1, . . . , tn) is a term.

In BNF form a term t is defined as:

t ::= x|c|f(t, . . . , t)

where x is a variable, c ∈ C and f ∈ F has

arity(f) = n.

Constants can be thought of as 0-ary functions

- they take no arguments so we drop the (·)

and eliminate the set C. (e.g., for the Oscar

example then F = {o} and arity(o) = 0).

12

Formulas

Def: The set of formulas over (F ,P) is defined

as follows:

1. If t1, . . . , tn are terms and P ∈ P is an n-

ary predicate symbol, then P (t1, . . . , tn) is

a formula.

2. If φ and ψ are formulas, so are:

(¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ)

> and ⊥ are also formulas.

3. If x is a variable and φ is a formula, then

so are (∀xφ) and (∃xφ).

In BNF form formulas are defined as:

φ ::= P (t1 . . . tn)|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|

(φ→ φ)|(φ↔ φ)|(∀xφ)|(∃xφ)

where x is a variable, ti are terms (over F),

and P ∈ P has arity(P) = n.

13

Order of Precedence & Parenthesis

Recall: We use precedence of logical operators and asso-

ciativity of ∧,∨,↔ to drop parentheses. It is understood

that this is shorthand for the fully parenthesized expres-

sions.

Huth+Ryan uses order of precedence:

¬
∀
∃
,
∧
∨
,
→
↔

PVS uses order of precedence:

¬,∧,∨,→,↔,
∀
∃

(∀x)P (x)→ (∃y)Q(x, y) ∧ P (y) becomes:

In Huth+Ryan:

(∀xP (x))→ ((∃yQ(x, y)) ∧ P (y))

In PVS:

∀x(P (x)→ (∃y(Q(x, y) ∧ P (y))))

14

Parse Tree

We can apply this inductive definition in re-

verse to construct a formula’s parse tree. A

parse tree represents a WFF φ if

i) The root node is P and if arity(P) = n then

there are n well formed term subtrees,

ii) the root is ∀x or ∃x and there is only one

well formed subtree

iii) the root is ¬ and there is only one well

formed subtree, or

iv) the root is ∧,∨,→ or ↔ and there are two

well formed subtrees or

Note: All leaf nodes will be variables or con-

stants (or ⊥ or >).

15

Parse Tree (cont)

Example 1: Draw the parse tree for the for-

mula

∀x(P (x) ∧Q(x))→ ¬P (x) ∨Q(y)

free

free

bound bound

→

∀x ∨

∧ ¬ Q

P Q P y

x x x

Example 2: Draw the parse trees for the two

formulas on slide 14.

16

Quantifier Scope & Bound Variables

Scope of quantifiers: The scope of a quanti-

fier in a formula φ is the subformula to which

the quantifier was applied in the inductive con-

struction of φ.

In the fully parenthesized formulas the scope

is the quantifier itself and the matching paren-

theses immediately following. E.g

P (x, y)→

scope
︷ ︸︸ ︷

∀x(Q(x) ∧ P (f(y, x), x))∨∀z(Q(f(x, z))

(P (x, y)→ ((∀x(Q(x) ∧ P (f(y, x), x)))
︸ ︷︷ ︸

scope

∨(∀z(Q(f(x, z))))))

An occurrence of a variable x in a formula φ is

bound if it falls within the scope of ∀x or ∃x.

Alternatively we can consider the parse tree.

Then an occurrence of x is bound if it occurs

under a ∀x or ∃x, otherwise it is free.

17

Free Variables & Sentences

Def: The free variables of a formula φ, de-

noted FV (φ) can be defined inductively as fol-

lows:

1. For constants (e.g. k): FV (k) = ∅

2. For variables: FV (x) = {x}

3. For terms:

FV (f(t1, . . . , tn)) = FV (t1) ∪ . . . ∪ FV (tn)

4. For atomic formulas:

FV (P (t1, . . . , tn)) = FV (t1) ∪ . . . ∪ FV (tn)

5. For formulas φ, ψ:

FV (¬φ) = FV (φ)
FV (φ ∧ ψ) = FV (φ) ∪ FV (ψ)
FV (∀xφ) = FV (φ)− {x}
FV (∃xφ) = FV (φ)− {x}

Also, FV (>) = FV (⊥) = ∅

Def: A predicate logic formula φ is a sentence

if FV (φ) = ∅, otherwise φ is a sentence form.

18

Valid Substitutions

Def: For formula φ, term t and x is a variable,

replace each free occurrence of x with t to

obtain φ[t/x], the substitution of t for x. It is

a valid substitution provided no occurrence of

a (free) variable in t is bound in φ[t/x].

Substitution is valid if:

1. Each free occurrence of x in φ is replaced

by t.

2. For each y ∈ FV (t), every occurrence y in

a substituted t is free in φ[t/x].

Example: Let φ be Ix→ ∃y(Iy ∧ y > x)

φ[u/x] Valid: Iu→ ∃y(Iy ∧ y > u)

φ[y/x] Invalid: Iy → ∃y(Iy ∧ y > y)

19

Parse Tree (cont)

Example: Consider the formula

S(x) ∧ ∀y(P (x)→ Q(y))

Q: Is φ[f(y, y)/x] valid?

the term f(y, y) is
not free for x in
this formula

∀y

x →

P

x y

S

Q

∧

A: No. y’s in f(y, y) become bound by ∀y in

when substituting for 2nd occurrence of x.

20

