Predicate Logic - Introduction

©2001 M. Lawford

Outline

e Motivation

e Predicates & Functions

Quantifiers v, 3

Coming to Terms with Formulas

Quantifier Scope & Bound Variables

e Free Variables & Sentences

Motivation:
Specification of programs

Make requirements unambiguous.

E.g. For table meant to define a function f(x):
C1(z) | Co(z) | C3(z) | ~ condition
f1(x) | fo(z) | f3(z) |~ action

f@) =

i) The table is consistent (i.e. not contradic-
tory) - a sufficient condition is that there is
no “overlap” between column conditions:

Vz=((C1(z) A Ca(x))
V(C1(z) A C3(x))
V(Ca(z) A C3(2)))

ii) Table is complete - for all possible inputs,
an output is specified

Vo (C1(z) vV Ca(z) v C3(x))

Motivation:
Verification of programs:

E.g. How do you know you got 2A04 lab 2
right? When every input to program gives
same answer as table.

For all a,b,c prog(a,b,c) = table(a,b, c)

Vo Ve Vee(prog(za, zy, xc) = table(zq, xp, xc))

E.g. How do you show someone got 2A04 Lab
2 wrong? Show that there is at least one case
when program gives wrong (different from ta-
ble) answer.

FzqIzpIze(prog(za, xp, vc) £ table(xa, Ty, Tc))

or equivalently

Vo VpVee(prog(za, xp, vc) = table(xq, xp, Tc))
3

Predicates & Functions

We will use the notation (uq,us,...,uy) for an
ordered n-tuple.

Def: Let A be a set. An n place predicate or
relation (over A) is a subset of A™.

An n place predicate P is said to have an arity
of n and is also called an n-ary predicate.

n-ary predicate P can also be considered to
define a characteristic function:

P: A" - {T,F}

T, if (ur,un,...,up) €EP
P(uy,up, ... un) 1= { F, if (u1,un,...,un) € P

E.g. If A := R then <:= {(z,y)|z < y} C R?
and < (1,2) =T while < (2,1) = F

Many mathematical predicates such as < are
written using infix notation as 1 < 2.
4

Predicates and Functions

Subset and characteristic function representa-
tions are often used interchangeably. Typi-
cally a given predicate symbol P has fixed arity
(number of arguments) n. To make this ex-
plicit formally the notation P" is often used.

We will assume that the arity of a predicate
is obvious from how it is used or the con-
text. E.g. P(z,y) is a binary predicate while
Q(u,v,z,y) is a 4-ary predicate.

Some logics (PVS) allow overloading of predi-
cate symbols:

P(z,y) might denote = < y while
P(may,z) might denote m+y = z.

The intended interpretation is clear from the
context.
5

Predicates and Functions

Def: f is a function of n variables or an n-
ary function if f is a subset of A"+l (f is
(n + 1) — ary relation over A) such that if
(u1,...,un,v1) € f and (uq,...,un,v2) € f then
v1 = vp. We denote this f: A" — A.

Formally:

Yuq ... VupVui Voo

(flug,...,un) =v1 A f(ug,...,un) = v — vy = v2)

PVS similarly allows one to overload function
symbols:

X,y,z:VAR nat
f(x,y):nat = x +y
f(x,y,2z):nat = x *x y * z

Quantifiers
vV (FORALL) - Universal Quantifier

VzP(x) - “For all z, P(x) holds (is true).
Also read as “Forevery z..."” "Foreachx...’

1

3 (EXISTS) - Existential Quantifier

JxP(x) - “There exists an z such that P(x)
holds.”

Also read as “There is at least one z...’
“There is an z satisfying P.”

Note: Order counts when you mix quantifiers!
“In every class there is a student with the high-
est mark.”

VazIy(C(x) A S(y) — H(z,y))

“There is a student such that in every class
she has the highest mark.”

Fvz(C(z) A S(y) — H(z,y))

Consider the following statement:
No student who likes math also likes Oscar.
This could be interpreted as:

For every z, if x is a student and x likes
math, then x doesn’t like Oscar.

Vz(S(z) AN M(x) — —L(x,0))

A seemingly equivalent statement would be:

For every z, if x is a student then it is
not the case that x likes math and likes
Oscar.

Vz(S(z) — ~(M(z) A L(z,0)))
Are these statements really saying the same
thing?
7

Restriction of Quantifiers

Often want to restrict ourselves to considering
z's of certain type.

Ve (P(z) — Q(x))
Fz(P(z) A Q(x))

E.g. In Dilbert Vxz(Manager(z) — Idiot(x))
Jx(Animal(z) AN —Glasses(x))

What is the relationship between these two
forms?

—Vz(P(x) — Q(x)) iff Iz(P(z) A -Q(x))
Why?
Note: Other styles of quantification
(Vz € P)Q(z) or Vz € P : Q(x)
mean same as Vz(P(z) — Q(zx))
Jz(P(z) A Q(x)) is also written:
(3z € P)Q(x) or 3z € P: Q(x)
read “There exists an z in P such that Q(x) holds.”

This starts to lead into Type Theory.

Language of Predicate Calculus

A predicate vocabulary consists of three sets
(C,F,P) where each denotes respectively:

C - set of constant symbols

F - set of functions symbols

P - set of predicate symbols

We also have an arity associated with each
function and predicate symbol which we can
think of as a mapping:

arity . FUP — N

where N denotes natural numbers {0,1,2,...}.

For our Oscar example: C = {o}, F = 0,
P ={L,M,S} and arity(L) = 2.

Language of Predicate Calculus (cont)

In addition to constants, function symbols and
predicate symbols our language will make use
of

Variables: e.g., u,v,w,z,y,2z Of ui,x4, €tcC.
Connectives: -, A,V, —,
Quantifiers: V,3

as well as parentheses (,) and we'll also usually
include the two special 0-ary predicate symbols
T, L.

Note: In PVS most strings of letters, numbers and
underscore can be defined to be a variable, constant,
function symbol or predicate. In fact a string can even
be several of these things at once!
PVS translates V as FORALL and 3 as EXISTS

10

Language of Predicate Calculus (cont)

There are now two sorts of objects we are deal-
ing with:

Terms: Variables such as z, constants such
as o and functions applied to these such as
f(xz,0). All denote objects of our universe.

Formulas: Predicates P(x) and logical con-
nectives such as M(xz) A L(xz,0) and quan-
tifiers over a variable applied to a formula
such as VzP(xz). Once values are substi-
tuted for constants and free variables, these
formulas all denote truth values.

We now formally define terms and formulas.

11

Terms

Def: A term is defined as follows:
1. Any constant ¢ € C or variable is a term.

2. If t1,...,typ are terms and f € F is an n-ary
function symbol (i.e. arity(f) = n) then
f(ty,...,tn) is a term.

In BNF form a term ¢ is defined as:
to=z|c|f(t,...,t)

where z is a variable, ¢ € C and f € F has
arity(f) = n.

Constants can be thought of as 0-ary functions
- they take no arguments so we drop the (-)
and eliminate the set C. (e.g., for the Oscar
example then F = {0} and arity(o) = 0).

12

Formulas

Def: The set of formulas over (F,P) is defined
as follows:

1. If ¢t1,...,tp are terms and P € P is an n-
ary predicate symbol, then P(t1,...,tn) is
a formula.

2. If ¢ and ¢ are formulas, so are:
(_'¢)7 ((Z) A ¢)7 (¢ \ ¢)» (¢ - ’l[l), (¢ hd ¢)
T and L are also formulas.

3. If x is a variable and ¢ is a formula, then
so are (Vz¢) and (Tzg¢).

In BNF form formulas are defined as:

¢ = P(ty...ta)|[(=8)|(¢ A D)|(PV)]
(¢ — &)(@ < P)|(Vz)|(3z)
where z is a variable, t; are terms (over F),
and P € P has arity(P) = n.
13

Order of Precedence & Parenthesis

Recall: We use precedence of logical operators and asso-
ciativity of A, V, < to drop parentheses. It is understood
that this is shorthand for the fully parenthesized expres-
sions.

Huth4Ryan uses order of precedence:

v
3
PVS uses order of precedence:

v
> 3
(Vz)P(z) — (Fy)Q(x,y) A P(y) becomes:
In Huth+Ryan:
(VzP(x)) — (ByQ(z,y)) A P(y))
In PVS:

Vo (P(z) — Fy(Qz,y) A P(y))))

- N\,V,—,

14

Parse Tree

We can apply this inductive definition in re-
verse to construct a formula’'s parse tree. A
parse tree represents a WFF ¢ if

i) Theroot nodeis P and if arity(P) = n then
there are n well formed term subtrees,

ii) the root is Vz or 3z and there is only one
well formed subtree

iii) the root is — and there is only one well
formed subtree, or

iv) the root is A,V,— or « and there are two
well formed subtrees or

Note: All leaf nodes will be variables or con-
stants (or L or T).

15

Parse Tree (cont)

Example 1: Draw the parse tree for the for-
mula

Va(P(z) A Q(x)) — —P(x) vV Q(y)

Example 2: Draw the parse trees for the two
formulas on slide 14.

16

Quantifier Scope & Bound Variables

Scope of quantifiers: The scope of a quanti-
fier in a formula ¢ is the subformula to which
the quantifier was applied in the inductive con-
struction of ¢.

In the fully parenthesized formulas the scope
is the quantifier itself and the matching paren-
theses immediately following. E.g

scope
P(z,y) — Vz(Q(z) A P(f(y,2),2)) WW2(Q(f(x, 2))

(P(z,y) — ((Vz(Qx) A P(f(y,x), 2))) V(V2(Q(f(, 2)))

scope
An occurrence of a variable z in a formula ¢ is
bound if it falls within the scope of Vx or Jz.

Alternatively we can consider the parse tree.
Then an occurrence of z is bound if it occurs
under a Vx or dx, otherwise it is free.

17

Free Variables & Sentences

Def: The free variables of a formula ¢, de-
noted F'V(¢) can be defined inductively as fol-
lows:

1. For constants (e.g. k): FV(k) =0
2. For variables: FV(z) = {z}
3. For terms:

FV(f(ty,..-,tn)) = FV(t1)U...UFV(tn)
4. For atomic formulas:

FV(P(t1,...,tn)) = FV(t1) U...UFV(tn)
5. For formulas ¢, :

FV(=¢) = FV(¢)

FV(pNp) = FV () UFV(Y)

FV(Vz¢) = FV(¢) — {=}

FV(3z¢) = FV(¢) — {=}
Also, FV(T) = FV(L) =0

Def: A predicate logic formula ¢ is a sentence
if FV(¢) = 0, otherwise ¢ is a sentence form.

18

Valid Substitutions

Def: For formula ¢, term t and z is a variable,
replace each free occurrence of = with ¢t to
obtain ¢[t/z], the substitution of t for z. It is
a valid substitution provided no occurrence of
a (free) variable in ¢ is bound in ¢[t/z].

Substitution is valid if:

1. Each free occurrence of x in ¢ is replaced
by t.

2. For each y € FV(t), every occurrence y in
a substituted ¢ is free in ¢[t/z].

Example: Let ¢ be Iz — Jy(ly Ay > x)
olu/x] Valid: Tu — Jy(Iy Ay > u)

oly/x] Invalid: Ty — Iy(ly Ay > y)
19

Parse Tree (cont)

Example: Consider the formula

S(z) ANVy(P(x) — Q(y))
Q: Is ¢[f(y,y)/x] valid?

the term f(y,y) is
not free for z in
this formula

A: No. y's in f(y,y) become bound by Vy in
when substituting for 2nd occurrence of x.

20

