Predicate Logic - Introduction	Outline
	Motivation
	 Predicates & Functions
	• Quantifiers ∀,∃
	• Coming to Terms with Formulas
	• Quantifier Scope & Bound Variables
	• Free Variables & Sentences
©2001 M. Lawford	1

Motivation:

Specification of programs

Make requirements unambiguous. E.g. For table meant to define a function f(x):

 i) The table is consistent (i.e. not contradictory) - a sufficient condition is that there is no "overlap" between column conditions:

 $\begin{array}{l} \forall x \neg ((C_1(x) \land C_2(x)) \\ \lor (C_1(x) \land C_3(x)) \\ \lor (C_2(x) \land C_3(x))) \end{array}$

ii) Table is complete - for all possible inputs, an output is specified

$$\forall x (C_1(x) \lor C_2(x) \lor C_3(x))$$

Motivation:

Verification of programs:

E.g. How do you know you got 2A04 lab 2 right? When every input to program gives same answer as table.

For all $a, b, c \ prog(a, b, c) = table(a, b, c)$

$$\forall x_a \forall x_b \forall x_c (prog(x_a, x_b, x_c) = table(x_a, x_b, x_c))$$

E.g. How do you show someone got 2A04 Lab 2 wrong? Show that there is at least one case when program gives wrong (different from table) answer.

 $\exists x_a \exists x_b \exists x_c (prog(x_a, x_b, x_c) \neq table(x_a, x_b, x_c))$

or equivalently

$$\neg \forall x_a \forall x_b \forall x_c (prog(x_a, x_b, x_c) = table(x_a, x_b, x_c))$$

Predicates & Functions

We will use the notation (u_1, u_2, \ldots, u_n) for an ordered *n*-tuple.

Def: Let A be a set. An n place predicate or relation (over A) is a subset of A^n .

An n place predicate P is said to have an *arity* of n and is also called an n-ary predicate.

n-ary predicate P can also be considered to define a *characteristic function*:

 $P: A^n \to \{T, F\}$ $P(u_1, u_2, \dots u_n) := \begin{cases} T, & \text{if } (u_1, u_2, \dots, u_n) \in P\\ F, & \text{if } (u_1, u_2, \dots, u_n) \notin P \end{cases}$

E.g. If $A := \mathbb{R}$ then $\leq := \{(x, y) | x \leq y\} \subset \mathbb{R}^2$ and $\leq (1, 2) = T$ while $\leq (2, 1) = F$

Many mathematical predicates such as \leq are written using *infix notation* as $1 \leq 2$.

4

Predicates and Functions

Subset and characteristic function representations are often used interchangeably. Typically a given predicate symbol P has fixed arity (number of arguments) n. To make this explicit formally the notation P^n is often used.

We will assume that the arity of a predicate is obvious from how it is used or the *context*. E.g. P(x, y) is a binary predicate while Q(u, v, x, y) is a 4-ary predicate.

Some logics (PVS) allow *overloading* of predicate symbols:

P(x, y) might denote $x \le y$ while P(x, y, z) might denote x + y = z.

The intended *interpretation* is clear from the context.

5

Predicates and Functions

Def: f is a function of n variables or an nary function if f is a subset of A^{n+1} (f is (n + 1) - ary relation over A) such that if $(u_1, \ldots, u_n, v_1) \in f$ and $(u_1, \ldots, u_n, v_2) \in f$ then $v_1 = v_2$. We denote this $f : A^n \to A$.

Formally:

 $\forall u_1 \dots \forall u_n \forall v_1 \forall v_2$ $(f(u_1, \dots, u_n) = v_1 \land f(u_1, \dots, u_n) = v_2 \to v_1 = v_2)$

PVS similarly allows one to overload function symbols:

x,y,z:VAR nat f(x,y):nat = x + y f(x,y,z):nat = x * y * z

Quantifiers

∀ (FORALL) - Universal Quantifier

 $\forall x P(x)$ - "For all x, P(x) holds (is true). Also read as "For every $x \dots$ " "For each $x \dots$ "

∃ (EXISTS) - Existential Quantifier

 $\exists x P(x)$ - "There exists an x such that P(x) holds."

Also read as "There is at least one x..." "There is an x satisfying P."

Note: Order counts when you mix quantifiers!

"In every class there is a student with the highest mark."

 $\forall x \exists y (C(x) \land S(y) \to H(x, y))$

"There is a student such that in every class she has the highest mark."

 $\exists y \forall x (C(x) \land S(y) \to H(x, y))$

Consider the following statement: No student who likes math also likes Oscar. This could be interpreted as:

For every x, if x is a student and x likes math, then x doesn't like Oscar.

 $\forall x(S(x) \land M(x) \to \neg L(x, o))$

A seemingly equivalent statement would be:

For every x, if x is a student then it is not the case that x likes math and likes Oscar.

 $\forall x(S(x) \to \neg(M(x) \land L(x, o)))$

Are these statements really saying the same thing?

7

Restriction of Quantifiers

Often want to restrict ourselves to considering x's of certain *type*.

$$orall x(P(x) o Q(x))$$

 $\exists x(P(x) \wedge Q(x))$

E.g. In Dilbert $\forall x (Manager(x) \rightarrow Idiot(x))$ $\exists x (Animal(x) \land \neg Glasses(x))$

What is the relationship between these two forms?

$$\neg \forall x (P(x) \rightarrow Q(x)) \text{ iff } \exists x (P(x) \land \neg Q(x))$$

Why?

Note: Other styles of quantification $(\forall x \in P)Q(x) \text{ or } \forall x \in P : Q(x)$ mean same as $\forall x(P(x) \rightarrow Q(x))$ $\exists x(P(x) \land Q(x))$ is also written:

 $(\exists x \in P)Q(x)$ or $\exists x \in P : Q(x)$ read "There exists an x in P such that Q(x) holds." This starts to lead into Type Theory.

8

Language of Predicate Calculus

A *predicate vocabulary* consists of three sets (C, F, P) where each denotes respectively:

 $\ensuremath{\mathcal{C}}$ - set of constant symbols

 ${\mathcal F}$ - set of functions symbols

 $\ensuremath{\mathcal{P}}$ - set of predicate symbols

We also have an arity associated with each function and predicate symbol which we can think of as a mapping:

 $arity: \mathcal{F} \cup \mathcal{P} \to \mathbb{N}$

where $\mathbb N$ denotes natural numbers $\{0,1,2,\ldots\}.$

For our Oscar example: $C = \{o\}, \mathcal{F} = \emptyset$, $\mathcal{P} = \{L, M, S\}$ and arity(L) = 2.

Language of Predicate Calculus (cont)

In addition to constants, function symbols and predicate symbols our language will make use of

Variables: e.g., u, v, w, x, y, z or u_1, x_4 , etc.

Connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$

Quantifiers: \forall, \exists

as well as parentheses (,) and we'll also usually include the two special 0-ary predicate symbols \top, \bot .

Note: In PVS most strings of letters, numbers and underscore can be defined to be a variable, constant, function symbol or predicate. In fact a string can even be several of these things at once!

PVS translates \forall as FORALL and \exists as EXISTS

Language of Predicate Calculus (cont)

There are now two *sorts* of objects we are dealing with:

- **Terms:** Variables such as x, constants such as o and functions applied to these such as f(x, o). All denote objects of our universe.
- **Formulas:** Predicates P(x) and logical connectives such as $M(x) \wedge L(x, o)$ and quantifiers over a variable applied to a formula such as $\forall x P(x)$. Once values are substituted for constants and free variables, these formulas all denote truth values.

We now formally define terms and formulas.

11

Terms

Def: A *term* is defined as follows:

- 1. Any constant $c \in C$ or variable is a term.
- 2. If t_1, \ldots, t_n are terms and $f \in \mathcal{F}$ is an *n*-ary function symbol (i.e. arity(f) = n) then $f(t_1, \ldots, t_n)$ is a term.

In BNF form a term t is defined as:

$$t ::= x|c|f(t,\ldots,t)$$

where x is a variable, $c \in C$ and $f \in F$ has arity(f) = n.

Constants can be thought of as 0-ary functions - they take no arguments so we drop the (·) and eliminate the set C. (e.g., for the Oscar example then $\mathcal{F} = \{o\}$ and arity(o) = 0).

12

Formulas

Def: The set of formulas over $(\mathcal{F}, \mathcal{P})$ is defined as follows:

- 1. If t_1, \ldots, t_n are terms and $P \in \mathcal{P}$ is an *n*-ary predicate symbol, then $P(t_1, \ldots, t_n)$ is a formula.
- 2. If ϕ and ψ are formulas, so are:

$$(\neg \phi), (\phi \land \psi), (\phi \lor \psi), (\phi \to \psi), (\phi \leftrightarrow \psi)$$

$$\top$$
 and \perp are also formulas.

- 3. If x is a variable and ϕ is a formula, then so are $(\forall x\phi)$ and $(\exists x\phi)$.
- In BNF form formulas are defined as:

$$\phi ::= P(t_1 \dots t_n) |(\neg \phi)| (\phi \land \phi) |(\phi \lor \phi)| (\phi \to \phi) |(\phi \leftrightarrow \phi)| (\forall x \phi) |(\exists x \phi)$$

where x is a variable, t_i are terms (over \mathcal{F}), and $P \in \mathcal{P}$ has arity(P) = n.

Order of Precedence & Parenthesis

Recall: We use precedence of logical operators and associativity of $\land,\lor,\leftrightarrow$ to drop parentheses. It is understood that this is shorthand for the fully parenthesized expressions.

Huth+Ryan uses order of precedence:

$$\begin{array}{c} \neg \\ \forall \\ \exists \end{array}, \begin{array}{c} \land \\ \lor \end{array}, \begin{array}{c} \rightarrow \\ \leftrightarrow \end{array}$$

PVS uses order of precedence:

$$\neg, \land, \lor, \rightarrow, \leftrightarrow, \begin{array}{c} \forall \\ \exists \end{array}$$

 $(\forall x)P(x) \rightarrow (\exists y)Q(x,y) \land P(y)$ becomes: In Huth+Ryan:

$$(\forall x P(x)) \rightarrow ((\exists y Q(x,y)) \land P(y))$$

In PVS:

$$\forall x (P(x) \to (\exists y (Q(x,y) \land P(y))))$$

14

Parse Tree

We can apply this inductive definition in reverse to construct a formula's *parse tree*. A parse tree represents a WFF ϕ if

- i) The root node is P and if arity(P) = n then there are n well formed term subtrees,
- ii) the root is $\forall x$ or $\exists x$ and there is only one well formed subtree
- iii) the root is \neg and there is only one well formed subtree, or
- iv) the root is \land,\lor,\to or \leftrightarrow and there are two well formed subtrees or

Note: All leaf nodes will be variables or constants (or \perp or $\top).$

15

Parse Tree (cont)

Example 1: Draw the parse tree for the formula

$$\forall x(P(x) \land Q(x)) \rightarrow \neg P(x) \lor Q(y)$$

Example 2: Draw the parse trees for the two formulas on slide 14.

16

Quantifier Scope & Bound Variables

Scope of quantifiers: The scope of a quantifier in a formula ϕ is the subformula to which the quantifier was applied in the inductive construction of ϕ .

In the fully parenthesized formulas the scope is the quantifier itself and the matching parentheses immediately following. E.g

$$P(x,y) \to \overleftarrow{\forall x(Q(x) \land P(f(y,x),x))} \lor \forall z(Q(f(x,z)))$$
$$(P(x,y) \to ((\forall x(Q(x) \land P(f(y,x),x)))) \lor (\forall z(Q(f(x,z))))$$

An occurrence of a variable x in a formula ϕ is *bound* if it falls within the scope of $\forall x$ or $\exists x$.

scòpe

Alternatively we can consider the parse tree. Then an occurrence of x is bound if it occurs under a $\forall x$ or $\exists x$, otherwise it is free.

17

Free Variables & Sentences

Def: The *free variables* of a formula ϕ , denoted $FV(\phi)$ can be defined inductively as follows:

- 1. For constants (e.g. k): $FV(k) = \emptyset$
- 2. For variables: $FV(x) = \{x\}$
- 3. For terms:

 $FV(f(t_1,\ldots,t_n)) = FV(t_1) \cup \ldots \cup FV(t_n)$

4. For atomic formulas:

$$FV(P(t_1,\ldots,t_n)) = FV(t_1) \cup \ldots \cup FV(t_n)$$

5. For formulas ϕ, ψ :

 $FV(\neg\phi) = FV(\phi)$ $FV(\phi \land \psi) = FV(\phi) \cup FV(\psi)$ $FV(\forall x\phi) = FV(\phi) - \{x\}$ $FV(\exists x\phi) = FV(\phi) - \{x\}$ Also, $FV(\top) = FV(\bot) = \emptyset$

Def: A predicate logic formula ϕ is a sentence if $FV(\phi) = \emptyset$, otherwise ϕ is a sentence form.

18

Valid Substitutions

Def: For formula ϕ , term t and x is a variable, replace each free occurrence of x with t to obtain $\phi[t/x]$, the *substitution* of t for x. It is a *valid substitution* provided no occurrence of a (free) variable in t is bound in $\phi[t/x]$.

Substitution is valid if:

- 1. Each free occurrence of x in ϕ is replaced by t.
- 2. For each $y \in FV(t)$, every occurrence y in a substituted t is free in $\phi[t/x]$.

Example: Let ϕ be $Ix \to \exists y(Iy \land y > x)$

 $\phi[u/x]$ Valid: $Iu \rightarrow \exists y(Iy \land y > u)$

 $\phi[y/x]$ Invalid: $Iy \rightarrow \exists y(Iy \land y > y)$

19

Parse Tree (cont)

Example: Consider the formula

$$S(x) \land \forall y (P(x)
ightarrow Q(y))$$

Q: Is $\phi[f(y,y)/x]$ valid?


```
A: No. y's in f(y, y) become bound by \forall y in when substituting for 2nd occurrence of x.
```

20