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Interpretations

When we write a formula we usually have a par-
ticular setting or interpretation in mind. This
involves specifying a universe of discourse A,
a non-empty set of things we want to reason
about.

(e.g. R, set of people at McMaster, or set of
sensor inputs values and actuator output val-
ues for a control system).

Just as in a program, constants are assigned
values from A, function and predicate symbols
are interpreted as specific functions or relation.
We can then interpret the meaning of a for-
mula in our particular interpretation structure
or model.

Notation: Let ¢ and ¢ be predicate logic for-
mulas and I be a sequence of formulas.
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Models

Let [ be a set of formulas in which occur the
predicate symbols Pq,..., P, function symbols
f1,---,fj and constants ci,...,cm. These for-
mulas have the predicate vocabulary

(.’/—",P) — ({fl)'"7fj7cla"'7cm}7{P17'°°7Pk})

Def: A model M for (F,P) provides

1. Ais a nonempty set. The universe (of con-
crete values).

2. for each f € F such that arity(f) = n, a
concrete function
FMAm 5 A
3. for each P € P such that arity(P) = n, a

relation

Note: For for a constant symbol, ¢ € F with
arity(c) = 0, we have ¢M € A is a specific value
in A.
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Creating a Model:
To create a model for I, do the following:

1. Determine the predicate vocabulary (F,P).

2. Determine signature or required type of each
symbol (e.g. fM: A2 5 A, PM C AY).

3. Choose a universe A # 0.

4. Define interpretation for each symbol with
required properties.

E.g. To create M making Vz(P(z) — Q(x))
true, chose PM QM C A such that
PM cC oM. why?

Note 1: Keep it simple! Use a finite or nu-
merical A when possible.

Note 2: You must interpret symbols consis-
tently (the same) in every occurrence in all

formulas.
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Do interpretation structure example:
- create interpretation structure for a sentence

- create interpretation structure that makes a
sentence or sentence form true/false.
note: not always possiblel

- every sentence is either true or false in an in-
terpretation structure M but this is not always
the case for sentence forms



Interpretation of Terms, Sentences
and Sentence Forms

Let ¢t be a term with FV(t) = {z1,...,xn}.
Then the interpretation of ¢t defines an n-ary
function tM : A" 5 A.

Let ¢ be a formula with FV(¢) = {z1,...,xzn}
then the interpretation of ¢ defines an n-ary
relation ¢M C A™.

E.g. Consider interpretation of ¢, the term
f(a,y) and ¢ and 1 the formulas P(a,x) and
VeP(f(y,b), f(x,a)) respectively in M where

A=N

PM = {(z,y) € N[z < y}

M(z,y) =24y

a™ =1 and ¥M = 0.

Then fM(a,y) : N> Nie y—1+y
and y" ={0,1} C N in M.



Satisfaction

Let ¢ be a formula with at most k£ free vari-
ables x1,z5,...,z, and M be a model for ¢
with universe A. To determine the truth value
of ¢, we need to assign values to xz1,xo,...,xg
from A.

We can do this via a lookup table [ which maps
variables var to values in A creating an envi-
ronment to determine the truth of ¢:

[:var = A

Modifying a lookup table:

Suppose we want to change the value for vari-
able x in an existing lookup table [, then we
write l[x — a] to denote the map:

when y =«
otherwise

Iz — al(y) = { 1)



Satisfaction (cont)

Given a model M and a mapping [ : var — A,
such that I(z;) = a;, we can now interpret a
terms in our model.

Given a term ¢, the interpretation of ¢t in model
M with environment [ is given as follows:

If t is ¢ (a constant) then tM is M.
If t is z; then tMis I(z;) = a;.
If tis f(t1,...,tn) then tMis fM@EM M),

For a formula ¢, with model M and environ-
ment [ we can now define a satisfaction relation

M= ¢

which means that ¢ evaluates to T' (true) when
free variables are assigned values according to
[ in model M.
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Satisfaction (cont)

Def: Given a model M for (F,P) an environ-
ment [, and a formula ¢ over (F,P), we write

M =lq5 if:

P : ¢ is of the form P(t1,...,tn) and
M, ..., M) € PM when the variables of t;
are replaced by values in A according to [,
then

M —1 P(t177tn)

Ve : ¢ is Vzp and M =, .4 ¥ fOr all a € A
then M =, Vz.

Jz : ¢ is Jxyp and M =, ,,) ¥ TOr some a € A
then M =; dz.




Satisfaction (cont)
- ¢is = and M &= ¢ then M =) .

V:igis iy Viyy and M =; ¢, or M =; Yo then
M =1 Y1 V2.

AN @ is Y1 Ao and M =; 1 and M = Yo
then M [=; 41 A eo.

—: @ is 1 — o and if M =; 1 then M |=; ¢,
then M =, ¢¥1 — ¥o.

. P IS Y1 < Yo and M —1 Y1 IffF M — Vo,
then M |=; ¥1 < ¥o.

In the above M &= ¢ denotes that M =; ¢
does not hold.

Def: If M =; ¢ holds for all possible [, then we
say that model M satisfies ¢ or M is a model
for ¢ and write M = ¢.
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Truth, Models & Validity

Note: Its possible that M ¥~ ¢ and M & —¢
(i.e. ¢ is neither true nor false in M). This is
only true for sentence forms (i.e. ¢ has free
variables).

How does this work? If there exist environ-
ments [ and !’ such that M |=; ¢ and M =y ¢.

Note: Any sentence is either true or false in
M. (Why?)

For a sequence of predicate logic formulas I =
d1,...,0n, We say M is a model for ", written
M =T iff M = ¢; for every ¢; € I'.

Def: Suppose ¢ is a formula over (F,P). Then
¢ is (universally) valid, written |= ¢, if ¢ is true
in every model for (F,P).

10



Example: Find an interpretation such that

P(z) — Q(z)

IS neither true nor false.

Example valid formulas:

P(x) — P(x)

Ve (P(z) A (P(z) = Q(z)) = Q(z))
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Universal Closure and PVS

Def: For ¢ with free variables z1,...,xn, the
formula Vx1Vzo...Vxn,¢ is the universal closure
of ¢. Note that

M= ¢ iff M= (V1) (Vo) ... (Vap)o
(follows immediately from definition of =.)

PVS uses this as a short cut to implicitly quan-
tify theorem statements. E.qg.

X,y,Z:VAR nat
f(x,y):nat = x + y

T1: THEOREM f(x,y)=f(y,x)
in prover becomes:

T1

{1} (FORALL (x: nat, y: nat): f(x, y) = £(y, x))

Rule?
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“Reality” Check

A set of logical formulas [ can be used to spec-
ify system requirements.

A program M is an interpretation or model
of the function and predicate symbols of the
logical formulas in the specification I'.

If the program is a model of the specification
(M ). Then the program satisfies each
requirement ¢; € I'.

Thus given a set of requirements [, an impor-
tant question is:

Does a model exist for I'? (i.e. Is there a pro-
gram that meets the requirements?)

If the requirements are contradictory (incon-

sistent), then no model will exist! E.q.
= 3dz(P(z)),Vz(P(z) = Q(x)),Vz(P(z) = ~Q(x))

[ is a trivial specification if it is satisfied by
every interpretation of I.
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Semantic Entailment

Recall that for propositional logic we say that
premises ¢1,..., o, semantically entail conclu-
sion i, denoted

¢17¢27"'7¢n :w

if whenever all the ¢;s evaluate to T, then ¢
evaluates to T'.

We now extend this concept to predicate logic
formulas.

Def: We say ¢1,...,¢0n Semantically entail i
denoted

¢17¢27---7¢n =1P

if whenever M =; ¢;, for all : = 1,...,n then
M =; ¢ for all models M and lookup tables [.
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Semantic Entailment = (cont)

When ¢1,...¢n,% are all sentences, then this

reduces to

®1, P2, - .

if whenever M = ¢;,

'7¢n ZIP

for all : = 1,...,n then

M = o for all models M.

Example: Vz(P(zx) — Q(x)) &= VeP(z) — VxQ(x).

Why?

We could, in theory at least, show that
[ = ¥ computationally for propositional logic
by checking the truth table.

In general, showing I

— ¢p computationally for

predicate logic is not possible. Why? We have
to check all models M and all lookup tables
[ which might be tough for models with an

infinite universe A.

As we will see, instead we show [ - 2.
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Semantic Entailment = (cont)

How do we show that [ (&= ¢7

Just as with propositional logic, we find a counter
example.

Assuming [ is ¢1,...,¢n, in this case we find a
model M such that, M= ¢; forall:=1,...,n
but M &= .

Example:

VeP(x) — VzQ(z) = Ve(P(x) — Q(x))
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Semantics of Equality

In interpretation structures (models), by con-
vention, = must always be interpreted as the
“diagonal relation” .

For A = {a,b,c,...} the characteristic function
for the equality predicate, =M: A2 — {T, F}, is
given by:

=M|a b c
a |T F F F
b |F T F F
c |F F T F
F F F -

That is =MC A?2 is given by:
=M:= {(a,a), (b,b), (c,c),.. .}

In general, =M is the subset A x A given by:
{(z, )|z € A}

i,e. a =>bis true in M iff a™ and ¥M are the
same element.
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Proofs

Can use all rules from Propositional logic +
additional rules for dealing with quantifiers.

[ = ¢ means that from set of premises I, there
is a formal proof of ¢.

Proofs in Predicate Logic are even more impor-
tant than in Propositional Logic because there
IS NOo decision procedure or algorithm for arbi-
trary predicate logic formulas like truth tables.
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Proof Rules: Ve

Suppose we have been able to show ' - Vzo.
I.e., Assuming the premises are true we have
shown ¢ is true for all evaluations of =.

Thus if ¢[t/x] is a valid substitution then clearly
we should be able to conclude I F ¢[t/x].

We will call this rule “forall elimination” (aka.
Universal Specification) denoted Ve and sum-
marized as follows:
Vxo
olt/x]

where ¢[t/x] is a valid substitution.

Ye

Why do we need the side condition about a
valid substitution? Consider Vzay(z < y).

Take ¢ to be Jy(xz < y) so ¢ly/x] is y(y < y)!
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Proof Rules: Vi

Given [, a set of formulas, the free variables I
is the union of the free variables of each ¢; € I'.
Ie.
Fv(D) = [J FV(¢)
o€l
If T+ ¢lxg/x] and xzg € FV (') then
[ = Vxo.

We will call this rule “forall introduction” (aka.
Universal Generalization) denoted Vi and sum-
marize it as follows:

L0

olo/a]

Vxo

where xg is a “fresh” or new variable not ap-
pearing in our premises or assumptions.

V1
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Examples Using Ve & V3

For ' := P(y),Vz(P(x) — Q(x) you cannot
conclude I - Vx P(x)

Reconsider our Oscar example. Recall we trans-
lated:

No student who likes math also likes Oscar.

as
Ve (S(z) N M(x) — —L(x,0))
and

Ve (S(z) - (M (x) A L(x,0)))

Show that
= Ve(S(x) AN M(x) — —L(x,0))

Ve(S(z) = —-(M(x) AN L(z,0)))
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Proof Rules: 3;

Suppose we have been able to show I + ¢[t/z].
Il.e., Assuming the premises are true we have
shown ¢ is true when free occurrences of x are
replaced by the term t.

If ¢[t/x] is a valid substitution there exists a
value for x, namely the value that ¢ evaluates
to, that can make ¢ true. Thus if I F ¢[t/x],
we conclude I + dzxo.

We will call this rule “exists introduction” (aka.
Existential Generalization) denoted 3¢ and sum-
marized as follows:

olt/x]
T26 de

where ¢[t/x] is a valid substitution.
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Proof Rules: 3¢

If ', p[xzg/x] - x where:

1. ¢[xzg/x] is a valid substitution, and

2. 2 € FV(I) UFV (x).
Then ', (3z)o F x.
We will call this rule “exists elimination” (aka.

Existential Premise) denoted de and summa-
rize it as follows:

0 ¢[CL’9/ ]

dx¢ X

de

X
where zg is a “fresh” or new variable not ap-
pearing in our other premises and assumptions,
or in the conclusion and ¢[xg/x] is a valid sub-

stitution.
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