Predicate Logic with Equality

## **Outline**

- Rules of Inference for Identity (=)
- Equality & Interpretation Structures
- PVS Commands for Dealing with =

## **Predicate Logic With Equality**

Equality needed to state many useful properties:

E.g. There is one (unique) student with the highest average:

$$(\exists x)(Sx \land Hx \land (\forall y)(Sy \land Hy \rightarrow x = y))$$

E.g. An n element array f of integers does not contain any duplicate elements:

$$(\forall x)(\forall y)(1 \le x \land x \le n \land 1 \le y \land y \le n \\ \land x \ne y \to f(x) \ne f(y))$$
 or alternatively 
$$(\forall x)(\forall y)(1 \le x \land x \le n \land 1 \le y \land y \le n \\ \land f(x) = f(y) \to x = y)$$

# Rules of Inference for Identity (=)

Recall:  $\phi[t|x]$ , the substitution of t for x in  $\phi$  is the formula obtained by replacing every free occurrence of x by t.

**Def:**  $\phi[x,t|x]$  is the formula obtained by replacing *some* free occurrences of x in  $\phi$ .  $\phi[x,t|x]$  is also called a *valid substitution* if no free variable in an occurrence of t is bound in  $\phi[x,t|x]$ .

#### Rule I: Rules for Identity

- a) Reflexivity of equality:  $\vdash (\forall x)(x=x)$
- b) Substitution of equal terms:

$$\vdash (\forall x)[(x=t) \to (\phi \leftrightarrow \phi[x,t|x])]$$

c) Symmetry of equality:

$$\vdash (\forall x)(\forall y)(x=y\rightarrow y=x)$$

d) Transitivity of equality:

$$\vdash (\forall x)(\forall y)(\forall z)(x = y \land y = z \rightarrow x = z)$$

#### Use of Rule I

(c) and (d) can be derived using (a) and (b) (See Rubin p. 230-1)

We can write t=t on any line of a proof. Why?

$$n \mid \Gamma \vdash (\forall x)(x=x)$$
 I - Reflexivity  $(n+1) \mid t=t$   $n \cup S [t|x]$ 

Try proof of:  $\Gamma \vdash Raa$  for

$$\Gamma = \{ (\forall x)(Rax \to a = x \lor a = b), (\exists x)(Rax), Sa \land \neg Sb \}$$

## **Equality & Interpretation Structures**

In interpretation structures = must always be interpreted as the "diagonal relation" if Rule I is to be valid.

In terms of relations = is the subset  $\mathbf{U} \times \mathbf{U}$  given by:

$$\{(x,x)|x\in U\}$$

i.e. a = b is true in S iff a and b are the same element.

# **PVS** Commands for Dealing with =

```
(EXPAND "t1") and (EXPAND "t1" "t2" ...)
equality: THEORY
  BEGIN
  x,y:VAR real
  a:real=1
  f(x,y):real = x+y
  g(x,y):real = x+y
Ia: THEOREM f(y,a)=g(y,1)
END equality
```

To prove THEOREM Ia you can just use (SKOLEM!) to eliminate universal quantifiers and then use variants of the (EXPAND ...) command to expand definitions (EXPAND\* "f" "g") (EXPAND "a").

## **PVS** Commands for Dealing with =

**Q:** How do you use premises with top level "=" in PVS that are not definitions?

A: The PVS equivalent of Rubin's Rule I part (b) Substitution of Equals: (REPLACE -n \* LR).

Equation -n in the premises is of the form

$$t_L = t_R$$

The command makes all valid substitutions of  $t_R$  for  $t_L$  in all other formulas of the sequent!

Changing the argument LR with RL would replace right-to-left, performing all valid substitutions of  $t_L$  for  $t_R$ .

#### Example: Rubin p.244 E11

```
equal11 : THEORY
  BEGIN
  U:TYPE+
 P:PRED[U]
  A,B,C,D:PRED[U]
  x,y : VAR U
  E11: THEOREM (FORALL x,y:A(x)&B(y)=> x=y)
 &(EXISTS x:A(x)&C(x)) & (EXISTS x:B(x)&D(x))
    =>(EXISTS x:C(x)\&D(x))
  END equal11
Using a combination of (BDDSIMP), (SKOLEM!)
and (INST?) reduces E11 to sequent
\{-1\} A(x!1)
\{-2\} B(x!2)
\{-3\} x!1 = x!2
\{-4\} C(x!1)
\{-5\} D(x!2)
\{1\} D(x!1)
```

Now you can finish off the proof by replacing x!1 by x!2 as follows:

```
Rule? (REPLACE -3 * LR)
Replacing using formula -3,
this simplifies to:
E11:
\{-1\} A(x!2)
[-2] B(x!2)
[-3] x!1 = x!2
\{-4\} C(x!2)
[-5] D(x!2)
\{1\} D(x!2)
which is trivially true.
Q.E.D.
```