Propositional Logic:

Part I - Semantics

©2001 M. Lawford

Outline

e \What is propositional logic?

e Logical connectives

e Semantics of propositional logic

e Tautologies & Logical equivalence
Applications:
1. Building the world with NAND
2. Normal Forms & minimizing gate delays

e Logical implication, Valid arguments &
Semantic entailment =

A Bit of Notation

Consider negation on the real numbers R:

f@) = —a

Then f: R — R is the signature of f meaning f
takes a real argument and produce a real.

Here — is a wunary prefix operator meaning it
takes one argument, the number immediately
following — (e.g., —(5) = —5). So really

— R—->R
Similarly 4+ : R?2 - R

4+ is a binary operator on R so we could treat it
as a prefix operator and write 4+(3,5)=8.

But this is tedious so we use infix notation and
write 3 4+ 5 = 8.

What is Propositional Logic?

Def: A proposition is a statement that is either
true or false.

E.g. p:“The prof looks tired.”
q:"'We're hungry and not able to eat.”

Propositional logic is a formal mathematical system for
reasoning about such statements.

The first statement p is an atomic proposition. It cannot
be further subdivided.

The 2nd statement ¢ is a compound proposition that's
truth depends upon the value of the two atomic proposi-
tions:

1. h:"We are hungry.”
2. e:""We are able eat.”

The logical connectives “and” and “not” determine how
the atomic proposition affect q.

Restating g in the formal language of propositional logic:

q:hAN—e

Logical Connectives
Let 7" and F' represent true and false respectively.

Define V = {T,F}, the set of possible truth
values for a proposition. In the following let p,q
be propositional variables.

Negation: - (NOT)

-V =V
p|p
F| T
T | F
A truth table is tabular representation of the
truth values of a proposition under all possible
assignments. The above is the table for —p.
Clearly it defines a function.

Truth tables define the meaning or interpreta-
tion propositions. We call this the semantics of
the propositional logic.

4

Conjunction: A (AND)

ATV2 Y
P|q|pPANg
F | F F
F | T F
T | F| F
T | T T
Other English equivalents: “p but " - “The students
are interested but look bored.”
Disjunction: v (OR)
VARV
p|lq|pVq
F | F F
F\|T T
T | F T
T | T T

Note: This is a “non-exclusive OR"”. Why?

Conditional: — (IMPLIES)

V2 LY

NN YT
N TN TR
~

Other English equivalents: "If p then q”, “p only if q”,
“g if p”, “p is sufficient for q"”, "q is necessary for p".

Biconditional: — (IFF)

=1 V2 Y
P 14q9|pP—4q
F|\F| T
F|\T| F
T F| F
T T| T

Other English equivalents: “p if and only if 9", “p is
equivalent to q", “p is necessary and sufficient for q”

6

Precedence of Logical Connectives

We write: —5-2 4 10/5 — 8 and know that it
means: ((—(5) - 2) + (10/5)) — 8 because the
operators of arithmetic have the implicit order
of precedence

—> decreasing order —>

Do 1st < -> Do last
-+

YRR

We say that operators with a higher order of
precedence “have a tighter binding".

Similarly for logical connectives we define the
order of precedence as:

Do 1st < -> Do last
/\ —
<—>

! \/ !

Thus ((pA—(q)) — r) becomes: pA—-qg—r

Properties of Binary Operators

Def: A binary operator * : V2 — V is commuta-
tive if for all values of p,q € V:

E.g. Addition and multiplication are commuta-
tive over the reals but division is not.

A, V,« are commutative

but — is not!

plg|\p—4q/9q—D
F|F T T
F\|T T F
T | F F T
T T T T

Properties of Binary Operators

Def: A binary operator * : V2 — V is associative
if for all values of p,q,r € V:

(p*xq) xr=px(qx*r)

E.g. + and - are associative over the reals but
/is not (e.g. (4/2)/2 =1 but 4/(2/2) = 4).

A, V, <« are associative. Therefore (pAg) Ar and
p A (gAr) “mean the same thing” so we write

pAgANT.
(Similar to writing 5-2 -4 for integer mult.)

Note: (pAg)Vris NOT “equivalent” to
pA (qVr) (Check using truth tables.)

— IS not associative!

plg|lr|(p—q) —=7r|p— (@q—7)

O|F|F|F T F T T
1\F|F|T T T
2| F|T|F T F
3|F|T|T T

A\T|F|F

5|T|F|T

6|T|T|F

7\T|\T|T

Row 0O of the truth table provides counter ex-
ample so we can stop.

Note that there are 23 rows numbered 0 to 7 =
23 1.

In general, a truth table for compound propo-
sition will have 2™ rows, where n= number of
unique propositional variables occuring in the ex-
pression.

Count in binary with F being O and T being 1
to cover all cases.
10

Tautologies and Contradictions

Def: A logical expression is a tautology (con-
tradiction) if it is true (false) under all possible
assignments to its propositional variables.

E.g. pV —p is a tautology since its truth table
results in all T"s while p A =p is a contradiction:

p|p|pVp|pAD
F| T T F
T | F T F
The negation of any tautology is a contradiction

and vice versa. Why?

If S is a tautology, then so is any substitution in-
stance of it (i.e. consistently replacing variables
with any other formulas results in a tautology!).

E.g (p —q)V—-(p— q) is a tautology.

11

Logical (Semantic) Equivalence

Def: Two propositional formulas are logically
equivalent if they have the same truth table.

This means the propositions define the same
function from V"™ to ¥V where n := number of
propositional variables in the formulas.

E.g. The formulas —(p A g) and —p V —q define
the same function f: V2 -V

—(pAgq)| PV —q

NN Y
N TN e

NN
TN NN

12

Logical (Semantic) Equivalence (cont)

Note that —(pAgq) and —pV —q are logically equiv-
alent iff =(pAgq) < —pV —q is a tautology. Why?

—“(pAq) | pV-q|-(pAg) < —pV g

NN T
N TN T
NSNS
HNNN

This is why Rubin refers to logical equivalence as
tautological equivalence and when ¢ is logically
equivalent to ¥ writes:

¢ =Y

Huth+Ryan refer logical equivalence as seman-
tic equivalence and write:

¢ =
It all means the same thing. The formulas have

the same truth table.
13

Building the World with NAND
NAND: (Negation of AND)

NAND : V2 -V

p|q | pNANDgq|~(pAq)
F|F T T
F|T T T
T|F T T
T|T F F

Thus pNAND g = —(p A q)
“pNAND ¢ is logically equivalent to —(p A ¢)"

p | —p| T NANDp
F | T T
T | F F
This means NAND can implement negation!

Note: Using T and F' in the formulas is a minor abuse of
notation! It /s possible to “fake” —-p without using T or

F. How?
14

pAqg=-(pNANDgq)

plq|pAq|pNANDg | =(pNAND gq)
F|F| F T F
F|T| F T F
T|F| F T F
T|T| T F T
So
pAqg = —(pNANDgq)

= (T NAND (p NANDq))

Also pV q = -p NAND —¢q and similar
NAND -only equivalents exist for — and «.

Any logical formula uses a combination of

—|,/\,\/,—>,H

Therefore any logic formula can be written as
an equivalent formula using only NAND.

Note: This is an informal proof. To do it rigorously we
have to use structural induction on propositional formu-

las.
15

Normal Forms

Normal forms in mathematics are canonical rep-
resentations (i.e. all equivalent objects result in
the same representation).

Def:. A formula ¢ with p1,po,...pn propositional
variables is in Disjunctive Normal Form (DNF)
if it is has the structure:

(I ATSA ATV V(@ AZE AL AT

where m < 2™ and for + = 1,...n and

7 =1,...m, :I:Z is either p; or —p;

E.g. («pA—gAT)V(PA—-gA-r)isin DNF
—=(pVq) Ar is not. Each of the series of conjunc-
tions picks out a row of the truth table where
formula is true. DNF ORs together the ANDs
for the true rows.

16

Normal Forms (cont)

Consider the truth tables for the formulas
—pA—-gAr and p A g A —r:

AN T | pANGQAT

~NOoO o dWNREO
NNNNDT Y Y
NN NHNY YR
NSNS NHTN YIS
NN Y

NN T

For -p A —gAr only row 1 is true.
For =-p A g A r only row 3 is true.
What conjunct is only true on row 67

(=pA—=gAT)V(mpAgAT)V(PAgA—7T)isS true on
rows 1, 3 & 6. Why?

Theorem: For every truth table, there is a
propositional formula that generates the truth
table.

17

Normal Forms (cont)

Theorem: Every propositional formula that is
not a contradiction is a logically equivalent to a
DNF formula.

Corollary: For ¢, not contradictions, ¢ = ¢ iff
¢ and ¢ have the same DNF representation.

Proof: Two formulas are logically equivalent if
and only if they have the same truth table (i.e.
same true rows) & thus the same DNF.

Application: Minimizing gate delays

If each input & its negation are available, any logic func-
tion can be implemented with one ‘“stage” of multi-input
AND gates followed by one ‘stage” of multi-input OR

gates.

18

Logical Implication

Def: We say ¢ logically implies i if ¢ — 1) is a
tautology. In this case Rubin writes ¢ = . If ¢
is a conjunction (i.e. ¢ is p1 Ao A ... A oy) then

we say o1, ¢o,...,on logically imply .

Huth4-Ryan write = ¢ — ¢ or ¢ = 1.

Premises ¢1,...,on With conclusion i is a sound
or valid argument, denoted
¢17¢27"'7¢n |:¢

if whenever all the ¢;s are true, then v is true.

Theorem: = ¢1 Adp A ... A ¢p — ¢ if and only
if ¢17¢27"'7¢n ‘: ¢

Modus Ponens: p,p — q = ¢q

p—q|lp N (p—q)

NN T
N TN T

N T NN
N T T
N TN T

19

Checking validity (soundness) of arguments:

e TO prove an argument is valid we only have to check
that the conclusion (v) is true in rows in which all
the premises (¢;'s) are true.

e To prove an argument is invalid (unsound), we need
only find one counter example, a row in which each
¢; is true but ¢ is false.

Examples: 1. (p - q) - r=p— (¢ — r) but
p—(g—r)FE{@—q) —r

2. pp— g, = g =T

pla|r|p—q|r—q|r
O|F|F|F
1|\F|F|T
2|F|T|F
3|F|T|T
4|T|F|F| F
5|7 |F|T| F
6T |T|F| T F
7\T|T|T| T T T

20

Special Cases

1. No premises: Premises restrict the cases
that we have to consider. No premises means
we consider all cases. i is a valid argument
by itself if it is always true (i.e. it is a tau-
tology). Then we write =1 and say that ¢
IS valid.

2. Premises never all true: At least one ¢, is
always false so ¢p1 Apo A ...\ ¢pn IS @ CcoOntra-
diction. Then ¢1,...,¢n = .

“If pigs could fly then I'd enjoy brussel sprouts!”
p . Pigs fly; b: Enjoy sprouts

This is an invalid argument. Why use it?

The real argument is: p,—p |= b which is a valid
argument. Why? There is no counter example
where p A —p is true and b is false. “From false
all things are possiblel!”

—p is an implicit assumption. These are extremely dan-
gerous in software. Make your assumptions explicit!
21

Validity & Satisfiability

Let ¢ be some formula of propositional logic. In
the case that = ¢, we say that ¢ is valid.

In the case that ¢ is not valid (i.e., there is some
assignment to its variables that makes it false)
we will write = ¢.

If there is some assignment to the propositional
variables that makes ¢ true (i.e., there is one or
more T in the final column of ¢'s truth table),

then we say that ¢ is satisfiable.

Proposition: ¢ is satisfiable iff = —¢.

22

Conjunctive Normal Form

Def: A formula with p1,po,...pn propositional
variables is in Conjunctive Normal Form (CNF)
if it is has the structure:

(Vs V... V)N A@EP VIR V.. V)

where m < 2" and fori=1,...n and
j=1,...m, I is either p; or —p;

E.g9. (—pV—-qVr)A(pV-gV-r)isin CNF
—=(pAq)Vris not. Each of the series of disjunc-
tions rules out a row of the truth table where
formula is false. CNF ANDs together the ORs
for the false rows.

One way to obtain the CNF form of a formula
¢ is to write down the DNF for —¢ and then
negate it and “Demorgan it to death’ .

23

Using CNF to Check = ¢

Q: CNF seems a little harder to understand than
DNF, so why use it?

A: Because it is trivial to check = ¢ if ¢ is in
CNF.

Why? Because
= (zivalv..Va)A(zfvaiv...vz2)
oA (@ VIRV LV alt)
if and only if
= (zivalv...vazl)
and
= (z{Va3V...Vz2)
and
= (@'VvalVv...vzi)
If each a:g is a literal (e.g., p) or its negation
(e.g., —p) then = (z1 Vb v... V) iff there
exists k,l s.t. @] =p and z] = —p.
24

