
Propositional Logic:

Part I - Semantics

c©2001 M. Lawford

Outline

• What is propositional logic?

• Logical connectives

• Semantics of propositional logic

• Tautologies & Logical equivalence

Applications:

1. Building the world with NAND

2. Normal Forms & minimizing gate delays

• Logical implication, Valid arguments &

Semantic entailment |=

1

A Bit of Notation

Consider negation on the real numbers R:

f(x) = −x

Then f : R → R is the signature of f meaning f

takes a real argument and produce a real.

Here − is a unary prefix operator meaning it

takes one argument, the number immediately

following − (e.g., −(5) = −5). So really

− : R → R

Similarly + : R2 → R

+ is a binary operator on R so we could treat it

as a prefix operator and write +(3,5)=8.

But this is tedious so we use infix notation and

write 3 + 5 = 8.

2

What is Propositional Logic?

Def: A proposition is a statement that is either

true or false.

E.g. p:“The prof looks tired.”

q:“We’re hungry and not able to eat.”

Propositional logic is a formal mathematical system for
reasoning about such statements.

The first statement p is an atomic proposition. It cannot
be further subdivided.

The 2nd statement q is a compound proposition that’s
truth depends upon the value of the two atomic proposi-
tions:

1. h:“We are hungry.”

2. e:“We are able eat.”

The logical connectives “and” and “not” determine how
the atomic proposition affect q.

Restating q in the formal language of propositional logic:

q : h ∧ ¬e

3

Logical Connectives

Let T and F represent true and false respectively.

Define V := {T, F}, the set of possible truth

values for a proposition. In the following let p, q

be propositional variables.

Negation: ¬ (NOT)

¬ : V → V

p ¬p
F T
T F

A truth table is tabular representation of the

truth values of a proposition under all possible

assignments. The above is the table for ¬p.

Clearly it defines a function.

Truth tables define the meaning or interpreta-

tion propositions. We call this the semantics of

the propositional logic.

4

Conjunction: ∧ (AND)

∧ : V2 → V

p q p ∧ q
F F F
F T F
T F F
T T T

Other English equivalents: “p but q” - “The students

are interested but look bored.”

Disjunction: ∨ (OR)

∨ : V2 → V

p q p ∨ q
F F F
F T T
T F T
T T T

Note: This is a “non-exclusive OR”. Why?

5

Conditional: → (IMPLIES)

→: V2 → V

p q p→ q
F F T
F T T
T F F
T T T

Other English equivalents: “If p then q”, “p only if q”,

“q if p”, “p is sufficient for q”, “q is necessary for p”.

Biconditional: ↔ (IFF)

↔: V2 → V

p q p↔ q
F F T
F T F
T F F
T T T

Other English equivalents: “p if and only if q”, “p is

equivalent to q”, “p is necessary and sufficient for q”

6

Precedence of Logical Connectives

We write: −5 · 2 + 10/5 − 8 and know that it

means: ((−(5) · 2) + (10/5)) − 8 because the

operators of arithmetic have the implicit order

of precedence

–> decreasing order –>

Do 1st <————-> Do last

−,
·
/
,
+
−

We say that operators with a higher order of

precedence “have a tighter binding”.

Similarly for logical connectives we define the

order of precedence as:

Do 1st <————-> Do last

¬,
∧
∨
,
→
↔

Thus ((p ∧ ¬(q))→ r) becomes: p ∧ ¬q → r

7

Properties of Binary Operators

Def: A binary operator ∗ : V2 → V is commuta-

tive if for all values of p, q ∈ V:

p ∗ q = q ∗ p

E.g. Addition and multiplication are commuta-

tive over the reals but division is not.

∧,∨,↔ are commutative

but → is not!

p q p→ q q → p
F F T T
F T T F
T F F T
T T T T

8

Properties of Binary Operators

Def: A binary operator ∗ : V2 → V is associative

if for all values of p, q, r ∈ V:

(p ∗ q) ∗ r = p ∗ (q ∗ r)

E.g. + and · are associative over the reals but

/ is not (e.g. (4/2)/2 = 1 but 4/(2/2) = 4).

∧,∨,↔ are associative. Therefore (p∧ q)∧ r and

p ∧ (q ∧ r) “mean the same thing” so we write

p ∧ q ∧ r.

(Similar to writing 5 · 2 · 4 for integer mult.)

Note: (p ∧ q) ∨ r is NOT “equivalent” to

p ∧ (q ∨ r)! (Check using truth tables.)

9

→ is not associative!

p q r (p→ q) → r p→ (q → r)
0 F F F T F T T
1 F F T T T
2 F T F T F
3 F T T T
4 T F F
5 T F T
6 T T F
7 T T T

Row 0 of the truth table provides counter ex-

ample so we can stop.

Note that there are 23 rows numbered 0 to 7 =

23 − 1.

In general, a truth table for compound propo-

sition will have 2n rows, where n= number of

unique propositional variables occuring in the ex-

pression.

Count in binary with F being 0 and T being 1

to cover all cases.

10

Tautologies and Contradictions

Def: A logical expression is a tautology (con-

tradiction) if it is true (false) under all possible

assignments to its propositional variables.

E.g. p ∨ ¬p is a tautology since its truth table

results in all T ’s while p ∧ ¬p is a contradiction:

p ¬p p ∨ ¬p p ∧ ¬p
F T T F
T F T F

The negation of any tautology is a contradiction

and vice versa. Why?

If S is a tautology, then so is any substitution in-

stance of it (i.e. consistently replacing variables

with any other formulas results in a tautology!).

E.g (p→ q) ∨ ¬(p→ q) is a tautology.

11

Logical (Semantic) Equivalence

Def: Two propositional formulas are logically

equivalent if they have the same truth table.

This means the propositions define the same

function from Vn to V where n := number of

propositional variables in the formulas.

E.g. The formulas ¬(p ∧ q) and ¬p ∨ ¬q define

the same function f : V2 → V

p q ¬(p ∧ q) ¬p ∨ ¬q
F F T T
F T T T
T F T T
T T F F

12

Logical (Semantic) Equivalence (cont)

Note that ¬(p∧q) and ¬p∨¬q are logically equiv-

alent iff ¬(p∧ q)↔ ¬p∨¬q is a tautology. Why?

p q ¬(p ∧ q) ¬p ∨ ¬q ¬(p ∧ q)↔ ¬p ∨ ¬q
F F T T
F T T T
T F T T
T T F F

This is why Rubin refers to logical equivalence as

tautological equivalence and when φ is logically

equivalent to ψ writes:

φ⇔ ψ

Huth+Ryan refer logical equivalence as seman-

tic equivalence and write:

φ ≡ ψ

It all means the same thing. The formulas have

the same truth table.

13

Building the World with NAND

NAND: (Negation of AND)

NAND : V2 → V

p q pNAND q ¬(p ∧ q)
F F T T
F T T T
T F T T
T T F F

Thus pNAND q ≡ ¬(p ∧ q)

“pNAND q is logically equivalent to ¬(p ∧ q)”

¬p ≡ T NAND p

p ¬p T NAND p
F T T
T F F

This means NAND can implement negation!

Note: Using T and F in the formulas is a minor abuse of

notation! It is possible to “fake” ¬p without using T or

F . How?

14

p ∧ q ≡ ¬(pNAND q)

p q p ∧ q pNAND q ¬(pNAND q)
F F F T F
F T F T F
T F F T F
T T T F T

So

p ∧ q ≡ ¬(pNAND q)

≡ (T NAND(pNAND q))

Also p ∨ q ≡ ¬pNAND¬q and similar

NAND-only equivalents exist for → and ↔.

Any logical formula uses a combination of

¬,∧,∨,→,↔

Therefore any logic formula can be written as

an equivalent formula using only NAND .

Note: This is an informal proof. To do it rigorously we

have to use structural induction on propositional formu-

las.

15

Normal Forms

Normal forms in mathematics are canonical rep-

resentations (i.e. all equivalent objects result in

the same representation).

Def: A formula φ with p1, p2, . . . pn propositional

variables is in Disjunctive Normal Form (DNF)

if it is has the structure:

(x11 ∧ x
1
2 ∧ . . . ∧ x

1
n) ∨ . . . ∨ (x

m
1 ∧ x

m
2 ∧ . . . ∧ x

m
n)

where m ≤ 2n and for i = 1, . . . n and

j = 1, . . .m, x
j
i is either pi or ¬pi

E.g. (¬p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) is in DNF

¬(p∨q)∧r is not. Each of the series of conjunc-

tions picks out a row of the truth table where

formula is true. DNF ORs together the ANDs

for the true rows.

16

Normal Forms (cont)

Consider the truth tables for the formulas

¬p ∧ ¬q ∧ r and p ∧ ¬q ∧ ¬r:

p q r ¬p ∧ ¬q ∧ r ¬p ∧ q ∧ r
0 F F F F F
1 F F T T F
2 F T F F F
3 F T T F T
4 T F F F
5 T F T F
6 T T F F
7 T T T F

For ¬p ∧ ¬q ∧ r only row 1 is true.

For ¬p ∧ q ∧ r only row 3 is true.

What conjunct is only true on row 6?

(¬p∧¬q ∧ r)∨ (¬p∧ q ∧ r)∨ (p∧ q ∧¬r) is true on

rows 1, 3 & 6. Why?

Theorem: For every truth table, there is a

propositional formula that generates the truth

table.

17

Normal Forms (cont)

Theorem: Every propositional formula that is

not a contradiction is a logically equivalent to a

DNF formula.

Corollary: For φ, ψ not contradictions, φ ≡ ψ iff

φ and ψ have the same DNF representation.

Proof: Two formulas are logically equivalent if

and only if they have the same truth table (i.e.

same true rows) & thus the same DNF.

Application: Minimizing gate delays

If each input & its negation are available, any logic func-

tion can be implemented with one “stage” of multi-input

AND gates followed by one “stage” of multi-input OR

gates.

18

Logical Implication

Def: We say φ logically implies ψ if φ → ψ is a
tautology. In this case Rubin writes φ⇒ ψ. If φ
is a conjunction (i.e. φ is φ1 ∧ φ2 ∧ . . .∧ φn) then
we say φ1, φ2, . . . , φn logically imply ψ.

Huth+Ryan write |= φ→ ψ or φ |= ψ.

Premises φ1, . . . , φn with conclusion ψ is a sound
or valid argument, denoted

φ1, φ2, . . . , φn |= ψ

if whenever all the φis are true, then ψ is true.

Theorem: |= φ1 ∧ φ2 ∧ . . . ∧ φn → ψ if and only
if φ1, φ2, . . . , φn |= ψ.

Modus Ponens: p, p→ q |= q

p q p→ q p ∧ (p→ q) q
F F T F F
F T T F T
T F F F F
T T T T T

19

Checking validity (soundness) of arguments:

• To prove an argument is valid we only have to check
that the conclusion (ψ) is true in rows in which all
the premises (φi’s) are true.

• To prove an argument is invalid (unsound), we need
only find one counter example, a row in which each
φi is true but ψ is false.

Examples: 1. (p → q) → r |= p → (q → r) but

p→ (q → r) 6|= (p→ q)→ r

2. p, p→ q,¬r → ¬q |= r

p q r p→ q ¬r → ¬q r
0 F F F
1 F F T
2 F T F
3 F T T
4 T F F F
5 T F T F
6 T T F T F
7 T T T T T T

20

Special Cases

1. No premises: Premises restrict the cases

that we have to consider. No premises means

we consider all cases. ψ is a valid argument

by itself if it is always true (i.e. it is a tau-

tology). Then we write |= ψ and say that ψ
is valid.

2. Premises never all true: At least one φi is
always false so φ1 ∧ φ2 ∧ . . . ∧ φn is a contra-

diction. Then φ1, . . . , φn |= ψ.

“If pigs could fly then I’d enjoy brussel sprouts!”

p : Pigs fly; b : Enjoy sprouts

This is an invalid argument. Why use it?

The real argument is: p,¬p |= b which is a valid

argument. Why? There is no counter example

where p ∧ ¬p is true and b is false. “From false

all things are possible!”

¬p is an implicit assumption. These are extremely dan-

gerous in software. Make your assumptions explicit!

21

Validity & Satisfiability

Let φ be some formula of propositional logic. In

the case that |= φ, we say that φ is valid.

In the case that φ is not valid (i.e., there is some

assignment to its variables that makes it false)

we will write 6|= φ.

If there is some assignment to the propositional

variables that makes φ true (i.e., there is one or

more T in the final column of φ’s truth table),

then we say that φ is satisfiable.

Proposition: φ is satisfiable iff 6|= ¬φ.

22

Conjunctive Normal Form

Def: A formula with p1, p2, . . . pn propositional

variables is in Conjunctive Normal Form (CNF)

if it is has the structure:

(x11 ∨ x
1
2 ∨ . . . ∨ x

1
n) ∧ . . . ∧ (x

m
1 ∨ x

m
2 ∨ . . . ∨ x

m
n)

where m ≤ 2n and for i = 1, . . . n and

j = 1, . . .m, x
j
i is either pi or ¬pi

E.g. (¬p ∨ ¬q ∨ r) ∧ (p ∨ ¬q ∨ ¬r) is in CNF

¬(p∧ q)∨ r is not. Each of the series of disjunc-

tions rules out a row of the truth table where

formula is false. CNF ANDs together the ORs

for the false rows.

One way to obtain the CNF form of a formula

φ is to write down the DNF for ¬φ and then

negate it and “Demorgan it to death”.

23

Using CNF to Check |= φ

Q: CNF seems a little harder to understand than

DNF, so why use it?

A: Because it is trivial to check |= φ if φ is in

CNF.

Why? Because

|= (x11 ∨ x
1
2 ∨ . . . ∨ x

1
n) ∧ (x

2
1 ∨ x

2
2 ∨ . . . ∨ x

2
n)

. . . ∧ (xm1 ∨ x
m
2 ∨ . . . ∨ x

m
n)

if and only if

|= (x11 ∨ x
1
2 ∨ . . . ∨ x

1
n)

and

|= (x21 ∨ x
2
2 ∨ . . . ∨ x

2
n)

...
and

|= (xm1 ∨ x
m
2 ∨ . . . ∨ x

m
n)

If each x
j
i is a literal (e.g., p) or its negation

(e.g., ¬p) then |= (x
j
1 ∨ x

j
2 ∨ . . . ∨ x

j
n) iff there

exists k, l s.t. x
j
k = p and x

j
l = ¬p.

24

