
Propositional Logic:

Part II - Syntax & Proofs

c©2001 M. Lawford

Outline

• Syntax of Propositional Formulas

• Motivating Proofs

• Syntactic Entailment ` and Proofs

• Proof Rules for Natural Deduction

• Axioms, theories and theorems

• Consistency & completeness

1

Language of Propositional Calculus

Def: A propositional formula is constructed

inductively from the symbols for

• propositional variables: p, q, r, . . . or p1, p2, . . .

• connectives: ¬,∧,∨,→,↔

• parentheses: (,)

• constants: >,⊥

by the following rules:

1. A propositional variable or constant symbol

(>,⊥) is a formula.

2. If φ and ψ are formulas, then so are:

(¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ)

Note: Removing >,⊥ from the above provides the def.

of sentential formulas in Rubin. Semantically > = T,

⊥ = F though often T, F are used directly in formulas

when engineers abuse notation.

2

WFF Smackdown

Propositional formulas are also called proposi-

tional sentences or well formed formulas (WFF).

When we use precedence of logical connectives

and associativity of ∧,∨,↔ to drop (smack-

down!) parentheses it is understood that this

is shorthand for the fully parenthesized expres-

sions.

Note: To further reduce use of (,) some def’s

of formula use order of precedence:

¬,∧,∨,
→
↔

instead of ¬,
∧
∨
,
→
↔

As we will see, PVS uses the 1st order of prece-

dence.

3

BNF and Parse Trees

The Backus Naur form (BNF) for the defini-
tion of a propositional formula is:

φ ::= p|⊥|>|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|(φ→ φ)

Here p denotes any propositional variable and
each occurrence of φ to the right of ::= rep-
resents any formula constructed thus far.

We can apply this inductive definition in re-
verse to construct a formula’s parse tree. A
parse tree represents a WFF φ if

i) the root is an atomic formula and nothing
else (i.e. φ is p), or

ii) the root is ¬ and there is only one well
formed subtree, or

iii) the root is ∧,∨,→ or ↔ and there are two
well formed subtrees.

Note: All leaf nodes will be atomic (e.g. p,⊥
or >)

4

Subformulas and Subtrees

Def: If φ is a propositional formula, the sub-

formulas of φ are give as follows:

• φ is a subformula of φ,

• if φ is ¬ψ then ψ is a subformula of φ,

• if φ is (φ1 ∧ φ2), (φ1 ∨ φ2), (φ1 → φ2), or

(φ1 ↔ φ2), then both φ1 and φ2 are sub-

formulas of φ

• if ψ is a subformula of φ, then all subfor-

mulas of ψ are subformulas of φ.

The subformulas of φ correspond to all of the

subtrees of φ’s parse tree.

Example: Consider p ↔ (q ∧ ¬p → q ∨ r). The

fully parenthesized formula is:

(p↔ ((q ∧ (¬p))→ (q ∨ r)))

5

Motivating Proofs

Limitations of Truth Tables

of rows in truth table = 2n where n = # of

propositional variables in formula

Formula with 10 propositional variables has

truth table with 210 = 1024 rows - too big

to do by hand!

Safety critical shutdown system with 3 redun-

dant controllers each with > 20 boolean inputs

& majority vote logic on shutdown could have

specification of a propositional formula using

> 3 · 20 = 60 boolean variables. Truth table

would have 260 > 1.15× 1018 rows!

Would require 260

8×109 = 144,115,188 > 144

million GB/column!!

6

Motivating Proofs (cont)

Formal proof systems provide a way of exam-

ining the structure or syntax of formulas to

determine the validity of an argument without

resorting to truth tables.

E.g. Know p, p→ q |= q (modus ponens - a.k.a

→e). Therefore

c ∨ ¬d, c ∨ ¬d→ (a ∧ b↔ c) |= a ∧ b↔ c

Formal proof systems can decompose a prob-

lem into sub-problems (sub-proofs) that are of

a manageable size.

E.g. If φ1 . . . , φn |= ψ1 and φ1, . . . φn |= ψ2 then

φ1, . . . , φn |= ψ1 ∧ ψ2.

7

Proof Rules and Proofs

These are examples of valid rules of inference

or proof rules. E.g. Knowing that formulas φ

and φ→ ψ are true allows us to infer or deduce

that ψ is true.

An example of an invalid rule of inference would

be knowing that ψ is true and φ → ψ is true,

we conclude φ. Why?

Def: A proof of ψ from premises φ1, . . . , φn is

a finite sequence of propositions ending with

ψ, such that each member of the sequence is

either a premise (φi), or is derived from previ-

ous members of the sequence by a valid rule

of inference.

In this case we say that φ1, . . . , φn syntactically

entails ψ and write

φ1, . . . , φn ` ψ

and say that φ1, . . . , φn ` ψ is a valid sequent.

8

Proof Rules of Natural Deduction

While there exists more than one proof system

for propositional (and predicate) logic Natural

Deduction is one of the most useful systems.

It formalizes rules of mathematical proof you

are already familiar with, e.g.,

To prove condition φ implies situation

ψ, assume φ is true and show that ψ

follows.

While there are variations in natural deduction

proof systems (e.g., see Rubin vs. Huth+Ryan),

they all have the same basic elements:

- Rules to eliminate operators, and

- Rules to introduce operators.

9

Proof Rules: → e

We know that φ, φ → ψ |= ψ, so we can use

this as a proof rule.

If φ1, . . . φn ` φ and φ1, . . . φn ` φ → ψ, then

φ1, . . . φn ` ψ.

This rule is known as modus ponens or “implies

(arrow) elimination” which we will abbreviate

by → e and summarize as follows:

φ φ→ ψ

ψ
→ e

10

Proof Rules: → i

Another useful rule follow from the following

useful fact:

φ |= ψ iff |= φ→ ψ

Thus φ1 . . . φn, φ ` ψ iff φ1 . . . φn ` φ→ ψ.

This rule is a form of the Deduction Theorem,

a.k.a. conditional premise or “implies (arrow)

introduction”, denoted by → i, and summa-

rized as follows:

φ
...
ψ

——— → i

φ→ ψ

11

A First Formal Proof

Example: Show that p→ q, q → r ` p→ r

Proof:

row Premises Deduce Rule
1 p→ q, q → r ` p→ q Premise
2 p→ q, q → r, p ` p Assumption
3 p→ q, q → r, p ` q → e1,2
4 p→ q, q → r, p ` q → r Premise
5 p→ q, q → r, p ` r → e3,4
6 p→ q, q → r ` p→ r → i2− 5

Note: We could show that:

p→ q, q → r, r → s ` p→ s

in just 8 rows, not 24 = 16 rows of truth table.

Try it.

12

Proof Rules: ∧i

Its getting pretty tedious writing φ1, . . . , φn and

I’m basically lazy so henceforth I’ll write Γ (“Big

gamma”), to represent this sequence of premises.

Assume (1) Γ |= φ and (2) Γ |= ψ.

Then we must have Γ |= φ ∧ ψ. (why?)

So if (1) Γ ` φ and (2) Γ ` ψ then Γ ` φ ∧ ψ.

This result is known as part of the Rules of

Adjunction, a.k.a. “conjunction (and) intro-

duction”, denoted by ∧i, and summarized as

follows:

φ ψ

φ ∧ ψ
∧ i

13

Proof Rules: ∧e1,∧e2

Consider the following pair of valid arguments:

(1) φ ∧ ψ |= φ and (2) φ ∧ ψ |= ψ

To paraphrase these arguments:

(1) says “When φ ∧ ψ is true, then φ is true.”

(2) says “When φ ∧ ψ is true, then ψ is true.”

So if Γ ` φ ∧ ψ then (1)Γ ` φ and (2)Γ ` ψ.

This and the previous result are known as the

Rules of Adjunction. We will call this part

“conjunction (and) elimination”, denoted by

∧e1 and ∧e2 respectively, and summarized as

follows:

φ ∧ ψ
φ

∧ e1
φ ∧ ψ
ψ

∧ e2

14

Proof Rules: ↔ e1,↔ e2

The rules we will use for dealing with ↔ are all

based upon the following semantics equivalent:

φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ) (1)

The rules for “if and only if elimination” follow

from the valid argument:

φ↔ ψ |= (φ→ ψ) ∧ (ψ → φ)

which in turn provides the valid arguments:

(1)φ↔ ψ |= φ→ ψ, and

(2)φ↔ ψ |= ψ → φ.

We denote ↔ elimination by ↔ e1 and ↔ e2

respectively, and summarized as follows:

φ↔ ψ

φ→ ψ
↔ e1

φ↔ ψ

ψ → φ
↔ e2

15

Proof Rules: ↔ i

Let us now consider the other valid argument

that follows from (1), namely

(φ→ ψ) ∧ (ψ → φ) |= φ↔ ψ

which by the defs. of ∧ and |= is the same as:

(φ→ ψ), (ψ → φ) |= φ↔ ψ

This rule is also known as “double arrow in-

troduction” which we will denote by ↔ i and

summarize as follows:

φ→ ψ ψ → φ

φ↔ ψ
↔ i

So if Γ ` φ→ ψ and Γ ` ψ → φ then Γ ` φ↔ ψ.

Example: Show ` (p→ (q → r))↔ (p∧ q → r)

16

Proof Rules: ¬¬e and ¬¬i

It is easy to check that ¬¬φ ≡ φ. Hence:

(1)¬¬φ |= φ and (2)φ |= ¬¬φ

So we know:

(1) if Γ ` ¬¬φ then Γ ` φ, and

(2) if Γ ` φ the Γ ` ¬¬φ.

This results are known as “double negation

elimination” and “double negation introduc-

tion”, denoted by ¬¬e and ¬¬i respectively,

and summarized as follows:

¬¬φ
φ

¬¬e
φ

¬¬φ
¬¬i

17

Proof Rules: MT

Recall the proof rule → e.

φ φ→ ψ

ψ
→ e

If Γ ` φ and Γ ` φ→ ψ, then Γ ` ψ.

Suppose it is still the case that Γ ` φ→ ψ, but

instead of Γ ` φ we know that Γ ` ¬ψ. If φ

were true, then by → e we would have ψ, but

since we have φ → ψ and ¬ψ, we must have

¬φ.

This reasoning is borne out by the valid argu-

ment:

φ→ ψ,¬ψ |= ¬φ

The resulting proof rule is known as modus

tollens or MT and summarized as:

φ→ ψ ¬ψ
¬φ

MT

Example: Show p→ q, q → r ` ¬r → ¬p

18

Proof Rules: ∨i

Consider the following pair of valid arguments:

(1) φ |= φ ∨ ψ and (2) ψ |= φ ∨ ψ

To paraphrase these arguments:

(1) says “When φ is true, then φ or ψ is true.”

(2) says “When ψ is true, then φ or ψ is true.”

So if (1)Γ ` φ or (2)Γ ` ψ then, either way,

Γ ` φ ∨ ψ.

We will call this “disjunction (OR) introduc-

tion” denoted ∨i1 or ∨i2 respectively and sum-

marized as follows:

φ

φ ∨ ψ
∨ i1

ψ

φ ∨ ψ
∨ i2

19

Proof Rules: ∨e1,∨e2

Suppose we want to check if the following ar-

gument is valid

φ ∨ ψ |= χ

“When φ is true or ψ is true, then χ is true”

Then there are two cases that we must con-

sider:

i) When φ is true, then χ is true (φ |= χ)

ii) When ψ is true, then χ is true (ψ |= χ)

This covers all possible case when φ∨ψ is true,

including the case when both are true.

20

Proof Rules: ∨e1,∨e2 (cont)

This rule is a form of the Rule of Alternative

Proof, a.k.a. “disjunction (or) elimination” de-

noted ∨e and summarized as follows:

φ ∨ ψ

φ
...
χ

ψ
...
χ

——————— ∨ e
χ

How can we use it? To show Γ, φ ∨ ψ ` χ split

proof. Show:

1. Γ, φ ` χ

2. Γ, ψ ` χ

Then we are done since Γ, φ ∨ ψ ` φ ∨ ψ. Thus

Γ, φ ∨ ψ ` χ iff Γ, φ ` χ and Γ, ψ ` χ

21

Proof Rules: ⊥e

Consider the following valid argument:

⊥ |= φ

⊥ is a valid argument for any formula! Why?

Because you can’t find a counter example in

the truth table where ⊥ is true and φ is false.

Ex falso quod libet!

(From false all things are possible!)

This rule is called “bottom elimination”, de-

noted ⊥e and summarized as:

⊥
φ
⊥e

Thus if Γ ` ⊥ then Γ ` φ for any φ.

22

Proof Rules: ¬e

Consider the following semantic equivalence:

φ ∧ ¬φ ≡ ⊥

which represents that ⊥ is itself a contradic-

tion. If both φ and ¬φ are true, then we have

an inconsistent set of premises. In fact when

ever φ is both true and false (since ¬φ is true),

the ⊥ is also valid.

Although one might think that the following

rule should be called “bottom introduction”,

to logicians perhaps this is too close to the

idea of “introducing inconsistencies” which is a

“Bad ThingTm”, hence they call it “negation

elimination” denoted ¬e and summarized as:

φ ¬φ
⊥

¬e

23

Proof Rules: ¬i

Let us assume that when we add φ to our

premises Γ

Γ, φ |= ⊥

Then everywhere that all of the premises in Γ

are true, φ must be false. (Why?) Therefore

we must have:

Γ |= ¬φ

In terms of syntactic entailment this will mean

that if Γ, φ ` ⊥ then Γ ` ¬φ.

This rule is often known as indirect proof, “nega-

tion (not) introduction”, denoted by ¬i, and

summarized as follows:

φ
...
⊥

——— ¬i
¬φ

24

Proof Rules: Copy

This rule is a bit of a kludge, but it will save

us extra effort when applied correctly.

Suppose a formula ψ appears on a previous

line of our proof where we had a sequence of

premises Γ, i.e., Γ ` ψ.

Further suppose that our current sequence of

premises (formulas on the left of `) is Γ′.

Q: Can we use ψ on the current line of our

proof (i.e., does Γ′ ` ψ)?

A: Yes, provided our current sequence of premises

Γ′ contains all of the formulas appearing in Γ.

E.g., p→ q, q → r ` p→ r

Therefore p→ q, q → r, r ` p→ r.

25

Proof Rules: LEM

This next rule is based upon the valid argu-

ment:

|= φ ∨ ¬φ

which say that a formula is either true, or it is

false. There is no middle ground.

Since φ ∨ ¬φ is a tautology, for any set of

premises Γ |= φ ∨ ¬φ (why?). Thus in using

this rule in proofs we have Γ ` φ ∨ ¬φ.

It is an example of a derived rule, i.e., we can

prove it from the rules we have already seen

(` p ∨ ¬p - try it!).

The “Law of the Excluded Middle” denoted

LEM is summarized as:

φ ∨ ¬φ
LEM

Example: Show ` ¬(p ∧ q)↔ ¬p ∨ ¬q.

26

Proof Rules: RAA

Two of the other rules we have seen so far, MT

and ¬¬i, are also derived rules. These derived

rules are short cuts that represent patterns of

the other rules.

An additional derived rule that is useful is re-

ductio ad absurdum (RAA) that can be viewed

as another form of ¬i.

It says that if Γ,¬φ ` ⊥ then Γ ` φ.

We summarize RAA as follows

¬φ
...
⊥

——— RAA
φ

Go back and compare this to the ¬i summary.

You can use RAA to shorten the previous ex-

ample proof.

27

Proof Rules: Adding Your Own

In practice, people use many more proof rules

than those we have shown here. Provided they

are based upon valid arguments, they will result

in valid proof rules.

E.g., It is easy to show p → Q ≡ ¬p ∨ q. This

could be used to add the two proof rules:

φ→ ψ

¬φ ∨ ψ
→ 2∨

¬φ ∨ ψ
φ→ ψ

∨ 2→

Thus Γ ` φ→ ψ iff Γ ` ¬φ ∨ ψ.

This is actually another example of a derived

rule (i.e., we could prove it from our existing

rules and then just use it as a notational short

cut for that proof pattern.

Do we have “enough” proof rules (i.e. are they

complete)? Are any other valid proof rules

derived rules? Do our rules “work correctly”

(i.e., are they consistent)?

28

Soundness:

Def: A proof system is sound (or consistent)

if whenever Γ ` ψ, then Γ |= ψ.

Our system of proof rules given above is sound.

We can show this via induction on the length

of our proofs. This is an immediate result of

the fact that all of our proof rules are based

upon valid arguments.

Stating this more formally:

Theorem (Soundness): Let φ1, φ2, . . . , φn and

ψ be a propositional formulas. If φ1, φ2, . . . , φn `

ψ then φ1, φ2, . . . , φn |= ψ.

If we let Γ represent φ1, . . . , φn then the above

says: “If Γ ` ψ then Γ |= ψ.”

29

Completeness:

Def: A proof system is complete if whenever

Γ |= ψ, then Γ ` ψ.

Our system of proof rules given thus far is com-

plete. We can show this via induction on the

height of the parse tree of ψ.

Stating this formally:

Theorem (Completeness): Let φ1, φ2, . . . , φn

and ψ be a propositional formulas. If φ1, φ2, . . . , φn |=

ψ then φ1, φ2, . . . , φn ` ψ.

If we let Γ represent φ1, . . . , φn then the above

result together with the previous one gives us

the following corollary:

Corollary: Γ ` ψ iff Γ |= ψ.

30

