Predicate Logic Proofs in PVS

©2001 M. Lawford

Outline

- Review: Order of precedence & Dealing with quantifiers
- Universal closure of sentence forms in PVS
- (SKOLEM!) and (INST ...) PVS commands for eliminating quantifiers
- Example: Putting it all together
- Rules for dealing with =: (EXPAND ...)& (REPLACE ...)

1

Order of Precedence & Parenthesis

Recall: We use precedence of logical operators and associativity of \land , \lor , \leftrightarrow to drop parentheses. It is understood that this is shorthand for the fully parenthesized expressions.

Huth+Ryan uses order of precedence:

$$\stackrel{\forall}{\exists}\ ,\ \stackrel{\wedge}{\vee}\ ,\ \stackrel{\rightarrow}{\leftrightarrow}$$

PVS uses order of precedence:

$$\neg, \land, \lor, \rightarrow, \leftrightarrow, \ \ \, \exists$$

 $\forall x P(x) \rightarrow \exists y Q(x,y) \land P(y)$ becomes: In Huth+Ryan:

$$(\forall x P(x)) \rightarrow ((\exists y Q(x, y)) \land P(y))$$

In PVS:

$$\forall x (P(x) \to (\exists y (Q(x,y) \land P(y))))$$

2

Review

As we will see, the PVS commands that deal with quantifiers and equality can all be understood in terms of the rules we already know.

Removing & Adding $\forall x$

Rule $\forall e$: If $\Gamma \vdash \forall x \phi$ and $\phi[t/x]$ is a valid substitution then $\Gamma \vdash \phi[t/x]$.

Rule $\forall i$: If $\Gamma \vdash \phi[x_0/x]$, and

- 1. $x_0 \notin FV(\Gamma)$,
- 2. and $\phi[x_0/x]$ is a valid substitution.

Then $\Gamma \vdash \forall x \phi$.

Adding and Removing $\exists x$

Rule $\exists i$: If $\Gamma \vdash \phi[t/x]$ and $\phi[t/x]$ is a valid substitution then $\Gamma \vdash \exists x \phi$.

Rule $\exists e$: If $\Gamma, \phi[x_0/x] \vdash \chi$, and

- 1. $\phi[x_0/x]$ is a valid substitution, and
- 2. $x_0 \notin FV(\Gamma) \cup FV(\chi)$.

Then $\Gamma, \exists x \phi \vdash \chi$.

Rule?

4

6

PVS Declarations

When proving things in propositional logic in Huth+Ryan, our universe A is a nonempty set or "type" of object.

```
basics : THEORY
BEGIN
```

```
A:TYPE+ % Nonempty universe
x, y:VAR A % x and y are variables of type A
a, b: A % a, b are constant elements of A
P: PRED[A] % P is a unary predicate
Q: PRED[[A,A]] % Q is a binary predicate
f: [A -> A] % f is a function of 1 arg
h(x):A % h is also a function of 1 arg
g: [[A,A]-> A] % 2-ary function
```

END basics

Note: PRED[A] is equivalent to:

PRED: TYPE = [A -> bool]

5

Universal Closure in PVS

Def: For ϕ with free variables x_1, \ldots, x_n , the formula $\forall x_1 \forall x_2 \ldots \forall x_n \phi$ is the *universal closure* of ϕ . Note that

```
\mathcal{M} \models \phi \text{ iff } \mathcal{M} \models \forall x_1 \forall x_2 \dots \forall x_n \phi (follows immediately definition of \models.)
```

PVS uses this as a short cut to implicitly quantify theorem statements. E.g.

Universal Closure in PVS (cont.)

Note: You must be careful stating negation of formulas!

Consider the following PVS:

```
x:VAR nat
```

```
P1: PROPOSITION x+x>x
WrongNotP1: PROPOSITION NOT(x+x>x)
NotP1: PROPOSITION NOT(FORALL (x:nat): (x+x>x))
```

Neither P1 nor WrongNotP1 is provable but NotP1 is provable. Why? Try proving WrongNotP1 and due to universal closure you get:

```
WrongNotP1 :
```

Rule?

Predicate Logic Proofs in PVS

Predicate logic proofs are just propositional logic proofs with new rules for eliminating quantifiers.

Still use the commands for propositional rules: (FLATTEN), (SPLIT) & (BDDSIMP).

And add new PVS commands:

(SKOLEM!) does $\exists e$ and $\forall i$.

(INST eq# "term") does $\forall e$ and $\exists i$.

8

PVS commands: (SKOLEM!)

Let x_0 be a new "variable" (a.k.a skolem constant) not appearing in any of the formulas of sequents of the sequent.

(SKOLEM!) uses $\exists e$ to eliminate $\exists x$ in a premises:

$$\begin{vmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \exists x \phi \\ \hline \psi_1 \\ \psi_2 \\ \vdots \end{vmatrix}$$
 (SKOLEM!)
$$\begin{vmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi[x_0/x] \\ \hline \psi_1 \\ \psi_2 \\ \vdots \\ \vdots \end{vmatrix}$$

or $\forall i$ to eliminate $\forall x$ in a conclusion:

9

How (SKOLEM!) uses Rule $\forall i$

Rule $\forall i$: If $\Gamma \vdash \phi[x_0/x]$, $x_0 \notin FV(\Gamma)$ and $\phi[x_0/x]$ is valid, then $\Gamma \vdash \forall x \phi$.

To try to prove $\Gamma \vdash \forall x \phi$, (SKOLEM!) says PVS can try to prove $\Gamma \vdash \phi[x_0/x]$ for some "new" x_0 so that

- i) $x_0 \notin FV(\Gamma) \cup FV(\phi)$, and
- ii) $\phi[x_0/x]$ is a valid substitution.

Why? If

$$\Gamma \vdash \phi[x_0/x]$$
 then $\Gamma \vdash \forall x \phi$, by Rule $\forall i$.

Why make sure $x_0 \notin FV(\phi)$ too? E.g. Consider formula $\forall x P(x, x_0)$.

Why require $\phi[x_1/x]$ is a valid substitution? E.g. Consider formula $\forall x\exists x_0(x< x_0)$

PVS commands: (INST ...)

Below let t be a term such that $\phi[t/x]$ is valid.

(INST ...) uses EG to "remove" * $\exists x$ in a conclusion:

^{*}The original quantified formula is still available to use in proofs. Its just "hidden". Use the PVS menu command "M-x show-hidden-formulas" to see hidden formulas and the prover command (REVEAL eq#) to use a hidden equation.

PVS commands: (INST ...)

Below let t be a term such that $\phi[t/x]$ is valid.

(INST) uses $\forall e$ to "remove" * $\forall x$ in a premises:

*Again, the original quantified formula is still available to use in proofs. Its just "hidden".

Use (INST-CP -n "t") to keep a copy of original formula in sequent.

How (INST ...) uses Rule $\forall e$

Rule $\forall e$: If $\Gamma \vdash \forall x \phi$ and $\phi[t/x]$ is a valid substitution then $\Gamma \vdash \phi[t/x]$.

To try to prove $\Gamma, \forall x \phi \vdash \psi$, (INST -n "t") says PVS can try to prove

$$\Gamma, \phi[t/x] \vdash \psi$$

for some t such that $\phi[t/x]$ is a valid substitution. Why?

Τf

$$\begin{array}{ll} \Gamma, \phi[t/x] \vdash \psi & \text{then} \\ \Gamma, \forall x \phi \vdash \psi, & \text{because} \\ \Gamma, \forall x \phi \vdash \phi[t/x], & \text{by Rule } \forall e \end{array}$$

So you can finish proof of ψ from $\Gamma, \forall x \phi$ by using proof of ψ from $\Gamma, \phi[t/x]$.

13

Putting it all together

Ex 2 (revisited): Use PVS to prove inconsistency of:

$$\Gamma'' = \{ \forall x (P(x) \lor Q(x)), \forall y (\neg P(y) \to \neg Q(y)), \exists x \neg P(x) \}$$

predicate : THEORY

BEGIN

A:NONEMPTY_TYPE x,y: VAR A P,Q:PRED[A]

I1: PROPOSITION (FORALL x:P(x) OR Q(x))&
 (FORALL y:NOT P(y) IMPLIES NOT Q(y)) &
 (EXISTS x:NOT P(x)) IMPLIES FALSE

END predicate

I1 : (FORALL x: P(x) OR Q(x)) {1} & (FORALL y: NOT P(y) IMPLIES NOT Q(y)) & (EXISTS x: NOT P(x)) IMPLIES FALSE Rule? (FLATTEN) Applying disjunctive simplification to flatten sequent, this simplifies to: I1 : **{-1}** (FORALL x: P(x) OR Q(x)) {-2} (FORALL y: NOT P(y) IMPLIES NOT Q(y)) {-3} (EXISTS x: NOT P(x)) Rule? (SKOLEM!) Skolemizing, this simplifies to: I1 : [-1] (FORALL x: P(x) OR Q(x)) [-2] (FORALL y: NOT P(y) IMPLIES NOT Q(y)) {1} P(x!1)

14

```
Rule? (INST -1 "x!1")
Instantiating the top quantifier in -1 with the terms:
this simplifies to:
I1 :
{-1}
       P(x!1) OR Q(x!1)
[-2]
      (FORALL y: NOT P(y) IMPLIES NOT Q(y))
[1] P(x!1)
Rule? (INST - "x!1")
Instantiating the top quantifier in - with the terms:
x!1,
this simplifies to:
I1 :
[-1] P(x!1) OR Q(x!1)
\{-2\} NOT P(x!1) IMPLIES NOT Q(x!1)
[1] P(x!1)
Rule? (BDDSIMP)
Applying bddsimp,
this simplifies to:
{-1} FALSE
which is trivially true.
Q.E.D.
                                                  16
```

PVS Commands for Dealing with =

```
(EXPAND "t1") and (EXPAND "t1" "t2" ...)
equality: THEORY
BEGIN
   x,y:VAR real
   a:real=1
   f(x,y):real = x+y
   g(x,y):real = x+y
Ia: THEOREM f(y,a)=g(y,1)
END equality
```

To prove THEOREM Ia you can just use (SKOLEM!) to eliminate universal quantifiers and then use variants of the (EXPAND ...) command to expand definitions (EXPAND* "f" "g") (EXPAND "a").

17

PVS Commands for Dealing with =

Q: How do you use premises with top level "=" in PVS that are not definitions?

A: The PVS equivalent of Huth+Ryan's = e rule, a.k.a. "Substitution of Equals", is:

(REPLACE -n *)

If equation -n in the premises is of the form

 $t_L = t_R$

The command makes all valid substitutions of t_R for t_L in all other formulas of the sequent!

Changing the above command to

(REPLACE -n * RL)

would replace right-to-left, performing all valid substitutions of t_L for t_R .

Example: Rubin p.244 E11

```
equal11 : THEORY
BEGIN
A:TYPE+
P:PRED[A]
A,B,C,D:PRED[A]
x,y : VAR A
E11: THEOREM (FORALL x,y:A(x)&B(y)=> x=y)
&(EXISTS x:A(x)&C(x)) & (EXISTS x:B(x)&D(x))
=>(EXISTS x:C(x)&D(x))
END equal11
```

Using a combination of (BDDSIMP), (SKOLEM!) and (INST?) reduces E11 to sequent

Now you can finish off the proof by replacing x!1 by x!2 as follows:

Rule? (REPLACE -3 * LR)
Replacing using formula -3,
this simplifies to:
E11 :

 $\{-1\}$ A(x!2)

[-2] B(x!2)

[-3] x!1 = x!2

 $\{-4\}$ C(x!2)

[-5] D(x!2)

 $\{1\}$ D(x!2)

which is trivially true. Q.E.D.

Failed Proofs & Counter Examples

Suppose you are asked if the a proof exists for the following sequent:

$$\exists x [E(x) \land \forall y (F(y) \to G(x,y))], \ \stackrel{?}{\vdash} \forall x (F(x) \leftrightarrow H(x))$$
$$\forall x \forall y [E(x) \to (G(x,y) \leftrightarrow H(y))]$$

Putting this into PVS and trying to prove it results can results the sequent:

[-1] E(x!1) {-2} G(x!1, x!2) {-3} H(x!2) |------{1} F(x!2)

Rule?

This sequent would be true if

 $E(x_1), G(x_1, x_2), H(x_2) \vdash F(x_2)$

or

 $\vdash E(x_1) \land G(x_1, x_2) \land H(x_2) \rightarrow F(x_2)$

21

Failed Proofs & Counter Examples

Just as we had for propositional logic, syntax and semantics agree so

$$\Gamma \vdash \psi \text{ iff } \Gamma \models \psi$$

Thus

$$\vdash E(x_1) \land G(x_1, x_2) \land H(x_2) \rightarrow F(x_2)$$

iff

$$\models E(x_1) \land G(x_1, x_2) \land H(x_2) \rightarrow F(x_2)$$

which by definition of \models holds iff

$$\models \forall x_1 \forall x_2 (E(x_1) \land G(x_1, x_2) \land H(x_2) \rightarrow F(x_2))$$

but this would mean that for every model ${\mathcal M}$

$$\mathcal{M} \models \forall x_1 \forall x_2 (E(x_1) \land G(x_1, x_2) \land H(x_2) \rightarrow F(x_2))$$

But we can find an \mathcal{M} such that:

$$\mathcal{M} \not\models \forall x_1 \forall x_2 (E(x_1) \land G(x_1, x_2) \land H(x_2) \rightarrow F(x_2))$$

Check that this model provides a counter example to the original sequent!