Sequent Calculus & PVS

Review: Key Results used by PVS
Commutative & Associative rules for A,V
Implication: = (¢ — ¥) <> —p VY

Iff: =(pcoy) o (@—=P)A W)

Double negation: = ¢ < —(—¢)

Identity rules: EdAT & ¢, =EdV Lo
Dominance rules: EoVT T, EopA L+ L

Rule of adjunction: Az
FrEyYpAxiffTCEyY and TEy

Rule of alternative proof: Ve
FovybkxiffT,¢Fx and My Fx

and Theorems:
Deduction Theorem: Moo iff TF¢ — ¢

Completeness & Consistency: '+ iff T =4

©2001 M. Lawford 2
Outline
introduction elimination
Revi o Y . SdNY PNY
® Review A A Ai 3 Ae1 ” e
. . o | ¥
e Order of precedence & logical operators in : ;
PVS \% ¢$¢ Vi1 ¢\1€1/) V iz pVvy X X
——— Ve
X
e Sequent Calculus 3
— ¢ iﬁ w — e
e PVS commands: (FLATTEN), (SPLIT) & -1
(BDDSIMP) ¢y
¢y P9 ; 9 ¢y
A nd ¢ > w] ¢ = ¢ e ¢ = ¢ > e
e Checking validity of arguments
¢
- ¢ _‘¢ —e
e Checking consistency of premises . 1
—¢
e Unprovable sequents & counter examples - i - .
——¢ é
1 3
1 see —e %J_e

©2001 M. Lawford

Order of Precedence in PVS

Recall: We use precedence of logical connec-
tives and associativity of A, V, « to drop paren-
theses it is understood that this is shorthand
for the fully parenthesized expressions.

Rubin uses order of precedence:

N =
JREEVALRPIN

PVS uses order of precedence:

AV, =,

Additional Proof Rules

sy S vas
¢—Hﬁ¢ Y T
—'_¢
1 RAA WLEM
¢

Logical Operators in PVS

Propositional constants and variables have type
“bool” in PVS

bool={TRUE, FALSE}

- - NOT, not

A - AND, and, &

VvV - OR, or

— - IMPLIES, implies, =>

+ - IFF, iff, <=>

Sequent Calculus

$1,92; - s InEPI VP V..V Py

is another way of stating
(151/\¢2/\.../\¢n|—1/11V’(/12V...V’(/1m

In sequent calculus it is written as:

1
¢_2

bn
Py
)

Ym
There are implicit A's between the premises
and implicit Vv’'s between the conclusions.

Assuming all the ¢;'s are true, we are trying to
prove at least one gb]- is true.

Def: We call ¢p1A...¢on = Y1 V... ¥Ym the char-
acteristic formula for the sequent because it is
a tautology iff ¢1,...,onF Y1 V... Un

7

Sequent Calculus Special Cases

No premises: iff Y1 V...V,

¥m

1

No conclusions: ¢ iff 1 Ao A L
n

You can always add/remove TRUE (T)to/from
the premises or FALSE (L) to/from the con-
clusions without changing the meaning of the
sequent.

Why? Hint: Indentity laws

Proofs in Sequent Calculus

Proofs are done by transforming the sequent
until one of the following forms is obtained:

which is a case of Rule Premise and Vvi;

ie. THETV...

which is a case of Dominance of T

e M Lk...

Which is a case of _Le.

PVS commands: (FLATTEN)

(FLATTEN) eliminates A in the premises (by
Ae) and V in the conclusions (by Viq, Vip):

(FLATTEN) also eliminates — in the conclu-

sions:
& é
™ V2 becomes i;

Why?

10

PVS commands: (FLATTEN)

(FLATTEN) eliminates negations:

$1 1
- P
01 becomes b
))

Why? ¢1 - =V Vb iff ¢1 b — (1 V 92)
iff ¢1,% 1 Vo

Similarly ¢1,-¢ F 11 V 4o iff ¢1 F = — 1 V 4o
iff 1 —=d v (Y1 Veh2) Iff 1 -V (Y1 V42)

®1 91
¢ ¢
o1 becomes ¥y
%) %)

11

(SPLIT) also splits <+ in the conclusions since:

(@) =@2>P)A ([—¢)

and splits — in the premises (why?).

13

PVS commands: (SPLIT)

(SPLIT) uses “AND introduction” (A7) to “split”
a A in the conclusions into two subproofs (i.e.
FEpAY iff TE¢ and T)

(SPLIT) uses “OR elimination” (Ve) to “split”
a V in the premises into two subproofs (i.e.
Fo¢VyrriffC,¢brand M k1)

12

PVS commands: (BDDSIMP)

The BDDSIMP command, in effect,

1. creates the truth table for the characteris-
tic formula of the sequent. If it is a tau-
tology the proof is done because

Eo—oyiff Fopoyiff gk

(take ¢ : p1 A ...pp and o 1 1 V... ¥m).
Otherwise BDDSIMP

2. obtains the CNF representation,

3. simplifies it with the help of the distributive
law, and

4. applies the Rule of Adjunction to split the
sequent into one sub-proof for each unin-
terupted sequence of disjuncts and flattens
all negations.

NOTE: BDDs - (ordered) Binary Decision Diagrams,
are type of data structure representing a formula that
can be algorithmically reduced to a canonical represen-

tation.
14

(BDDSIMP) Example

Applying (BDDSIMP) to sequent Fp —qAr:
1. Create Truth Table for p > gAT.

2. Get DNF for =(p — g Ar) then negate and
“De Morgan it to death” to get (full) CNF
or write down CNF directly:

(pVgVr)AN(=pVqgV-r)A(—pV-gVT)

3. Simplify to: (=pVg) A(=pVr)

4. Split to get ‘ m——— and } v then

flatten to F and P
q T

15

Checking Validity of Arguments in PVS
By Theorems on Soundness and Completeness
1,02, .- b = ¢ Iff

'=¢1/\.../\¢n—>1/1

i.e. d1A...Adn— 1 is a tautology.

Therefore to check if ¢1,...,¢n are a valid ar-
gument for ¥, use PVS to prove the theorem:

Vi: THEOREM ¢1&...&¢y IMPLIES ¢

16

Fill in details of - p — gAr (BDDSIMP) exam-
ple.

15

Checking Consistency of Premises in PVS

The set of premises ¢1, ..., ¢n IS inconsistent iff
D1y .oy On E YAy for some o iff p1,..., 0 L

But then by the deduction theorem (— i):
F g1 (o2 (¢3—= (.. 2 (dn—1)...))
ifF

F o1 AP ANP3... Npp — L
iff

F (1 AP AP3... Adn)

Therefore propositional premises ¢q, ..., ¢, are
inconsistent iff you can prove the PVS theo-
rem:

V1i: THEOREM ¢1&...&¢, IMPLIES FALSE or
equivalently

V2: THEOREM —(¢1& ... &en)
17

Unprovable Sequents & Counter Examples
Consider the following example:

Use PVS to check if the argument following
argument is valid & find a counter example if
it is not:
?
g—>mVu,mv—qgFEgq

El1 : THEOREM (q IMPLIES m OR v) & m &
(v IMPLIES q) IMPLIES q

Trying (BDDSIMP) gives unprovable sequent.

{-1} m
[E——

{1} q

{2} v

which has characteristic formula m — (q V v).
This formula is false when m =T and ¢ =v =
F'. Check that this provides a counter example
showing the argument is not valid.

Applying disjunctive simplification to
flatten sequent, this simplifies to:
a2i :

{-1} ((p => @ => q)
{2} (q => p)

Note that if
(=9 —q,(g—p) Fp
Then by — 1

(p—>q)—aq) F (g—=p)—p
And also by — 1
F (=9 —q
— ((¢ = p) = p)
Thus it suffices to show

= —q),@—=p Fop

18 20
Example: Understanding PVS o
azl :
Use PVS to show:
{-1} ((p=>q =>
F((p—q) —q) — ((g—p) = p) {-2¥ (@=>p
Explain the proof steps. —
{1} p
Solution: In PVS file we have
Rule? (SPLIT -1)
ool Splitting conjunctions,
p,?. o0 this yields 2 subgoals:
a2i:theorem ((p=>q)=>q)=>((q=>p)=> p) a2i 1 -
Invoking the prover: -1} q
| [-2] (q => p)
_______ A
{1} (p=>q =>q => ((q@ =>p) =>p) (11 p
Rule? (FLATTEN) Rule? (SPLIT)
19 21

Splitting conjunctions,
this yields 2 subgoals:

a2i.1.1 :
{-1} p
[-21 q¢q

I _______
[11 p

which is trivially true.
This completes the proof of a2i.1.1.

a2i.1.2 :
[-1] ¢q

I _______
{1} gq
[21 p

which is trivially true.
This completes the proof of a2i.1.2.
This completes the proof of a2i.1.

22

This completes the proof of a2i.1.
a2i.2.2 :

{1} ¢
[2] (P => q)
[3] P

Rule? (flatten)
Applying disjunctive simplification

to flatten sequent.

This completes the proof of a2i.2.2.

This completes the proof of a2i.2.

Q.E.D.

©2001 M. Lawford

Rule? (split -1)
Splitting conjunctions,
this yields 2 subgoals:
a2i.2.1 :

which is trivially true.

This completes the proof of a2i.2.1.

23

