Types and Typechecking

©1998, 1999 M. Lawford

Outline

e Paradoxes

e Hierarchy of Types

e Sets, Sorts & Types

e Typechecking

e Application:
Correctness of Tabular Specifications

e Summary

Paradoxes

paradoXx - par-a-dox Etymology: From Greek
paradoxon, from neuter of paradoxos contrary
to expectation,

e a self-contradictory statement that at first
seems true

e an argument that apparently derives self-
contradictory conclusions by valid deduc-
tion from acceptable premises

Paradoxes result from self-referential statements.
E.g.
Liar’s paradox: The Cretan Epimenides said

All Cretans are liars, and all statements made
by Cretans are lies.

Russel’s paradox

Bertrand Russel showed that naive set theory
was inconsistent with the following paradox:

Let P be the set of all sets that do not contain
themselves as an element.

P ={Q € sets|Q ¢ Q}
eg. e P and {1,2} e P and {1,2,{1,2}} € P

Question: Is P € P~

But by def. of Pc P+ P ¢P

i,e. Pe P« (P eP)

By defining P we have created a contradition!
Conclusion: Naive set theory is inconsistent.
We must eliminate such self-referential defini-

tions to make set theory consistent.
3

Type Theory:

Russel created the theory of types, a new set
theory that eliminated contradictions by con-
struction.

How? Define a hierarchy of types (all possi-
ble sets). Any well defined set can only have
elements from lower set levels.

Therefore P € P is always false! A set cannot
contain itself since it can only contain elements
from levels lower than itself.

Self-reference prohibited by preventing a type
a from containing elements of type {a}

Hierarchy of Types:

The universe U is composed of individuals (In-
duh-viduals)

1. Lowest level - individuals: e.g. integer 2,
HBObH
These are things that are not sets.

2. Next level - sets of individuals: which are
of type U — {T, F'}
E.g. set of integers Z, set of students, etc.

3. Higher levels - Let o and B8 be types from
previous levels. Then a — B is a type. Also
a— {T,F} is a type.

E.g. The set of class lists:
C:(U—={T,F}) - {T,F}

A function f : a — B has type or signature
a— B

A function’'s return type is the range type (e.qg.
B for f above).

5

Sets, Sorts & Types

For our purposes, a type is just a set.

Type a — 8 denotes the set of all (total) func-
tions from o to S.

E.g. In PVS [[real, nzreal] -> real] is the set
of all functions from real x non-zero reals to
reals.

/:[[real, nzreal] -> reall]

is an instance of type [[real, nzreal] -> real]
Some of the more algebraic treatments of logic

refer to sorts instead of types. A sort is just a
non-empty type.

Typechecking

Typed programming languages can check for
easily decidable properties:

e use of undefined terms
e adding a boolean to an integer
e Security violations (java)

These are properties that can be check me-
chanically. A language is type safe if programs
exhibiting these properties will be rejected dur-
ing typechecking (often during compilation).

PVS also automatically identifies these prob-
lems in specification files when they are type-
checked.

Typechecking in PVS

More general typechecking is needed to make
sure that formulas are well typed (i.e. never
result in undefined terms).

Predicate subtypes with typechecking can be
used to check for:

e division by zero
e out of bound array references

e more complicated properties (e.g. invariant
properties of a database system)

Many properties are not effectively decidable
(i.e. no general algorithm exists to check them).
But we may still be able to prove them!

The use of predicate subtypes allows PVS to
automatically generate the proof obligations
(TCCs - Type Correctness Conditions) to guar-
antee formulas are well typed.

8

Predicate Subtypes

In our setting types can be thought of as sets.
Thus a type o is a subtype of type g if the
defining set of « is a subset of the defining set
of 3.

Predicate subtypes provide a tightly bound char-
acterization by associating a predicate (prop-

erty) with a subtype. In PVS, N is a predicate

subtype of Z.

nat: NONEMPTY_TYPE = {i:int | i >= 0} CONTAINING O
The predicate is ¢« > 0.

In the definition of type nzreal, real is the type
that will be subtyped and =z %= O is the predicate
defining the subtype.

For any P:a — {T, F}, a predicate defined on
type «, P defines a subtype, denoted (P):

(P) ={a € o|Pa}

PVS Example

In PVS you can define a predicate:
even? : Z — {T, F}

Then use it to define predicate subtype of even
integers:

even?(i:int) :bool =
EXISTS (j:int): i= 2 * j

even: TYPE = (even?)
f(i:int):even = 2 * i

Here f : Z — even

10

Interpreted and Uninterpreted Types

Interpreted types such as bool, real etc. provide
standard mathematical interpretations.

Uninterpreted types:
e Abstract implementation details

e Allow parametrized types (e.g. sets) that
are like C4++ templates in LEDA

Example:

class:TYPE
mark:TYPE
transcript:TYPE = set[[class,mark]]

Prelude defines operators and properties of all
types of sets using parametrized theory:

sets [T: TYPE]: THEORY
BEGIN
set: TYPE = [T -> bool]
END sets
11

Empty Sets and Types

Extra care must be taken when dealing with
possibly empty sets (types). Consider PVS
declaration:

T:TYPE
const:T

declares a constant of type T. Results in fol-
lowing unprovable TCC:

%» Existence TCC generated . . . for c: T

% unfinished
c_TCC1: OBLIGATION (EXISTS (x: T): TRUE);

What's wrong? By definitionc e T butifT =0
then we have a contradiction.

This can be fixed by making declaration:
T :NONEMPTY_TYPE

c:T
12

Proving quantified versions for empty and nonempty
uninterpreted types.

12

Dependent types

What? parametrized families of types that can
be used to

1) more accurately specify range of function

li) restrict domain of (subsequent) arguments

Why use dependent types?

e the more specific you can be about a func-
tion’s return value the easier it is to prove
formulas utilizing it are “well typed” (con-
tain no undefined terms for all possible vari-
able values)

e restricting domain of function arguments
w.r.t. current value of previous arguments
is only way to make some ‘“functions’ to-
tal.

How? Make types depend on previous argu-
ments
13

Dependent Types in Function Range

Ex. 1st version of abs(x)

abs(m:real): nonneg_real
= IF m < 0 THEN -m ELSE m ENDIF

A better version

abs(m:real): {n: nonneg_real | n >= m}
= IF m < O THEN -m ELSE m ENDIF

Note: For abs(x), the range type is dependent
on the argument m, providing information in
the type that is usually provided through sep-

arate lemmas.
h(x:real) :nonneg_real=sqrt (abs(x)-x)

1st version generates more T CCs for h.
14

Dependent Types in Function Do-
main

Ex. Consider /z —y

% Dependent Types Example
sqrt: [nonneg_real -> nonneg_real]

f(x,y:real) :nonneg_real=sqrt (x-y)
g(x:real,y:{y:real|x>=y}) :nonneg_real=sqrt(x-y)

To see the Type Correctness Conditions gen-
erated use the PVS “show-tccs’ command:

% Subtype TCC generated for x - y
% unfinished
f_TCC1: OBLIGATION
(FORALL (x: real, y: real): x -y >= 0);

% Subtype TCC generated for x - y
% completed
g_TCC1: OBLIGATION
(FORALL (x: real, y: {y: real | x >= y}):
x -y > 0);
15

Type Information in PVS

g_TCC1 :

{1} (FORALL (x: real, y: {y: real | x >=y}): x - y >= 0)

Rerunning step: (SKOLEM!)
Skolemizing,

this simplifies to:
g_TCC1 :

Rerunning step: (TYPEPRED "y!1")
Adding type constraints for y!1,
this simplifies to:

g_TCC1 :

[1] x!1 - y!1 >=0

Rerunning step: (ASSERT)
Simplifying, rewriting, and recording with decision procedure:
Q.E.D.

(SKOLEM!) followed by (TYPEPRED “t") im-
plemented by (SKOLEM-TYPEPRED).

16

Undefined Terms in PVS

Note: In PVS everything must be defined be-
fore its first use. E.qg. If g were redefined as:

g(y:{y:real|x>=y},x:real) :nonneg_real=sqrt(x-y)
PVS would produce the typecheck error:

Expecting an expression

No resolution for x

When defining a function

f(x1:t1, 20 i to,...,xn :tn) : tr

t the type of x;, May only depend on the
values of z;'s where 1 <i < j

The return type of the function, ¢,, may de-
pend upon any or all of the argument values.

17

PVS Command (REPLACE ...)

Rule I part (b) Substitution of Equals is im-
plemented by the PVS (REPLACE ...) com-
mand.

-1 ¢1 —1 | ¢1ltrltL]

-2 ¢ —2 | ¢oltgltr]
5 ' (REPLACE -n * LR) °

—n tLZtR — —Nn tLZtR
1| 1| Y1[tpltr]
20 o 2 | YPoltrltr]

-1 ¢ —1 | ¢1[tLl|tR]

-2 ¢ —2 | ¢o[tr|tR]
5 ' (REPLACE -n * RL) °

—n |t =tR — —n| tf, =t
1| 41 1| Y1ltr|tR]
20 o 2 | Yoltr|tR]

Variations of (REPLACE ...) command let
you replace selected instances of equal terms.

18

PVS Commands (EXPAND “t”)

Rule I(a): (Vx)x = x and all its variations are
built into PVS

x,y: VAR real
f(x,y):real = x+y
g(x,y):real = x+y

Ia: THEOREM f(y,1)=g(y,1)

{1} (FORALL (y: real): f(y, 1) = g(y, 1))

Rule? (skolem!)

{1y £@G'1, 1) = giy'l, 1)

Rule? (expand "f")
Expanding the definition of £,

19

{13 @+ y'1 = g(y!1, 1))

Rule? (expand "g")
Expanding the definition of g,

{1} TRUE

which is trivially true.
Q.E.D.

Alternatively use (EXPAND* t1 to ...

Ta :

{1} (FORALL (y: real): f(y, 1) = g(y, 1))

Rule? (expandx "f" "g")

Expanding the definition(s) of (f g),

Q.E.D.

20

PVS Commands (LIFT-IF)

P4 .

{1} FORALL (x: real):
IF x >= 0 THEN sqrt(x) ELSE sqrt(-x) ENDIF = sqrt(abs(x))

Rule? (skolem!)

{1} IF x!1 >= 0 THEN sqrt(x!1)
ELSE sqrt(-x!1) ENDIF = sqrt(abs(x!1))

Rule? (lift-if)
Lifting IF-conditions to the top level,
this simplifies to:

{1} IF x!1 >= 0 THEN sqrt(x!1) = sqrt(abs(x!1l))
ELSE sqrt(-x!1) = sqrt(abs(x!1l))
ENDIF

Rule? (expand "abs")
P4 :
{1} TRUE

which is trivially true.
Q.E.D.

21

Tabular Specifications of Functions

A function f : Ty X ... x Ty, — T may have a
tabular representation:

C]_ 02 ... | Cn
61 62 co. | En

.f(xla'“axm):

Here each ¢; is a boolean expression (term)
and e; is a term of type T;. When ¢; is true f
returns e;.

The following are sufficient conditions for the
table to properly define a (total) function:

Disjoint: i 7 j — (c; Acj < 1)
Complete: (ci1Ver V... Vep) < T
Why? Why are they not necessary?

Example:

r<0|lz=0|xz>0

sign(x) =

22

PVS COND cConstruct

COND
c1 -> eq,
Co -> €9,

Cn -> €n
ENDCOND

PVS treats this the same as:

IF ¢; THEN eg
ELSIF ¢ THEN e

ELSIF ¢,_1 THEN ¢,_1
ELSE e,

Therefore to prove properties involving COND
statements can use (LIFT-IF) with (SPLIT) or
(BDDSIMP). (GRIND) can also handle CONDs.
(Why?)

23

Typechecking COND Statements
signs: TYPE = { x: int | x >= -1 & x <= 1}

sign_cond(x): signs =
COND
x<0 -> -1,
x=0 -> 0,
x>0 -> 1
ENDCOND

COND causes PVS to generate Disjointness
and Completeness TCCs (proof obligations).

%» Disjointness TCC generated for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

% unfinished
sign_cond_TCC3: OBLIGATION

(FORALL (x: int):

NOT (x < O AND x = 0)

AND NOT (x < O AND x > 0)

AND NOT (x = O AND x > 0));

25

% Coverage TCC generated for

%# COND x <0 ->-1, x =0 ->0, x>0 -> 1 ENDCOND
%» unfinished

sign_cond_TCC4: OBLIGATION

(FORALL (x: int): x < O OR x =0 0R x > 0);

26

PVS Table Construct

Equivalent notation that is translated into PVS

COND construct

sign_htable(x): signs = TABLE

h——————————————————— A
|[x<O0 | x=0 | x>0]|
A /A
| -1 | o | 1 ||
h——————————————————— A

ENDTABLE

2 dimensional version is nested CONDs

27

Example: 2A04 Lab 2
lab2 theory (intolerant version) OK

lab2b theory is lab2 with tolerance - 90+ cases
of overlap

lab2d theory (somewhat improved) - gives un-
provable sequent

func_TCC11.15.1 :

[-1] (a!'l + b!'l1 < c!1)
[-2] e(all, b!'l1)
[-3] e(b!'l, c'l1)
[-4] e(all, c!'1)

[1] e(a'l, 0) & e(b!'1, 0) & e(c!'1l, 0)

Rule?

Theorem CE in lab2d verifies existence of counter
example.

lab2e final version w/tolerance - works!
28

