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Experiment 3 
 

Filters II – Filter Design with MATLAB 
 

    The objective of this experiment is to gain some experience in designing filters with 
desired specifications. You will work with a number of tools helping you in designing filters 
in MATLAB. 

 
Prelab 

 

P1.   Review of Filters – Frequency Domain 
    The effect of a system on a signal input to it can be described in both time and frequency 
domains. We observed the time representation of the system in last experiment. Here we will 
study the frequency domain representation of the system as a filter. Different frequency 
components of the input signal experience different attenuation/amplification and delays as 
they pass through the filter thus a filter alters the signal input to it in frequency domain (Fig. 
P1). 
     One of the main applications of a filter is to filter out the unwanted parts of an input 
signal. The unwanted part might be noise present out of the frequency band occupied by the 
desired signal (high frequency noise) or other interfering signals that are unwanted, e.g. when 
you tune to a radio station, the radio receiver will filter out other stations so you would hear 
a clear sound (Fig. P2). 

 

 
 

Figure P1 – The alteration of frequency components of a signal input to a filter 
      
    Simple filters can be categorized into four major categories: lowpass, highpass, bandpass 
and bandstop (or band-reject). Figure P3 shows the ideal forms of these four filters in the 
frequency domain. As the name suggests a lowpass filter for instance, passes the low 
frequency components of a signal while blocking the high frequency ones. As you have 
learned the convolution operation in time domain is equivalent to multiplication in 
frequency domain. Thus, multiplying the frequency domain representation of the input 
signal with that of the filter, high frequency components of the input signal will be multiplied 
in zero and would thus vanish, while the lower frequency components will be multiplied by 
one and would pass without any change. 
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Figure P2 – Some basic applications of filters: top) noise reduction by removing out of band 
(high frequency noise), bottom) removing interfering signals: passing of a tuned channel in a 

radio. 
 
    In this experiment you will learn how to use some tools in MATLAB signal processing 
toolbox to design filters with your desired characteristics. 

 
Figure P3 – The ideal frequency response of the four basic filter types: 1) lowpass,  

2) highpass, 3) bandpass and 4) bandstop (or band-reject) 
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P2. Filter Design 
   Before designing a filter, you should know what parameters need to be known for the 
design. 
   The ideal filters as shown in figure P3, cannot be physically realized, since they are non-
causal, i.e. to generate the output at instance n  in time, they require the knowledge of future 
samples of the input signal, i.e. at 1,  2,...n n+ + , which is impossible. The design techniques 
are as a result, approximations of the ideal case. 
    The digital filter design methods fall into two main categories, FIR filter design and IIR 
filter design. You will learn more about these types in your future courses. In this experiment 
you will be introduced to some tools for basic IIR filter design. 
     First of all you should know the parameters of the filter that you are going to design. 
Some of these parameters are described in this section. 
 
dB Notation 
    Something you will very often encounter when dealing with filters is the deci-Bell (dB) 
notation. The reason is that when you’re dealing with a wide range of variation in the 
magnitude of a quantity, say 5 orders of magnitude difference between maximum and 
minimum, it is hard to work with the numbers. If you use the logarithm of the magnitude, 
the variations will be too small! So Alexander Graham Bell, invented this new notation 
named after him by using 20 times the logarithm of the magnitude. Thus 
 20

1020 log       10 dBx
dBx x x= ⇔ =  

    Some figures that you should know without using your calculator are 3 dB and its 
multiples. 3 dB is almost equal to 2, thus if you have a quantity that is 3 dB greater than 
another, it is actually two times greater than it. (Note that you are using logarithm, thus 
addition of the logarithms is equivalent to multiplication of the numbers themselves.) By 
analogy, -3 dB, 6 dB and -6 dB are equivalent to 0.5, 4 and 0.25 respectively.  
 
Passband Parameters 
    The passband of the ideal filter is the band of frequencies where the filter frequency 
response is not zero. If a signal’s frequency content lies in this band, the signal will pass 
without any alteration. In case of practical filters, the frequency response does not have an 
abrupt change from zero to one or the value in passband (Fig P4). Instead, there is a 
transition from a higher level to a lower level. Hence, for a practical filter the band of 
frequencies over which the magnitude of frequency response is greater than a threshold is 
called the passband. This threshold is usually set at -3 dB of the maximum magnitude in 
passband. The frequency at which the filter’s frequency response magnitude reaches this 
threshold is called the cut-off frequency of the filter ( )cf .  
    If the frequency response does not decrease monotonically in the passband the filter is 
said to have ripples in the passband. The difference between the maximum and minimum 
magnitude values in the passband defines the passband ripple factor pR  usually given in 
dB. The maximum value of the magnitude in passband is called the gain of the filter. 
 
Stopband Parameters 
    The stopband of the ideal filter is the band of frequencies where the filter frequency 
response is zero. Thus the frequency components of the signal lying in this band will not 
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pass and will be fully removed. Again, since the transition from high to low is not abrupt in 
practical filters, a threshold level defines this region. So, the band of frequencies, where the 
magnitude of the frequency response of the filter drops below a threshold level is called 
stopband. The threshold value is dependent on the application of the filter usually about 40 
dB and is usually denoted by  or s sA R . 
    If there are ripples in the stopband, the maximum value of the magnitude of frequency 
response in the stopband shall lie below the threshold. The frequency at which the 
magnitude of the filter response first falls below the threshold value is called the stopband 
frequency denoted by sf . 
 

 
 
 
 

 
Figure P4 – The filter parameters: 1) passband, 2) stopbands, 3) cut-off frequencies,  

4) stopband frequencies, 5) passband ripple, 6) stopband level, 7) filter gain. 
 

P3. Four Classical IIR Filter Types 
    In this section I will introduce and compare the four classical IIR filter types, namely 
Butterworth, Chebychev Type I and II, and Elliptic filters. You will encounter these 
filters and probably their design methodologies in your future courses. Since 
straightforward algorithms for design and implementation of these filters exist, many 
software programs help you in designing these filters by simply specifying their 
parameters. Hence, for the sake of this experiment you need not know all the 
mathematical detail involved in the design of these filters1. All filters here refer to the 
lowpass case. You can simply generalize the results to the other types by analogy. 

                                                 
1 If you are interested in further study of these details you may refer to “Digital Signal Processing, System 
Analysis and Design”, by P.S.R Diniz, E.A.B. da Silva and S.L. Netto, Cambridge University Press, 2002 
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Butterworth Filter 
    The Butterworth filter of order N , also called the maximally flat filter, is an 
approximation of the ideal filter, which the first 2 1N − derivatives of its magnitude squared 
are zero. As a result the frequency response of this filter decreases monotonically with 
frequency and ( ) 1 2cH f f= = . The decrease is very slow in the passband and quick in 
the stopband. In a design problem where no ripple is acceptable in passband and stopband, 
Butterworth filter is a good choice.  

 
Figure P5 – The frequency response of a Butterworth filter with 1cω =  

Chebychev Type I Filter 
    A Chebychev type I approximates the ideal filter by minimizing the absolute difference 
between the resulting filter and the ideal filter, over the passband. This filter results in 
appearance of ripples in the passband. The ripples have a constant magnitude of pR which is 
one of the design parameters of this filter. The stopband response is maximally flat. The 
transition from passband to stopband occurs faster than the Butterworth filter: 
( )c pH f f R= = . If the ripples in the passband are acceptable, a Chebychev filter usually 

require a lower-order transfer function than a Butterworth filter for the same specifications. 
 

 
Figure P6 – The frequency response of a Chebychev type I filter with 1cω =  
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Chebychev Type II Filter 
    A Chebychev type I approximates the ideal filter by minimizing the absolute difference 
between the resulting filter and the ideal filter, over the stopband. This filter results in 
appearance of ripples in the stopband. The ripples have a constant magnitude of sR which is 
one of the design parameters of this filter. The passband response is maximally flat and 
( )c sH f f R= = . The transition from passband to stopband occurs slower than the type I 

filter and for even filter order, it never reaches zero. Its advantage over type I is the absence 
of ripples in the passband. 

 
Figure P7 – The frequency response of a Chebychev type II filter with 1sω =  

Elliptic Filter 
    The elliptic filter results in the steepest transition from passband to stopband by allowing 
ripples in both passband and stopband. This filter usually satisfies the desired filter 
specifications with the lowest order among the four types studied. The passband and 
stopband ripples  and p sR R are also required as design parameters.  

 
Figure P8 – The frequency response of an elliptic filter with 1cω =  
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MATLAB sptool: Filter Design and Signal Processing Tool 
1. Adding Phone Effect to a Sound 
    In this section you will learn how to use a powerful signal processing tool in MATLAB,  
sptool which is part of the MATLAB’s signal processing toolbox and helps you with filter 
design and signal processing  with an easy to use GUI. 
    In what follows, you will design a bandpass filter that resembles the bandpass filter in a 
telephone system. You will then apply this filter to the French speaker sound file you used 
before, to create a phone effect to the sound. 
• At MATLAB command prompt type sptool. 
• In the Filters list click on the New button. This creates a new filter design. 
• In the sampling frequency edit box enter 11025 as the sampling frequency. 
• From the algorithm dropbox, select Butterworth IIR filter. 
• Select bandpass in the filter type dropbox. 
• Enter 200 and 1200 for the low and high stopband frequencies respectively. 
• Enter 250 and 1000 for the low and high passband frequencies respectively. 
• Click the Apply button at the bottom of the left panel. 
• Close the filter design tool. 
 
    Your filter is now designed and ready for use! You should import the French speaker’s 
sound file into sptool, apply your filter to it: 
• At MATLAB command prompt load the .wav file ‘french.wav’. 
• Downsample the sound from 44100 to 11025Hz (don’t forget to update FS). 
• In sptool, in File menu select Import… 
• Set Import as to signal. 
• Select from workspace and select the name of the vector containing the sound data and 

click the right arrow to import the data 
• Select the sampling frequency from the workspace variables and import it. 
• Enter a name for the imported signal, the default is sig1. 
• Click OK to complete import. 
• From the Filters list select your filter design and click the apply button. 
• Leave the defaults as they are and click OK. 
• In the Signals list, you will see the result of filtering, select it, hold down control key and 

select the input signal. 
• Click the View button. 

• If you can’t see both signals, click on the select trace  in the toolbar and select the 
output signal. 

• Click the play sound  in the toolbar to listen to the output. 
• Switch the selected trace from output to input, play the signals and note the difference. 
    Now go back to filter design screen to compare different filter design methods with each 
other. 
• Make sure the value of pR is set at 3 dB and sR at 20 dB. 
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• Note the shape of the Butterworth filter response and specifically the stopband 
frequencies. 

• Now change the filter type to Chebychev type I. 
• Take note of the actual stopband frequencies and the shape of the filter response. 
• Repeat for the Chebychev type II and elliptic filter types. What is your deduction? 
 
    To view the impulse response of each filter, go back to sptool main window and select 
your filter and click the View button. A new tool window appears. You may see the phase 
and amplitude response of the filter you have designed in this window. From the left panel, 

check the Impulse Response. Use the zoom tool , to zoom in and see the first portion 

of the response. Use the zoom all tool , to select another potion or use the zoom tool to 
zoom in again. 
    Uncheck the Magnitude and Phase boxes and check the Zeros and Poles. Zoom out to 
see the full plot. In the design window, change the filter type. What happens to the position 
of the poles and zeros? Can you compare the four basic designs? 
 
2. Out of Band Noise Removal 
    In this part you will use a lowpass filter to remove the high frequency noise in a signal. 
• At MATLAB command prompt use size command to determine the number of 

samples in the downsampled French speaker sound you loaded before. 
• Generate a random noise vector n with the same number of samples as the French 

speaker’s signal. Use MATLAB randn command to generate the noise vector whose 
samples have Gaussian probability distribution. Scale down the noise by multiplying your 
vector by 0.1. 

• Add the noise and your original sound to make a new vector. Make sure you don’t 
destroy your original sound file. 

• Import the noise and the noisy sound in sptool. 
• View the noise, noisy sound and the original sound using View button. 
• Listen to the three signals. 
• Now design a lowpass filter with following specifications: 

o 1500cf = Hz and 1650sf = Hz. 
o No ripple in passband is allowed. 
o Your filter order should not be more than 15. (Check the right panel to see the 

order of your filter) 
o sR  should be at least 30 dB. 

• Apply your filter to the noise signal and to the noise. 
• View the results and signals before filtering. 
• Listen to them and compare them. 
 
    Now try to export your filter design to MATLAB: 
• In sptool main window in File menu select Export… 
• Select your filter name in the left panel 
• To see the transfer function of the filter, check the Export Filter as TF Object. 
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• Click the Export to worksapce button. 
• At MATLAB command prompt, type the name of your filter design to see its transfer 

function. You will see the name of your filter in MATLAB’s workspace panel. 
• Return to sptool and again export your filter design now with the Export Filter as TF 

Object unchecked. Confirm replacement of your old workspace filter export. 
• At MATLAB command prompt, type the name of your filter you should see something 

like this: 
filt2 =  
 
               tf: [1x1 struct] 
               ss: [] 
              zpk: [1x1 struct] 
              sos: [] 
              imp: [] 
             step: [] 
                t: [] 
                H: [1x4096 double] 
                G: [4096x1 double] 
                f: [1x4096 double] 
            specs: [1x1 struct] 
               Fs: 11025 
             type: 'design' 
         lineinfo: [1x1 struct] 
    SPTIdentifier: [1x1 struct] 
            label: 'filt2' 
You will see the name of your filter instead of filt2. 

• To access the transfer function parameters of your filter use this syntax and replace filt2 
with your filter’s name: filt2.tf.num to see the numerator coefficients of your filter 
and filt2.tf.den to see its denominator coefficients. 

• You may access the other parameters of the filter, like location of poles and zeros and 
sampling frequency in the same way. 

 


