

The Nios II IDE tool compiles C/C++ code for the Nios II processor and provides an
integrated software development environment for Nios II systems.

CHAPTER 16

Tutorial III: Nios II
Processor Software
Development

322 Rapid Prototyping of Digital Systems Chapter 16

16 Tutorial III: Nios II Processor Software Development
Designing systems with embeddeded processors requires both hardware and
software design elements. A collection of CAD tools developed by Altera enable
you to design both the hardware and software for a fully functional,
customizable, soft-core processor called Nios II. This tutorial steps you through
the software development for a Nios II processor executing on the DE board. A
Nios II processor reference design targeted for the DE board is used here. To
design a custom Nios II processor refer to Tutorial IV (in the following chapter),
which introduces the hardware design tools for the Nios II processor.

Upon completion of this tutorial, you will be able to:
• Navigate Altera’s Nios II Integrated Development Environment (IDE),
• Write a C-language software program that executes on the Nios II

reference design,
• Download and execute a software program on the Nios II processor, and
• Test the peripherals and memory components of the Nios II reference

design on a DE1 or DE2 board.
This tutorial will step you through writing and running two programs for the
Nios II processor. First, a simple “Hello World” type of program will be
written, compiled, downloaded to the DE board, and run. Next, a test program
that uses interrupts, pushbuttons, switches, LEDs, SRAM, Flash memory,
SDRAM, and the LCD display (on the DE2 board only) will be written that can
be used to test the major peripherals on the DE board.

 THE DVD CONTAINS A VERSION OF CHAPTERS 16 AND 17 FOR THE

 UP 3 BOARDS.

16.1 Install the DE board files
Run the installation program for Altera’s University Program IP Library. This
program can be found on the DVD at \Altera_Software\UP_IP_Library.exe.

16.2 Starting a Nios II Software Project
The Nios II Integrated Development Environment (IDE) is a standalone
program that works in conjunction with Quartus II. To design software in the
IDE, Quartus II does not have to be installed on your system; however, you will
need a valid Quartus II project with a Nios II processor in it to use the IDE. A
Nios II reference design for the DE board is included on the DVD that came
with this book. This hardware design will be used for the remainder of this
tutorial. Copy the design files from booksoft_fe\de2\chap16 on the DVD to a
working directory on your hard drive. (If you are using a DE1 board, then copy
the files from the booksoft_fe\de1\chap16 folder on the DVD.) The software
design files will be stored in a subdirectory of this project directory.

 Tutorial III: Nios II Processor Software Development 323

Open the Nios II IDE software. For the default installation, the software icon
can be found under Start DAll Programs DAltera DNios II EDS 7.1 DNios
II 7.1 IDE.
You should be prompted to Select a Workspace. If the dialog box in Figure
16.1 does not appear, then select File DSwitch Workspace…. The workspace
is a cache for information about all projects associated with a given Nios II
processor design. Enter the full pathname of the Quartus II project directory
you created above (the directory to which DVD\booksoft_fe\de2\chap16 was
copied) followed by the subdirectory \software as shown in Figure 16.1. Click
OK to select the default location and continue.

Figure 16.1 Setting the Nios II IDE workspace to the Nios II reference design software directory.

To create a new project, select File DNew DProject…. The New Project
wizard will begin. On the first dialog box, select Nios II C/C++ Application
and click Next to continue.
In the next dialog box, fill in the requested information as shown in Figure
16.2. The name of the project is rpds_software, the SOPC Builder System
should point to the nios32.ptf file in the project directory you copied from the
DVD, and the Project Template should be set to Blank Project. If the
workspace was correctly set to your project directory as detailed above, then
the default location will be correct and Specify Location should be unchecked.
However, if the workspace is set to some other directory, then select Specify
Location and enter c:\your_project_directory\software in the Location field.
Click Next to continue.
In the final dialog box, select the option Create a new system library named:
rpds_software_syslib. Click Finish to create and open the project. When the
New Project dialog box disappears, click on the Workbench icon on the
Welcome page in the main IDE window if the main project view does not
appear automatically.

324 Rapid Prototyping of Digital Systems Chapter 16

Figure 16.2 Create a blank project for the Nios II reference design.

16.3 The Nios II IDE Software
Take a few minutes to orient yourself to the Nios II IDE software. The middle
of the window will display the contents of the source files when you open
them. The Outline pane on the right-hand side will provide links to each of the
functions that are declared in the open C source file. Clicking on a link will
jump the cursor to the start of that function. On the left-hand side, a list of
projects for the current workspace is shown in the Nios II C/C++ Projects
pane.
Two projects should appear in the C/C++ Projects pane by default (after
having created your new blank project): rpds_software and
rpds_software_syslib.

• The rpds_software library is the location for your software. Since a
blank project has been created, no source or header files exist in this
library yet.

• The rpds_software_syslib library is the container for the top-level
system header file (system.h) that contains the names and base addresses
of peripherals in the Nios II reference design system for which you are
writing software. It also contains links to libraries of device drivers for

 Tutorial III: Nios II Processor Software Development 325

the Nios II processor, peripherals from SOPC Builder, and any
additional component libraries that have been installed. Except for the
links to the device driver libraries, the rpds_software_syslib library will
be empty until the system library is generated in the next section.

16.4 Generating the Nios II System Library
Each Nios II system is unique. It has different peripherals, different memory-
mapped addresses, different interrupt settings, etc. To accommodate this
flexibility, the Nios II IDE creates a system library from your Nios II hardware
settings file (e.g., nios32.ptf). The system library defines the names of the
peripherals in a given system and maps them to their memory addresses, and it
defines several system-critical definitions that are used to make several
standard C libraries compatible with your specific Nios II system.
Before the system library can be generated, several settings must be modified.
Right click on rpds_software_syslib in the Nios II C/C++ Projects pane and
select Properties from the drop-down menu. In the dialog box, select System
Library from the list on the left to view the configuration options for the
system library.
Under System Library Contents, select the jtag_uart device for stdout,
stderr, and stdin. The Nios II system allows the stdout, stderr, and stdin data
streams to be redirected to a UART interface using a serial cable connected to
your PC. This means that the output of printf and other standard output
functions will be displayed in a console window on your PC since there is no
monitor attached to the FPGA directly at the moment. Likewise, the use of
scanf and other standard input functions will wait for data to be transmitted
from the PC to the UART. Any text that you type in the Nios II IDE’s console
window will be sent via the UART to the Nios II processor. One or more of
these output streams can be set to the uart device. This will result in data for
that stream being sent over a serial cable connected to the RS-232 serial port on
the DE board. For this tutorial, leave all data streams set to jtag_uart so only
the USB cable is needed.
Notice that the various segments of memory can be individually assigned to
different memory devices (SRAM, SDRAM, Flash, etc.). For this tutorial, set
all of the memory segments to sram. It is also useful to note that this dialog
box contains an option to use a Small C library for your project. Selecting this
option, removes many of the less common functions of the ANSI C standard
library such as printf’s floating-point number support, scanf, file seek (fseek),
and more. Using a small standard library can result in a much smaller amount
of memory needed for storing your software. A complete list of standard library
functions affected by selecting the Small C Library option can be found in the
Nios II Software Developer’s Handbook available on Altera’s website. For this
tutorial, leave the Small C Library option unchecked as shown in Figure 16.3
and click OK to continue.

326 Rapid Prototyping of Digital Systems Chapter 16

Figure 16.3 These are the system library settings that should be used for this tutorial.

To generate the system library for this Nios II system, right click on
rpds_software_syslib in the Nios II C/C++ Projects pane and select Build
Project from the drop-down menu. Once building has completed, view the files
created by the build by expanding the rpds_software_syslib item in the Nios II
C/C++ Projects pane. Under the rpds_software_syslib folder, several folders
appear. The Includes folder contains links to the device drivers for peripherals
in the Nios II reference design processor that you are using. The Debug D
System Description folder contains the system.h header file that includes
definitions for all of the peripherals in this Nios II processor.

16.5 Software Design with Nios II Peripherals
Accessing and communicating with Nios II peripherals can be accomplished in
three general methods: direct register access, hardware abstraction layer (HAL)
interface, and standard ANSI C library functions. Depending on the complexity
of the operation and the specific device being used, a programmer will often
use each of the three methods at one point or another. In this tutorial, direct
register access will be used to communicate with the LEDs, dipswitches, and
LCD display. The HAL interface will be used to communicate with Flash and
install an interrupt handler for the pushbuttons, and standard C library
conventions will be used to access the memory and timer devices. The SRAM
and SDRAM device drivers support standard memory-style access; however,
they do not currently support standard file I/O (fread, fwrite, etc.). A memory-
based filesystem and the accompanying file I/O operations can be added by the
user.

 Tutorial III: Nios II Processor Software Development 327

Below, each type of peripheral access is discussed. As an example, the C code
necessary to provide a one second delay using each method is shown in Figures
16.4-6.

#include “system.h”

#include “altera_avalon_timer_regs.h”

int main(void) {

 IOWR_ALTERA_AVALON_TIMER_PERIODL(TIMER0_BASE,

(48000000 & 0xFFFF));

 IOWR_ALTERA_AVALON_TIMER_PERIODH(TIMER0_BASE,

((48000000>>16) & 0xFFFF));

 IOWR_ALTERA_AVALON_TIMER_STATUS(TIMER0_BASE, 0);

 IOWR_ALTERA_AVALON_TIMER_CONTROL(TIMER0_BASE, 0x4);

 while((IORD_ALTERA_AVALON_TIMER_STATUS(TIMER0_BASE) &
 ALTERA_AVALON_TIMER_STATUS_TO_MSK) == 0) {}

}

Figure 16.4 This is the C code necessary for providing a one second delay by directly accessing the
system timer’s registers. The timer peripheral in this system is called timer0.

Direct Register Access

Each peripheral’s registers can be directly accessed through read and write
macros that are defined in each component’s device driver header file. This
type of communication is the lowest level and while it provides the most
flexibility in interfacing with peripherals, it can also be the most tedious. As
illustrated in Figure 16.4, interfacing with the timer device can be quite
cumbersome, even to provide a relatively straight-forward function such as a
one second delay. If you read the actual count to determine elapsed time, you
also need to keep in mind how your code will function when the timer count
wraps around and starts over.

328 Rapid Prototyping of Digital Systems Chapter 16

#include <sys/alt_alarm.h>

int main(void) {
 int first_val, second_val;

 second_val = 0;
 first_val = alt_nticks();

 while((second_val – first_val) < 1000000) {
 second_val = alt_nticks();
 }
}

Figure 16.5 This is the C code necessary for providing a one second delay by using the HAL
interface functions.

HAL Interface

A layer of software called a hardware abstraction layer (HAL) has been created
that resides between the user code and the peripheral hardware registers. The
HAL interface contains a number of very useful functions that allow the user to
communicate with peripherals at a higher functional level. For example, the
HAL interface provides functions alt_flash_open_dev, alt_read_flash,
alt_write_flash, and alt_ flash_close_dev for communication with Flash
memory. By providing these functions, Flash memory can be accessed by
opening the device and reading from it and writing to it without having to
create user functions that provide the read and write functionality from low-
level peripheral register accesses.
For the timer device, a function called alt_nticks provides convenient access to
the timer. As illustrated in Figure 16.5, the HAL functions provide a more
straight-forward method of creating a one second delay.

#include <unistd.h>

int main(void) {
 usleep(1000000);
}

Figure 16.6 This is the C code necessary for providing a one second delay by using the standard
ANSI C library functions.

Standard Library Functions

Access to most of Nios II’s peripherals has been incorporated into the standard
ANSI C library functions. Using standard ANSI C libraries such as stdlib, stdio,

 Tutorial III: Nios II Processor Software Development 329

string, time, malloc, etc. you can manipulate strings, access memory and
memory-like devices through standard file I/O functions, use the timer to add a
delay using usleep or wait functions, and much more. This is the highest level
of abstraction provided by the Nios II IDE. Many of these functions use the
peripheral-specific HAL functions to provide a single common interface to
various types of peripherals. For example, fopen, fread, fwrite, and fclose
functions from the stdio library can be used for memory accesses on some
SDRAM, Flash, or SRAM memory devices. The system library functions will
use the appropriate HAL function calls for each access depending on the
particular memory device being used. To create a one second delay using the
timer, a single call to the standard library function usleep can be made as
shown in Figure 16.6

#ifndef _RPDS_SOFTWARE_H_
#define _RPDS_SOFTWARE_H_

#include <stdio.h>
#include <unistd.h>
#include "system.h"
#include "altera_avalon_pio_regs.h"

#endif //_RPDS_SOFTWARE_H_

Figure 16.7 This is your first C program’s main header file.

16.6 Starting Software Design – main()
Create a C header file by selecting the rpds_software item in the Nios II
C/C++ Projects pane. Choose File DNew DHeader File. When the dialog
box appears, enter rpds_software.h for the Header File and click Finish to
continue.
Start your program’s main header file by adding the #include and definition
statements shown in Figure 16.7.
The C program that you will now write will print “Hello World” in the Nios II
IDE’s console window (via the UART and serial cable), and it will blink eight
of the red LEDs on the DE board.
Create your program’s main C source file by selecting the rpds_software item
in the Nios II C/C++ Projects pane. Choose File DNew DFile. When the
dialog box appears, enter rpds_software.c for the File name and click Finish
to continue.
Start your program by including the rpds_software.h header file and typing the
code shown in Figure 16.8.

330 Rapid Prototyping of Digital Systems Chapter 16

#include "rpds_software.h"

int main(void) {
 unsigned char led_val = 1;

 /* Print message to the Nios II IDE console via UART */
 printf("Hello World\n");

 while(1) {
 /* Output a 8-bit value to the LEDs */
 IOWR_ALTERA_AVALON_PIO_DATA(LEDS_BASE, (led_val & 0xFF));

 if(led_val == 0x80)
 led_val = 1;
 else
 led_val = led_val << 1;

 /* Wait for 0.5 seconds */
 usleep(500000);
 }

 return(0);
}

Figure 16.8 This is your first C program’s main source file.

16.7 Downloading the Nios II Hardware and Software Projects
To execute your software on a Nios II processor, you must configure the FPGA
with the Nios II hardware reference design and then you can download the
compiled program code to the processor’s program memory.
Connect the USB cable. Verify that the Run/Prog switch on the DE board is set
to Run, and then turn on the DE board. Select Tools DQuartus II
Programmer… to configure the FPGA. When the Quartus II Programmer
appears, click on Add File… and select the rpds16.sof file from your project
directory. Click Open to add the selected file to the download chain. Check the
Program/Configure box on the row with your configuration file on it, and
click Start to begin hardware configuration.
Return to the Nios II IDE window. From the Nios II IDE window, right click
the rpds_software item in the Nios II C/C++ Projects pane and select Build
Project from the drop-down menu. This will begin a full compilation of all
libraries in your project.
IMPORTANT: In the reference hardware design, SW9 is used as the Nios II
processor’s reset signal. Before code can be downloaded to the processor, it
must be brought out of reset by setting SW9 in the up (or on) position.
To download the compiled code to the Nios II processor executing on the
FPGA, right click the rpds_software item in the Nios II C/C++ Projects pane

 Tutorial III: Nios II Processor Software Development 331

and select Run As DNios II Hardware. If the run settings dialog box appears,
click the Run button to close this box. If the run settings dialog box appears,
click the Run button to close this box.

16.8 Executing the Software
Once the program code has been downloaded to the Nios II processor’s
program memory (SRAM in this configuration), your code automatically
begins executing. As a part of the normal download process, the Nios II IDE
downloads your program to memory and then reads the program memory back
to verify that the code in program memory is correct. If there are any problems
with downloading your program, then the processor is stalled and a message
that alerts you to this fact appears in the Console pane in the bottom right-hand
side of the Nios II IDE window. If this happens, verify that SW9 is in the up
(on) position and then right click the rpds_software item in the Nios II C/C++
Projects pane and select Run As DNios II Hardware again.
Once your program begins executing, the Nios II IDE’s Console pane becomes
a standard input/output terminal connected to your processor via the RS-232
UART device and cable. The text message “Hello World” should appear in the
Console pane as soon as your program begins. Also, eight of the red LEDs on
the DE board should blink one at a time.

16.9 Starting Software Design for a Peripheral Test Program
Now that you have written your first program and have it successfully running
on the DE board, it is time to write a longer program that will test each of the
major peripheral components on the DE board.
A second project can be added to the current workspace, and since the same
Nios II processor is being used for all projects in this workspace, the same
system library can be used for them all. This option will be selected in the
dialog box shown in Figure 16.9.
To create a new project, select File DNew DProject…. The New Project
wizard will begin. On the first dialog box, select Nios II C/C++ Application
and click Next to continue.
In the next dialog box, fill in the requested information. The name of the
project is rpds_de_test, the SOPC Builder System should point to the
nios32.ptf file in your hardware project directory, and the Project Template
should be set to Blank Project. If the workspace was correctly set to your
project directory as detailed above, then the default location will be correct and
Specify Location should be unchecked. However, if the workspace is set to
some other directory, then select Specify Location and enter
c:\your_project_directory\software in the Location field. Click Next to
continue.
In the final dialog box, select the option Select or create a system library and
choose the rpds_software_syslib project from the list of Available System
Library Projects for: nios32 as shown in Figure 16.9. Click Finish to create
and open the project.

332 Rapid Prototyping of Digital Systems Chapter 16

Figure 16.9 Since this project uses the same Nios II processor as your first program, the same
system library can be used. Select the rpds_software_syslib from the list of available libraries.

Create a C header file by selecting the rpds_up3_test item in the Nios II
C/C++ Projects pane. Choose File DNew DHeader File. When the dialog
box appears, enter rpds_up3_test.h for the Header File and click Finish to
continue.
Start your program’s main header file by adding the #include and definition
statements shown in Figure 16.10.

 Tutorial III: Nios II Processor Software Development 333

#ifndef _RPDS_DE_TEST_H_
#define _RPDS_DE_TEST_H_

#include <stdio.h>
#include <unistd.h>
#include "system.h"
#include "alt_types.h"
#include "sys/alt_irq.h"
#include "sys/alt_flash.h"
#include "altera_avalon_pio_regs.h"

#endif //_RPDS_DE_TEST_H_

Figure 16.10 This is the beginning of your C program’s main header file.

The C program that you will now write uses the four pushbuttons on the DE
board to select which device to test. When a pushbutton is pressed, it will be
decoded (in an interrupt handler) and a variable will be set. The program’s main
thread will continuously read the function variable (at 50 ms intervals) and
initiate the appropriate peripheral test. The function variable will be cleared at
the end of each test routine so that buttons pressed while a peripheral is being
tested will be ignored. The mapping of pushbutton to device shown in Table
16.1 will be used.

Table 16.1 Pushbutton to Device Mapping for Sample C Program

Pushbuttons
(4-3-2-1)

Peripheral
to Test

0001 LCD Display

0010 SRAM Memory

0100 Flash Memory

1000 SDRAM Memory

334 Rapid Prototyping of Digital Systems Chapter 16

#include "rpds_de_test.h"

int main(void) {
 volatile int function = 0;
 int ret_val;

 while(1) {
 switch(function) {
 case 0x1: /* Test the LCD display */
 ret_val = test_lcd();
 break;
 case 0x2: /* Test the SRAM */
 ret_val = test_sram();
 break;
 case 0x4: /* Test the Flash memory */
 ret_val = test_flash();
 break;
 case 0x8: /* Test the SDRAM */
 ret_val = test_sdram();
 break;
 default: /* Do nothing */
 break;
 }
 function = 0;
 usleep(50000); /* Wait 50 ms */
 }
 return(0);
}

Figure 16.11 This is the beginning of your C program’s main source file.

Create your program’s main C source file by selecting the rpds_de_test item in
the Nios II C/C++ Projects pane. Choose File DNew DFile. When the dialog
box appears, enter rpds_de_test.c for the File name and click Finish to
continue.
Start your program by including the rpds_de_test.h header file and typing the
code shown in Figure 16.11.

16.10 Handling Interrupts
Inputs can be evaluated using two methods—polling and interrupts. To poll an
input, your code can periodically check the value of the input device and
determine if the value has changed. If a change has occurred, then the
appropriate action should be taken to evaluate the input. An interrupt-driven
input, however, works differently. When the value of the input changes, an
interrupt signal is activated and the processor is alerted. The processor
immediately performs a jump into a section of code known as the interrupt
handler. This code determines which interrupt has occurred (most processors
support multiple interrupt signals) and calls the appropriate interrupt service

 Tutorial III: Nios II Processor Software Development 335

routine (a function that has been written to handle the specific interrupt signal).
When the interrupt service routine has finished processing the input, the
processor returns to the code it was executing before the interrupt occurred.
The program you are writing will use a combination of polling and interrupt
driven inputs. The switches and function variable will be polled every 50 ms.
The value of the switches will be displayed on the LEDs, and the value of the
function variable will determine which, if any, peripheral should be tested.
The pushbuttons on the DE board are represented by a 4-bit parallel I/O (PIO)
peripheral called buttons in the Nios II reference design that you are using for
this tutorial. The buttons PIO has been configured to generate an interrupt
whenever any pushbutton is pressed and released.
To support interrupts you first must create a function that will execute when an
interrupt occurs. This function is called an interrupt service routine (ISR). ISRs
should generally be very short and execute quickly. Add the function
buttons_isr as shown in Figure 16.12. The ISR function here reads the value of
the PIO’s edge capture register and stores it in the function variable. Next, it
resets the edge capture register and IRQ mask register to allow the next
interrupt to be captured and read properly.

static void buttons_isr(void* context, alt_u32 id) {
 volatile int *function = (volatile int*) context;

 *function = IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTONS_BASE);
 IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTONS_BASE, 0);
 IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTONS_BASE, 0xF);
}

Figure 16.12 This is the interrupt service routine for the pushbuttons.

In your main function, you need to register your interrupt service routine and
set the pushbuttons’ IRQ mask register to allow interrupts to be captured. Add
the two following lines before the while loop in your main function:

alt_irq_register(BUTTONS_IRQ, (void *) &function, buttons_isr);
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTONS_BASE, 0xF);

16.11 Accessing Parallel I/O Peripherals
Macros are included in the altera_avalon_pio_regs.h file that read and write
from the control and data registers in PIO components. You have already used
these macros in the pushbutton’s interrupt service routine to read and write the
edge capture register and IRQ mask register. Now, you need to use these
macros to read the values from the dipswitches and write them to the LEDs.
Add the following two lines immediately above the usleep(50000) line in your
main function:

switches = IORD_ALTERA_AVALON_PIO_DATA(SWITCHES_BASE);

336 Rapid Prototyping of Digital Systems Chapter 16

IOWR_ALTERA_AVALON_PIO_DATA(LEDS_BASE, switches);

You will also need to add a declaration for the integer variable switches to your
main function.

void lcd_init(void) {

 /* Set Function Code Four Times -- 8-bit, 2 line, 5x7 mode */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x38);
 usleep(4100); /* Wait 4.1 ms */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x38);
 usleep(100); /* Wait 100 us */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x38);
 usleep(5000); /* Wait 5.0 ms */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x38);
 usleep(100);

 /* Set Display to OFF */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x08);
 usleep(100);

 /* Set Display to ON */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x0C);
 usleep(100);

 /* Set Entry Mode -- Cursor increment, display doesn't shift */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x06);
 usleep(100);

 /* Set the cursor to the home position */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x02);
 usleep(2000);

 /* Clear the display */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x01);
 usleep(2000);
}

Figure 16.13 This is the LCD initialization function.

16.12 Communicating with the LCD Display (DE2 only)
The LCD display on the DE2 board can be treated similarly to a memory
device. However, there are some additional initialization commands that must
be sent to the LCD display that are not typical memory transactions. LCD
initialization commands vary depending on the LCD controller chip that is on a
particular LCD display. The manufacturer’s datasheet will detail the proper
initialization procedure their LCD displays. The initialization routine for the
LCD display that ships with the DE2 board is shown in Figure 16.13. Add this

 Tutorial III: Nios II Processor Software Development 337

routine to your C source file. Also, add a call to this function in your main
function preceding the line of code that calls the test_lcd function.
The code for test_lcd is shown in Figure 16.14. You will notice that this code
expects several constants to be defined. Add definitions for the following
constants in your rpds_de_test.h header file:

• LCD_WR_COMMAND_REG = 0
• LCD_WR_DATA_REG = 2

The main function in your C source file should now be complete and look
similar to the code in Figure 16.15. Note that a few printf statements have been
added to provide the user with the program’s status while executing.

alt_u32 test_lcd(void) {
 int i;
 char message[17] = "Counting... ";
 char done[12] = "Done! ";

 /* Write a simple message on the first line. */
 for(i = 0; i < 16; i++) {
 IOWR(LCD_BASE, LCD_WR_DATA_REG, message[i]);
 usleep(100);
 }
 /* Count along the bottom row */
 /* Set Address */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0xC0);
 usleep(1000);
 /* Display Count */
 for(i = 0; i < 10; i++) {
 IOWR(LCD_BASE, LCD_WR_DATA_REG, (char)(i+0x30));
 usleep(500000); /* Wait 0.5 sec. */
 }

 /* Write "Done!" message on first line. */
 /* Set Address */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x80);
 usleep(1000);
 /* Write data */
 for(i = 0; i < 11; i++) {
 IOWR(LCD_BASE, LCD_WR_DATA_REG, done[i]);
 usleep(100);
 }
 return(0);
}

Figure 16.14 This is the code to test the LCD display.

338 Rapid Prototyping of Digital Systems Chapter 16

int main(void) {
 volatile int function = 0;
 alt_u32 switches, ret_val;

 printf("Welcome to the Nios II Test Program\n");

 alt_irq_register(BUTTONS_IRQ, (void *) &function, buttons_isr);
 IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTONS_BASE, 0xF);

 while(1) {
 switch(function) {
 case 0x1: /* Test the LCD display */
 printf("Testing LCD Display\n");
 lcd_init();
 ret_val = test_lcd();
 printf("...Completed.\n");
 break;
 case 0x2: /* Test the SRAM */
 printf("Testing SRAM\n");
 ret_val = test_sram();
 printf("...Completed with %d Errors.\n", ret_val);
 break;
 case 0x4: /* Test the Flash memory */
 printf("Testing Flash memory\n");
 ret_val = test_flash();
 printf("...Completed with %d Errors.\n", ret_val);
 break;
 case 0x8: /* Test the SDRAM */
 printf("Testing SDRAM\n");
 ret_val = test_sdram();
 printf("...Completed with %d Errors.\n", ret_val);
 break;
 default: /* Do nothing */
 break;
 }

 function = 0;

 switches = IORD_ALTERA_AVALON_PIO_DATA(SWITCHES_BASE);
 IOWR_ALTERA_AVALON_PIO_DATA(LEDS_BASE, switches);

 usleep(50000);
 }

 return(0);
}

Figure 16.15 This is the completed main function.

 Tutorial III: Nios II Processor Software Development 339

16.13 Testing SRAM
To test the SRAM, you will write a large number of values to memory and then
read back from the same memory locations to verify that the contents of
memory are what you expect. Since SRAM is currently being used for program
and data memory, accessing SRAM is straight-forward. Any array that is
created in a function will be stored in data memory (e.g., in SRAM). The code
for test_sram is shown in Figure 16.16. You will notice that this code expects
the constant value SRAM_MAX_WORDS to be defined. Add a definition for
this constant to your rpds_de_test.h header file and set it equal to 8000.
This test routine assumes that there is not a data cache memory present in the
Nios II system. If data cache is present, then declaring an array in a function
like test_sram would not ensure SRAM writes, because the data cache memory
could be used as a temporary buffer. Since this function is very short and the
array’s scope is internal to the function, it is highly likely that the array data
would never be written to SRAM. To avoid these potential issues, the reference
hardware design used in this tutorial does not include data cache.

THERE ARE SEVERAL WAYS TO BYPASS DATA CACHE IN THE NIOS II PROCESSOR. (1) CREATE A
BUFFER THAT IS LARGER THAN THE DATA CACHE TO FORCE AT LEAST SOME SRAM ACCESSES.
(2) USE SPECIAL MEMORY ACCESS INSTRUCTIONS (SUCH AS LWIO AND SWIO) IN THE NIOS II

INSTRUCTION SET THAT BYPASS DATA CACHE AND FORCE A MEMORY ACCESS.

alt_u32 test_sram(void) {
 alt_u32 i, val;
 alt_u32 errors = 0;
 alt_u32 buffer[SRAM_MAX_WORDS];

 /* Write data to SRAM */
 for(i = 0; i < SRAM_MAX_WORDS; i++) {
 buffer[i] = i + 1000;
 }
 /* Check output from SRAM */
 for(i = 0; i < SRAM_MAX_WORDS; i++) {
 if(buffer[i] != (i+1000))
 errors++;
 }
 return(errors);
}

Figure 16.16 This is the code to test the SRAM memory device.

340 Rapid Prototyping of Digital Systems Chapter 16

16.14 Testing Flash Memory
Flash memory is organized into blocks of data and is accessed in a different
manner than SRAM and SDRAM. The Nios II HAL interface includes memory
access functions for Flash devices that conform to the Common Flash Memory
Interface (CFI) standard. The functions alt_flash_open_dev, alt_read_flash,
alt_write_flash, and alt_flash_close_dev provide an interface that is very
similar to file I/O. These subroutines and more lower-level functions are all
declared in the sys/alt_flash.h header file.
Flash memory write operations happen at the block level meaning that to write
a block or any portion of a block (down to a single byte of data) requires the
entire block of data to be erased and overwritten. When writing to a partial
block of data, the user is responsible for reading the portion of the block that is
not to be overwritten, storing it, and passing it with the new data as a complete
block to be written. Also, keep in mind that Flash memory typically has a life
expectancy of 100,000 write cycles. Because of the overhead involved in
writing partial blocks of data and the finite number of write cycles for a given
Flash memory device, it is best to buffer data until a full block can be written to
Flash memory.
The code for test_flash is shown in Figure 16.17. The data to be written to
flash is buffered in the in_buff array located in data memory. Once is it full, the
entire buffer is sent to the alt_flash_write command which partitions it into
blocks of data and writes the full blocks to Flash memory. Depending on the
total length of the in_buff array the final block written may be a partial block,
but at least it will only get written once. You will also notice that this code
expects the constant value FLASH_MAX_WORDS to be defined. Add a
definition for this constant to your rpds_de_test.h header file and set it equal
to 1000.

 Tutorial III: Nios II Processor Software Development 341

alt_u32 test_flash(void) {
 alt_u32 i, errors = 0;
 alt_u32 in_buff[FLASH_MAX_WORDS], out_buff[FLASH_MAX_WORDS];
 alt_flash_fd* flash_handle;

 flash_handle = alt_flash_open_dev(FLASH_NAME);

 /* Create data buffer to write to Flash memory */
 for(i = 0; i < FLASH_MAX_WORDS; i++) {
 in_buff[i] = i + 1000000;
 }

 /* Write data to Flash memory */
 alt_write_flash(flash_handle, 0, in_buff, FLASH_MAX_WORDS*4);

 /* Read data from Flash memory */
 alt_read_flash(flash_handle, 0, out_buff, FLASH_MAX_WORDS*4);

 /* Check output from Flash memory */
 for(i = 0; i < FLASH_MAX_WORDS; i++) {
 if(out_buff[i] != (i+1000000))
 errors++;
 }

 alt_flash_close_dev(flash_handle);
 return(errors);
}

Figure 16.17 This is the code to test the Flash memory device.

16.15 Testing SDRAM
To test the SDRAM, write a large number of values to memory and then read
the same memory locations and verify that the contents of memory are the
expected values. To access the SDRAM on the DE board, a pointer to the
SDRAM memory space can be used. Once a pointer has been initialized to an
address in the SDRAM memory space, that pointer can be dereferenced like an
array to store values in successive SDRAM memory locations. This method of
accessing memory would use the data cache if it were present (which it is not in
the reference example). If you are using a Nios II processor with data cache and
you want to access SDRAM directly (bypassing the data cache), then use you
need to use the IORD and IOWR macros as shown in the previous sections.
The code for test_sdram is shown in Figure 16.18. You will notice that this
code expects the constant value SDRAM_MAX_WORDS to be defined. Add a
definition for this constant to your rpds_de_test.h header file and set it equal
to 1000000.

342 Rapid Prototyping of Digital Systems Chapter 16

alt_u32 test_sdram(void) {
 alt_u32 i;
 alt_u32 errors = 0;
 alt_u32 *buffer = (alt_u32 *)SDRAM_BASE;

 /* Write data to SDRAM */
 for(i = 0; i < SDRAM_MAX_WORDS; i++) {
 buffer[i] = (i + 1000000);
 }

 /* Check output from SDRAM */
 for(i = 0; i < SDRAM_MAX_WORDS; i++) {
 if(buffer[i] != (i+1000000))
 errors++;
 }
 return(errors);}

Figure 16.18 This is the code to test the SDRAM memory device.

Your C source and header files should now be complete. Figure 16.19 shows
the final rpds_de_test.h header file, and Figure 16.20 shows the final
rpds_de_test.c file. Notice that compiler directives have been put around code
that refers to the LCD and is specific to the DE2 board. These directives allow
this code to compile for either the DE1 or DE2 boards.

#ifndef _RPDS_DE_TEST_H_
#define _RPDS_DE_TEST_H_

#include <stdio.h>
#include <unistd.h>
#include "system.h"
#include "alt_types.h"
#include "sys/alt_irq.h"
#include "sys/alt_flash.h"
#include "altera_avalon_pio_regs.h"

/* LCD constants */
#ifdef LCD_NAME
 #define LCD_WR_COMMAND_REG 0
 #define LCD_WR_DATA_REG 2
#endif

/* Memory constants */
#define SRAM_MAX_WORDS 8000
#define FLASH_MAX_WORDS 1000
#define SDRAM_MAX_WORDS 1000000

#endif //_RPDS_DE_TEST_H_

Figure 16.19 This is the final copy of the rpds_de_test.h header file.

 Tutorial III: Nios II Processor Software Development 343

#include "rpds_de_test.h"

static void buttons_isr(void* context, alt_u32 id) {
 volatile int *function = (volatile int*) context;

 *function = IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTONS_BASE);
 IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTONS_BASE, 0);
 IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTONS_BASE, 0xF);
}

#ifdef LCD_NAME
void lcd_init(void) {
 /* Set Function Code Four Times -- 8-bit, 2 line, 5x7 mode */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x38);
 usleep(4100); /* Wait 4.1 ms */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x38);
 usleep(100); /* Wait 100 us */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x38);
 usleep(5000); /* Wait 5.0 ms */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x38);
 usleep(100);
 /* Set Display to OFF */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x08);
 usleep(100);
 /* Set Display to ON */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x0C);
 usleep(100);
 /* Set Entry Mode -- Cursor increment, display doesn't shift */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x06);
 usleep(100);
 /* Set the cursor to the home position */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x02);
 usleep(2000);
 /* Clear the display */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x01);
 usleep(2000);
}

alt_u32 test_lcd(void) {
 int i;
 char message[17] = "Counting... ";
 char done[12] = "Done! ";

 /* Write a simple message on the first line. */
 for(i = 0; i < 16; i++) {
 IOWR(LCD_BASE, LCD_WR_DATA_REG, message[i]);
 usleep(100);
 }

Figure 16.20 This is the final copy of the rpds_de_test.c source file.

344 Rapid Prototyping of Digital Systems Chapter 16

 /* Count along the bottom row */
 /* Set Address */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0xC0);
 usleep(1000);
 /* Display Count */
 for(i = 0; i < 10; i++) {
 IOWR(LCD_BASE, LCD_WR_DATA_REG, (char)(i+0x30));
 usleep(500000); /* Wait 0.5 sec. */
 }

 /* Write "Done!" message on first line. */
 /* Set Address */
 IOWR(LCD_BASE, LCD_WR_COMMAND_REG, 0x80);
 usleep(1000);
 /* Write data */
 for(i = 0; i < 11; i++) {
 IOWR(LCD_BASE, LCD_WR_DATA_REG, done[i]);
 usleep(100);
 }
 return(0);
}
#endif

alt_u32 test_sram(void) {
 alt_u32 i, val;
 alt_u32 errors = 0;
 alt_u32 buffer[SRAM_MAX_WORDS];

 /* Write data to SRAM */
 for(i = 0; i < SRAM_MAX_WORDS; i++) {
 buffer[i] = i + 1000;
 }
 /* Check output from SRAM */
 for(i = 0; i < SRAM_MAX_WORDS; i++) {
 if(buffer[i] != (i+1000))
 errors++;
 }
 return(errors);
}

alt_u32 test_flash(void) {
 alt_u32 i, errors = 0;
 alt_u32 in_buff[FLASH_MAX_WORDS], out_buff[FLASH_MAX_WORDS];
 alt_flash_fd* flash_handle;

 flash_handle = alt_flash_open_dev(FLASH_NAME);

Figure 16.20 continued

 Tutorial III: Nios II Processor Software Development 345

 /* Create data buffer to write to Flash memory */
 for(i = 0; i < FLASH_MAX_WORDS; i++) {
 in_buff[i] = i + 1000000;
 }

 /* Write data to Flash memory */
 alt_write_flash(flash_handle, 0, in_buff, FLASH_MAX_WORDS*4);

 /* Read data from Flash memory */
 alt_read_flash(flash_handle, 0, out_buff, FLASH_MAX_WORDS*4);

 /* Check output from Flash memory */
 for(i = 0; i < FLASH_MAX_WORDS; i++) {
 if(out_buff[i] != (i+1000000))
 errors++;
 }

 alt_flash_close_dev(flash_handle);
 return(errors);
}

alt_u32 test_sdram(void) {
 alt_u32 i;
 alt_u32 errors = 0;
 alt_u32 *buffer = (alt_u32 *)SDRAM_BASE;

 /* Write data to SDRAM */
 for(i = 0; i < SDRAM_MAX_WORDS; i++) {
 buffer[i] = i + 1000000;
 }
 /* Check output from SDRAM */
 for(i = 0; i < SDRAM_MAX_WORDS; i++) {
 if(buffer[i] != (i+1000000))
 errors++;
 }
 return(errors);
}

int main(void) {
 volatile int function = 0;
 alt_u32 switches, ret_val;

 printf("Welcome to the Nios II Test Program\n");
 alt_irq_register(BUTTONS_IRQ, (void *) &function, buttons_isr);
 IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTONS_BASE, 0xF);

Figure 16.20 continued

346 Rapid Prototyping of Digital Systems Chapter 16

 while(1) {
 switch(function) {
 case 0x1: /* Test the LCD display */
 #ifdef LCD_NAME
 printf("Testing LCD Display\n");
 lcd_init();
 ret_val = test_lcd();
 printf("...Completed.\n");
 #else
 printf("No LCD Component is Present\n");
 #endif
 break;
 case 0x2: /* Test the SRAM */
 printf("Testing SRAM\n");
 ret_val = test_sram();
 printf("...Completed with %d Errors.\n", ret_val);
 break;
 case 0x4: /* Test the Flash memory */
 printf("Testing Flash Memory\n");
 ret_val = test_flash();
 printf("...Completed with %d Errors.\n", ret_val);
 break;
 case 0x8: /* Test the SDRAM */
 printf("Testing SDRAM\n");
 ret_val = test_sdram();
 printf("...Completed with %d Errors.\n", ret_val);
 break;
 default: /* Do nothing */
 break;
 }
 function = 0;
 switches = IORD_ALTERA_AVALON_PIO_DATA(SWITCHES_BASE);
 IOWR_ALTERA_AVALON_PIO_DATA(LEDS_BASE, switches);
 usleep(50000);
 }
 return(0);
}

Figure 16.20 continued

16.16 Downloading the Nios II Hardware and Software
Projects

To execute your software on a Nios II processor, you must configure the FPGA
with the Nios II hardware reference design and then you can download the
compiled program code to the processor’s program memory.
Connect the USB cable. Verify that the Run/Prog switch on the DE board is set
to Run, and then turn on the DE board. Select Tools D Quartus II
Programmer… to configure the FPGA. When the Quartus II Programmer
appears, click on Add File… and select the rpds16.sof file from your project
directory. Click Open to add the selected file to the download chain. Check the

 Tutorial III: Nios II Processor Software Development 347

Program/Configure box on the row with your configuration file on it, and
click Start to begin hardware configuration.
Return to the Nios II IDE window. From the Nios II IDE window, right click
the rpds_de_test item in the Nios II C/C++ Projects pane and select Build
Project from the drop-down menu. This will begin a full compilation of all
libraries in your project.
IMPORTANT: In the reference hardware design, SW9 is used as the Nios II
processor’s reset signal. Before code can be downloaded to the processor, it
must be brought out of reset by setting SW9 in the up (or on) position.
To download the compiled code to the Nios II processor executing on the
FPGA, right click the rpds_de_test item in the Nios II C/C++ Projects pane
and select Run As D Nios II Hardware. If the run settings dialog box appears,
click the Run button to close this box.

16.17 Executing the Software
Once the program code has been downloaded to the Nios II processor’s
program memory (SRAM in this configuration), your code should
automatically start executing. As a part of the normal program download, the
Nios II IDE verifies that the code in program memory is the same as
downloaded program before program execution begins. If there are any
problems with downloading your program then the processor is stalled and a
message that alerts you to this fact appears in the Console pane in the bottom
right-hand side of the Nios II IDE window. If this happens, verify that SW9 is
in the up (on) position and then right click the rpds_de_test item in the Nios II
C/C++ Projects pane and select Run As DNios II Hardware again.
Once your program begins executing, the Nios II IDE’s Console pane becomes
a standard input/output terminal connected to your processor via the JTAG
UART device and cable. Press each of the four pushbuttons in turn. A different
device will be tested when each button is pressed and released. Look at the text
in the Console pane to verify that the proper test is being executed.
Change the switches’ value and verify that the appropriate LEDs light.

 ALL SOURCE FILES FOR THIS NIOS II SOFTWARE REFERENCE DESIGN

 CAN BE FOUND ON THE DVD IN THE \DEX\CHAP16 DIRECTORY.

16.18 For additional information
This chapter has provided a brief overview of Nios II Software development.
Additional information can be found at Altera’s website (www.altera.com) in
the Nios II Software Developer’s Handbook and at the Nios Community forum
(www.niosforum.com).

348 Rapid Prototyping of Digital Systems Chapter 16

16.19 Laboratory Exercises
1. Write a C program to blink the eight green LEDs in a reversing shift pattern on the DE

board. After the last LED in each direction turns on, reverse the direction of the shift.
Run and demonstrate the program on the DE board. Recall that C supports shift
operations (“<<” and “>>”) and you will need a time delay in your code to see the LEDs
blink.

2. Write a C program that displays a count of the seconds that the program has been running
in the LCD display on the DE2 board or on the seven-segment displays on the DE1
board. Demonstrate the program on the DE board.

3. Expand the C program in the previous problem to display the elapsed time in hours,
minutes, and seconds on the LCD (or seven-segment displays). Have one pushbutton
reset the time to zero and another pushbutton start and stop the timer just like a
stopwatch.

4. Memory test programs cannot test all possible patterns. Research the various algorithms
widely used in more thorough memory test programs and write your own more advanced
memory test program for SRAM. Most memory test programs use several algorithms to
check for different types of faults. Execute the test code from SDRAM.

5. Write a retro version of the 1970’s classic kill the bit computer game for the DE board.
The goal in the kill the bit game is to turn off all of the four LEDs using the four
pushbuttons. The game starts with an initial non-zero pattern displayed in the LEDs. The
pattern constantly does a circular shift moving through the LEDs in a loop with a time
delay to slow down the shifts. If you hit one of the four pushbuttons exactly when the the
same number LED is turned on, it will turn off one LED in the pattern. If you hit a
pushbutton and it’s LED is off another LED turns on.

Here is how the program works. Each time just before the pattern shifts, the pattern is bit-
wise exclusive or’ed with one input sample from the pushbuttons to generate a new
pattern. When both the pushbutton is pushed and its corresponding bit in the pattern are
High, one less bit will be High in the new pattern after the exclusive or (i.e., 1 xor 1 is 0).
After the shift, one less LED will be turned on since there is one less “1” in the new
pattern. If your timing is off and the LED is not turned on when you hit the pushbutton, a
new high bit will be generated in the pattern (i.e., 1 xor 0 is 1). When this happens, the
new “1” bit in the pattern lights another LED. Note that you need a “1” when a
pushbutton is pressed and a “1” to turn on an LED for the xor function to work.

Display the elapsed time in the LCD display (or seven-segment displays) and stop the
time display when a player wins the game (turns out all LEDs). Adjust the shift time
delay for reasonable game play. Blink all of the LEDs when a player wins. If you want a

 Tutorial III: Nios II Processor Software Development 349

more challenging game, use a pattern and shift register larger than four bits and just
display four bits at a time in the LEDs.

6. Port an interesting C application program to the Nios II processor. Execute the
application from SDRAM.

