CHAPTER 17

Tutorial IV: Nios 11
Processor Hardware
Design

Altera SOPC Builder - nios32.sopc (C:\altera\qdesigns\rpds17\nios32.s0pc)
Edt Modue System View Iools MNosl Help
System Corterts | System Generation

3 Atera SOPC Builder

Target
¥ Create new component)

Nios Il Processor Device Family:| Cyclone v Name Source Pipeine
+-Bridges and Adapters el [Entarnal O ‘
#-Intertace Protocols
£ Memories and Memory Controllers
Peripherals
PLL
+-University Program DE1 Board Use Connec Module Name Description Clock Base End I
#- Universtty Program DE2 Board B cpu Nigs I Processor
+- UP3-Development Ki — instruction_master ‘Avalon Master cik

— data_master Avalon Master IRQ O IRQ 31

M flag_debug_module |Avalon Slave 001440800 0x01440££5
=] —— B jtag_uart JTAG UART clk 0x01441090 0x01441057
= [B vart UART (RS-232 Serial Port) clk 0%01441000 |0x0144101¢
] ~—— B timerd Interval Timer clk 0x01441020 0x0144103¢
=] [—— B buttons PIO (Parallel 110} clk 0x01441050 |0x0144105¢
¥ —— @ switches PIO (Paraliel 110) chk 0x01441060 0x0144106f
= ——| & leds PIO (Parallel 110) clk 0301441070 |0x0144107£
2] E ext_bus \Avalon- Tristate Bridge

[—— avalon_slave Avalon Slave ok 0x00000000 0x00000000

tristate_master Avalon Tristate Master

B flash Flash Memory (CF) ol 0x01200000 (0x0L3I£LELE
= B sram SLS_UP3_SRAM 0501420000 0x0143£ €€
=] B led SLS Tri-State 16x2 Cheracter LCD ok 0x01441080 |0x0144108¢
[] | =@ sdram SORAM Cortroller clk 0500800000 D00 FEEEEE

‘N 4 Address Map.

Warning buttons: PIO inputs are not hardwired in test biench. Undefined values will be read from PIO inputs during simulstion
Warning: switches: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation
@ Info: flash: Flash memory capacity: 2.0 MBytes (2097152 bytes)

Help | Next b

SOPC Builder is a GUI-based hardware design tool used to configure the Nios II
processor core options and to design bus and I/O interfaces for the processor.

352

Rapid Prototyping of Digital Systems Chapter 17

17 Tutorial IV: Nios Il Processor Hardware Design

Designing systems with embeddeded processors requires both hardware and
software design elements. A collection of CAD tools developed by Altera enable
you to design both the hardware and software for a fully functional,
customizable, soft-core processor called Nios II. This tutorial steps you through
the hardware implementation of a Nios Il processor for the DEl and DE?2
boards, and Tutorial IIlI (in the preceding chapter) introduces the software
design tools for the Nios II processor.

Upon completion of this tutorial, you will be able to:

Navigate Altera’s SOPC Builder (Nios II processor design wizard),
Generate a custom Nios II processor core,
Create a PLL that supplies a clock signal for the on-board SDRAM, and

Specify the top-level pin assignments and project settings necessary for
implementing the Nios processor on the DE boards.

THE DVD CONTAINS A VERSION OF CHAPTERS 16 AND 17 FOR THE
UP 3 BOARDS.

17.1 Install the DE board files

Run the installation program for Altera’s University Program IP Library. This
program can be found on the DVD at \Altera_Software\UP_IP_Library.exe.

Specify the source and categories of assignments to import. Click LogicLock Import File Assignments
to select LogicLock Import File(s).

Assignment source
Categories. ..
& File name: [E.:’booksofl_fefde2f‘chap1 7/de2 qgsf

~ Advanced..

[v Copy existing assignments into rpds17 qsf bak before importing

Cancel |

Figure 17.1 Import the default pin and project assignments for the DE board.

17.2 Creating a New Project

Create a new Quartus II project as illustrated in Tutorial I (see Section 1 of
Chapter 1). Use the project name rpdsl7 and create a top-level Block
Diagram/Schematic file named rpds17.bdf.

Tutorial IV: Nios Il Processor Hardware Design 353

Import the pin assignments and project settings file from the DVD by choosing
Assignments @Import Assignments.... Enter the full path for the
booksoft_fe\de2\chap17\de2.qsf file located on the DVD that came with this
book as shown in Figure 17.1. (If you are using a DE1 board, then you must use
the booksoft fe\del\chapl17\del.qsf file located on the DVD.) Click on the
Advanced button and verify that the settings match the dialog box in Figure
17.2. If different settings are used, then all of the pin and project assignments
may not be made correctly, and downloading your project to the DE board
could damage it. When the settings are correct, click OK to exit the dialog box.
Click OK in the Import Assignments dialog box to import the settings.

Advanced Import Settings @

Import

(+ linstance assignments from a lower-level entity including LogicLock assianments]

" Entity assignments from a lower-level entity (including IP cores)
" Global assignments from another project

Assighment types to import

[Global assignments

[v Instance assignments
[V Al assignments to ping
v Back-annotated routing
-

Import options

[v Imported assignments do not exist in current project

[V Imported assignments overwiite any conflicting assignments
™ Imported entity assignments replace curent entity assignments

[Imported LogicLock assignments update selected LogicLock region assignments
oK I Cancel |

Figure 17.2 It is important that the Advanced Import Options be set as shown here.

17.3 Starting SOPC Builder

A Nios II processor is created using the SOPC Builder wizard. Within this
wizard, you can specify the settings for the Nios II processor, add peripherals,
and select the bus connections, I/O memory mapping, and IRQ assignments for
the processor. To start the SOPC Builder, choose Tools ®SOPC Builder....

354 Rapid Prototyping of Digital Systems Chapter 17

I® Create New System E]

System Name:| niog32

Target HOL: () Werilog

() VHDL

Figure 17.3 Specifying the name of the Nios II processor for your system.

In the Create New System dialog box, enter the name nios32, and set the
Target HDL to VHDL as shown in Figure 17.3. Click OK to open SOPC
Builder with a blank project titled nios32.

The system settings in the top part of SOPC Builder window must be set for the
board and device that you are using. For the DE boards, the on-board clock
circuit generates several clock frequencies, including 24 MHz, 27 MHz, and
50 MHz. For this tutorial, the 50 MHz clock signal will be used; therefore,
enter 50.0 in the clk field. Select Cyclone II as Device Family. When these
settings have been entered, your SOPC Builder window should look similar to
the screen shot in Figure 17.4.

IT IS CRITICAL THAT THE FREQUENCY SELECTED IN THE SOPC BUILDER IS THE ACTUAL
CLOCK RATE USED IN YOUR HARDWARE DESIGN. IF A PLL IS USED TO GENERATE A DIFFERENT
N10S IT CLOCK SIGNAL, THEN THAT CLOCK FREQUENCY MUST BE ENTERED INTO THE SOPC
BUILDER BEFORE THE SYSTEM IS GENERATED. [F YOU MODIFY THE CLOCK FREQUENCY FOR
THE NIOS II PROCESSOR LATER, THEN YOU MUST RE-GENERATE THE NIOS II PROCESSOR WITH
THE UPDATED FREQUENCY SPECIFIED HERE.

Take a minute to familiarize yourself with the layout of the SOPC Builder
window. Along the left-hand side, there is an expandable list of components
organized by category that can be added to a Nios II system. Click on the “+”
symbol next to the items in this list to expand the list of components for each
category. If board support packages have been installed, then those
development boards will be listed as an item. Expanding these items will reveal
components that are specific to these boards. If you installed the design files as
discussed in Section 17.1, then the University Program DE1 Board and
University Program DE2 Board categories will appear.

Tutorial IV: Nios Il Processor Hardware Design 355

'™ Altera SOPC Builder - nios32.sopc (C:\alteralqdesignsirpds1 7\nios32.sopc) Q@E|
File Edit Modue System YView Tools Help

System Contents || System Generstion

£ Atera SOPC Builder Target Clock Settings

o9 Crest ...
N,;Es f p’::,:;::;pune Device Family:| Cyclone I Name Source MHz Pipeline
& Bridges and Adapters clk External 50.0 | O ‘

- Intetface Protocols

#-Memories and Memory Controllers
- Peripherals

E-PLL

- University Program DE1 Board

i University Program DE2 Board

it UP3-Developmert Kit

Use Module Name

Description

Clock

Base

End

[Address Map.

J

[Eitter..

@ Info: Your system is ready to generate

Figure 17.4 Beginning a Nios II design in the SOPC Builder.

17.4 Adding a Nios Il Processor

The first component that you will add to your Nios II processor design is the
processor core itself. In the list of components on the left-hand side of the
SOPC Builder, the Nios II Processor component. Click the Add... button at
the bottom of the component list.

When a component is added to your system, a dialog box will appear that
allows you to select options and set specific parameters for this particular
implementation. For the Nios II processor, the dialog box shown in Figure 17.5
will appear. This first selection will determine the general parameters of the
Nios II processor. Notice that there are three general configurations allowed
that vary in size, performance, and functionality. Select the middle
configuration, Nios Il/s as shown in Figure 17.5. In the Hardware Multiply
field, select Embedded Multipliers, and click Next to continue.

The next dialog box allows you set the size of the instruction cache in the Nios

II processor. Keep the default value (4 KB), and click Next twice to advance to
the JTAG Debug Module dialog box.

356 Rapid Prototyping of Digital Systems Chapter 17

"™ Nios Il Processor - cpu @

Nios II Processor

Version 7.1

Advanced Features JTAG Debug Module Customn Instructions

Select a Hios Il core:

ONios Il/fe |@Nios Il/s ONios IIf |
. RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone I Branch Prediction Branch Prediction
Hardware Multiphy Hardwvare Multiply
Tsystem: 50.0 MHZ Hardware Divide Hardware Divide
" Barrel Shifter
cpuict 0 Data Cache
Dynamic Branch Prediction
Performance at 50.0 MHz Up to 5 DMIPS Up to 25 DMPS Up to 51 DMIPS
Logic Usage 600-700 LEs 1200-1400 LEs 1400-1800 LEs
Memory Usage Twvo Mdks (or equiv.) Two M4Ks + cache Three M4Ks + cache
Hardhware Muliply | Empeddied Mutipliers v ‘ (] Hardware Divide
Reset Vector: Memory: + | Offset: ‘ 0x0
Exception Vector: Memory: I |Olfse1: 0x20

Warning: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

G o EEw)

Figure 17.5 Nios II supports three different general configurations. Select Nios II/s for this tutorial.

Nios II processors can be compiled with support for one of four different
debugging systems. The differences between them are shown in Figure 17.6,
along with the FPGA resources required to implement each type of debugging.
There is an order of magnitude difference in the number of logic elements
required to implement Level 4 debugging versus Level 1 debugging. This
difference is significant when compared to the overall size of the Nios II
processor. The Level 4 debugging system is two to three times larger then the
Nios II/s processor itself. Since the cost of FPGAs are largely based on their
size, the debugging logic will typically be removed before a design enters
production to minimize the number of logic elements, and thus the size of the
FPGA, required for the production quantities.

The full features of Level 3 and Level 4 debugging are only available when a
license from First Silicon Solutions, a third-party company, is purchased. The
availability of this license within your company or school along with the
complexity of your end system and the size of the FPGA available will be the
primary factors in determining which debugging system should be selected for

Tutorial IV: Nios Il Processor Hardware Design 357

a given system. For this tutorial, select Level 1 (the default), and click Next to
continue.

The final option in the Nios II processor configuration is the adding of custom
instructions. Nios II processors allow the addition of up to 256 custom
instructions into the processor’s data path. These can be used to further
customize your processor for a specific task. For this tutorial, no custom
instructions will be added. Click Finish to complete the Nios II configuration
for this system.

"™ Nios Il Processor - cpu EI

Nios II Processor

Version 7.1

Documentation

Advanced Fea

Select a debugging level:

O No Debugger [[@Lever OlLevel 2 | OLevel 3 | OLevela
JTAG Target Connection JTAG Target Connection JTAG Target Connection JTAG Target Connection
Download Software Download Software Download Software Download Software
Software Breakpoints Software Breakpoirts Software Breakpoirts Software Breakpoirts
2 Hardware Breakpoints 2 Hardvware Breakpoints 4 Hardware Breakpoints
2 Data Triggers 2 Data Triggers 4 Data Triggers
Instruction Trace Instruction Trace
Data Trace
On-Chip Trace On-Chip Trace
Off-Chip Trace
NolLEs 300-400 LEs 800-900 LEs 2400-2700 LEs 3100-3700 LEs
Mo Maks Two MdKs Two MdKs Four M4Ks Four M4Ks

Break Vector

Memory: Offset: 0x00000820

Advanced Debug Settings

0OC] Onchip Trace:

st t X gnal Help

Advanced debug licenses can be purchased from FS2. www fs2.com

Warning: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

Figure 17.6 Nios II supports four levels of debugging capabilities. Select Level 1 for this tutorial.

When the SOPC Builder window reappears, the Nios II processor will appear as
an added component in the main part of the window with the default module
name cpu. Also, a number of error and warning messages will appear in the
console at the bottom of the SOPC Builder window. These messages result
from there not being any defined memory in the system yet. When memory is
added in the next few sections, the messages will disappear.

Rapid Prototyping of Digital Systems Chapter 17

17.5 Adding UART Peripherals

Two UART peripherals will be defined for this system: a JTAG UART and an
RS-232 serial UART. The USB Blaster JTAG cable that is used to configure the
FPGA can also be used as a UART device after the FPGA is configured. (The
JTAG cable is also used as the communication channel between the PC and the
debugging logic selected for the Nios II processor.) The Nios II software
integrated development environment (IDE) uses the JTAG UART as the default
device for downloading your software instructions to the Nios II processor and
was used for that purpose in the previous tutorial on software design.

Add the JTAG UART device by expanding Interface Protocols = Serial.
Select JTAG UART and click Add.... When the JTAG UART Configuration
dialog box appears, click Finish to accept the default values for all fields and
add the component.

® UART (RS-232 Serial Port) - uart

“ UART
RS-232 Serial Port
Sersion 7.1)

Configuration Simulation

Baud rate

Baud rate (bps): | 115200 ™
Baud error: 0.08 %

["] Baud rate can be changed by software (Divisor register is writable)

Parity Data bits Stop bits
MNone v P v 1 v
Flow control

[[]Include CTSIRTS pins and control register bits

Streaming data (DM&) control

[[] Include end-of-packet register

Figure 17.7 These are the settings for the RS-232 UART device to be added to the Nios II system.

Older ByteBlaster II, ByteBlaster MV, and ByteBlaster JTAG cables did not
transmit the run-tiem serial data robustly; therefore, a second RS-232 UART
module was needed for run-time serial communication. The newer USB Blaster
JTAG interface used on the DE boards works quite well as a run-time UART
device. Thus, adding a second UART module is not required; however, adding

Tutorial IV: Nios Il Processor Hardware Design 359

an RS-232 UART module can be useful when debugging systems by providing
an additional communication channel.

Add the RS-232 UART peripheral by expanding Interface Protocols = Serial.
Select UART (RS-232 serial port) and click Add.... When the UART
configuration dialog box appears, set the options as shown in Figure 17.7. Click
Finish to add the component.

17.6 Adding an Interval Timer Peripheral

Most processor designs require at least one timer. This timer is used to delay
the processor, coordinate transactions, timestamp events, generate time slice
interrupts for an operating system scheduler, a watchdog timer, and more. The
Nios II timer peripheral is flexible; it has several options and three predefined
configurations. Add a full-featured interval timer to your Nios II processor by
expanding Peripherals & Microcontroller Peripherals. Select Interval Timer
and click Add.... When the timer configuration dialog box appears, set the
options as shown in Figure 17.8. Click Finish to add the component. In the
SOPC Builder, rename the timer module to timer0. The “0” is appended to the
timer name here to provide a consistent naming convention for your timers if
additional timers are added at a later time. It is not unusual for a processor to
have two or three timers — often of different configurations for specific uses.

'® |nterval Timer - timer

“ Interval Timer
Megotors Version 7.1

Parameter
Settings

Timeout period

Period: | 4 ms v
Hardware options
Presets: | Fup.featured v

Registers

Output signals

Figure 17.8 These are the settings for the interval timer device to be added to the Nios II system.

360 Rapid Prototyping of Digital Systems

Chapter 17

= PIO (Parallel 1/0) - pio

“ PIO (Parallel I/0)
Version 7.1

Width

Wictth (1-32 bits) : [4

Direction

= PIO (Parallel 1/0) - pio

“ PIO (Parallel I/0)

=

Megeters Version 7.1

dge capture register
Synchronously capture

(3) Rising edge

(O Bidwectional (tristate) ports O Faling edge

(® Input ports only AL

) Both input and output ports Internipt

O Output ports only Generale RQ
Q Level

(irterrupt CPU when any unmasked 11O pin is logic true)

@ Edge
(Irterrupt CPL when any unmasked bt in the edge-capture register
is logic true)

Wiarning: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO input Warning PIO inputs are not hardwired in test bench. Undefined values will be read from PIO input
o] 2| L *|
-

(a) (b)

Figure 17.9 These are the settings for the pushbutton PIO device to be added to the Nios II system.

17.7 Adding Parallel I/0 Components

Many processors require a certain amount of general-purpose I/O pins. These
pins can be attached directly to pushbuttons, switches, LEDs, and similar I/O
devices. They can also be attached to relatively simple or low bandwidth
interfaces that don’t have a large amount of overhead associated with data
transmission. Examples of these types of interfaces include PS/2, I°C, SPI, and
parallel data interfaces.

In addition, general-purpose I/O pins can be used to pass low-bandwidth data
between a custom VHDL or Verilog block and the Nios II processor. A faster
method of transferring data to a VHDL block is to create a custom peripheral
that can attach to the Avalon bus. Implementing a VHDL module that is
compliant with the Avalon bus specification is more involved and requires more
logic elements than using general-purpose I/0O pins, but it does provide a faster
more efficient interface.

General-purpose I/O pins are added to the Nios II processor with the PIO
(Parallel I/O) component. The PIO component has a number of options for
customizing general-purpose I/O interfaces. PIO interfaces can be specified as
input only, output only, or bidirectional. If bidirectional is selected here, then
the direction of each pin must be set in the direction register at run-time via
software. Input PIO interfaces can also have various interrupt and edge capture
capabilities including the capturing of either or both edges and edge or level-
sensitive interrupt triggers.

Tutorial IV: Nios Il Processor Hardware Design 361

For this tutorial, you will add three PIO components: one for the pushbuttons,
one for the switches, and one for the LEDs. First, add a PIO component for the
pushbuttons to your processor design by expanding Peripherals =
Microcontroller Peripherals. Select PIO (Parallel 1/0) and click Add....
When the PIO configuration dialog box appears, set the Width of the interface
to 4 bits (there are four pushbuttons) and set the Direction to Input ports only
as shown in Figure 17.9(a). Click Next to continue. On the next configuration
page, set the options as shown in Figure 17.9(b). Click Finish to add the
component. In the SOPC Builder, rename the PIO module to buttons.

Using the same procedure as above, add a second PIO component for the
dipswitches. The settings for the PIO devices are shown in Figure 17.10.
Rename this PIO module to switches.

'™ pI0 (Parallel I/0) - pio

“ PIO (Parallel I/0)

'8 pI0 (Parallel 1/0) - pio

“ PIO (Parallel I/0)
magocsrs Version 7.1

Input Options

dge capture register

Width (1-32bits): | g [J Synchronousty capture

Direction

O Bidirectional (tristate) ports

© Input ports only

() Both input and output ports Interrupt

© Output ports only [Generste RG

‘Warning PIO inputs are not hardwired in test bench. Undefined values will be read from PIO input Warning: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO input
£]| L& 15

() (b)

Figure 17.10 These are the settings for the switch PIO device to be added to the Nios II system.

Finally, add a third PIO component for the LEDs. On the first configuration
page, set 8 bits for the Width, and set the Direction to Output ports only.
When the PIO is an output-only device, the interrupt and edge-capture options
are not applicable. Rename this PIO module to leds.

17.8 Adding an SRAM Memory Controller

Add the SRAM memory controller to your Nios II processor by expanding
University Program DE2 Board. (The SRAM components are identical for
the DE1 and DE2 boards, so the SRAM component may be added from either
library.) Select SRAM and click Add.... When the SRAM configuration dialog
box appears, click Finish to add the component. This component does not have

362 Rapid Prototyping of Digital Systems Chapter 17

any configuration options; therefore, the SRAM component dialog box contains
information only. In the SOPC Builder, rename the SRAM module to sram.

17.9 Adding an SDRAM Memory Controller

There are three types of memory on the DE board: SDRAM, SRAM, and Flash.
Each type of memory requires is own unique memory controller and must be
added individually. Add the SDRAM memory controller by expanding
Memories and Memory Controllers @ SDRAM. Select SDRAM Controller
and click Add.... The SDRAM controller must be configured for the timing
requirements of the specific SDRAM brand and model being used. The
configuration and timing values requested here are typically available in the
datasheet for SDRAM ICs. For the SDRAM modules on the DE board, set the
options in the configuration dialog boxes to the values shown in Figure 17.11.
Click Finish to add the component. In the SOPC Builder, rename the SDRAM
controller module to sdram.

'™ SDRAM Controller - sdram '® SDRAM Controller - sdram

% SDRAM Controller SDRAM Controller
wepe_ Version 7.1 g Version 7.1
Timing
Presets: | ¢ysiom ~
CAS Iatency cyclkes: O1 Q2 ®3
Data width
Bts: |1 v
Inttislization refresh cycles: 2
Architecture Issue one refresh command every. 15625 us
Chip select. |1 w | Banks: |4 - Delay afier powerup, before intialization: 100 us
Duration of refresh command (t_rfc)
Address widths o e
Duration of precharge command
Row: [17 Column: [g e e R 20 =
ACTIVE to READ or WRITE delay (t_rcd) 20 =
Share pins via tristate bridge Access time (t_ac) 55 ns
[[] Cortroller shares dafdgmiaddr 1O pins Write recavery time (t_wr, no auto precharge). | 14 ns
Tristate bridge selection
Generic memory model {simulation only}
[]inciude a tunctional memory model inthe system testbench
Memory size = § MBytes
4134304 x 16
64 MBs
(a) (b)

Figure 17.11 These are the SDRAM controller settings for use with the SDRAM on the DE boards.

17.10 Adding the LCD Module (DE2 Board Only)

The DE2 board contains a Liquid Crystal Display (LCD) component. To
interface this display to the Nios II processor, add the LCD component to your

Tutorial IV: Nios Il Processor Hardware Design 363

Nios II processor by expanding Peripherals = Display. Select Character LCD
and click Add.... When the LCD component dialog box appears, click Finish
to add the component. This component does not have any configuration
options; therefore, the LCD component dialog box contains information only.
The LCD component will be added to the list of peripherals in your Nios II
processor.

17.11 Adding an External Bus

Multiple external devices can share the same address and data bus pins and
dramatically reduce the number of pins required on the FPGA. The Nios II
processor supports this type of bus sharing with its tristate bus components. On
many boards the SRAM, SDRAM, Flash, and even an LCD device can share a
signal external tristate bus. To accommodate the bidirectional data bus and
multiple devices on a single bus, an Avalon Tristate Bridge component must be
added. The Avalon tristate bridge creates a peripheral (tristate) bus to which
multiple memory controllers and other external components can be attached. It
also provides a seamless interface between the peripheral bus and the main
system bus. A conceptual drawing of this arrangement is shown in Figure
17.12. For the DE boards, the Flash device is the only peripheral attached to the
tristate bus. The SDRAM, SRAM, and LCD devices all attach directly to the
main system bus.

Nios 1T Timer UART

(bus master) (bus slave) (bus slave)

I S
L]

(bus slave) (bus slave) (hus slave)
valon Tri—state Bridgs
PIO PIO (bus master)
Peripheral Tri—state Bus
(bus slave) (bus slave) (bus sfave)
SRAM Flash LCD

Figure 17.12 This is a conceptual drawing of the bus configuration with the Tristate Bridge
connecting the main system bus and the shared peripheral bus.

Add the Avalon Tristate Bridge component by expanding Bridges and
Adapters @®Memory Mapped. Select Avalon-MM Tristate Bridge and click
Add.... There is only one option for this component: registered or not
registered. Select Registered and click Finish to add the component. In the
SOPC Builder, rename the bridge module to ext_bus.

364 Rapid Prototyping of Digital Systems Chapter 17

17.12 Adding Components to the External Bus

Once the Avalon tri-state bridge has been added, the peripherals that are going
to connect to the external peripheral bus can be added. First, add the Flash
memory controller by expanding Memories and Memory
Controllers =Flash. Select Flash Memory (CFI) and click Add.... When the
Flash memory configuration dialog box appears, set the options as shown in
Figure 17.13. In the SOPC Builder, rename the flash module to flash.

™ Flash Memory (CFI) - cfi_flash

'™ Flash Memory (CFI) - cfi_flash

“ Flash Memory (CFI) Flash Memory (CFI)
Megetors VeErsion 7.1 Version 7.1
Timing >
Presets: | Custom - setup: [1 wiait: [70 Hold: [1 Units: g 3
Size Awalon clock period is 20,0 ns.
Address WWidth (sis): [22 = Timing granularity is in units of &valon clock period
DstaWidth (bts): [3 Actusl setup time for read and write transfers: 20.0 ns
Actusl hold time for read and write transters: 80.0 ns
Actusl wail-state time for read and write transfers: 20.0ns
Create an interface to any industry-standard CF| (Cammon Flash Interface)-compliart
flash memory device. Select from a list of tested flash memories or provids nterface
and timing information for a CFl memory device which does not appear on the list
[3) Infe: Flash memory capacty: 4.0 MEytes (4184304 bytes) 3 Info: Flash memory capacty: 4.0 MBytes (4194304 bytes)

Figure 17.13 These are the Flash memory settings for use with the Flash on the DE boards.

17.13 Global Processor Settings

All of the necessary peripherals have been added now. The next step is to
configure some global settings for your processor.

To view and modify the bus connections in your processor, select View = Show
Connections Column. (If Show Connections Column is already selected, then
un-select it and select it again.) This will expand the cpu and ext_bus modules
in the table of peripherals and show the bus connections. The three buses are
displayed vertically. From left-to-right, the buses are the main system
instruction, main system data, and tri-state data bus. Notice that the UARTS,
timer, LCD, and PIO components are only attached to the system data bus since
they don’t normally interact with instruction memory. SRAM, SDRAM, and the
Avalon Tristate Bridge are connected to both the system instruction and system
data buses, because the memory devices can store both data and instruction
memory. Finally, the Flash memory device is unconnected. It must be manually
connected to the appropriate tristate bus. Hover your mouse over the
connections column just to the left of the flash module. An open circle will
appear on the tri-state data bus. Click on the open circle to connect the flash
module to the external tristate bus (a connection is denoted by a solid, filled-in
circle). The final SOPC Builder window should look like the screen shot in
Figure 17.14.

Tutorial IV: Nios Il Processor Hardware Design 365

'™ Altera SOPC Builder - nios32.sopc (C:\altera\qdesigns\rpds17\nios32.s0pc)
File Edt Mocule System View Tools MNosl Help

System Conterts | System Generation

FJ Attera SOPC Builder Target Clock Settings
¥ Creste new component
g I MH: Pipel
Nios Il Processor Device Family: Cyclone I v lame Source iz peline
Bridges and Adapters clk External 50.0 O |

&

interface Protocols
Memaries and Memory Cortroliers

E

#- Peripherals
#-PLL
&-Universtty Program DE1 Board Use Connec.. Module Name Description Clock Base End I
#-Universty Program DE2 Board 8 cpu Nios I Processor
-UP3Development Kit — instruction_master Avalon Master clk
data_master Avalon Master IRQ O IRQ 31
—C: ftaq_debug_module Avalon Slave 001900800 0x0LS00££E
[—— @ jtag_uart JTAG UART clk 0%01901080 0x01901087
l\—) uart UART (RS-232 Serial Port) clk 0x01901000 0x0150101¢
— timer0 Interval Timer clk 0x01901020 0x0150103¢
& buttons PIO (Parallel UO) clk 0301901040 0x0150104£
switches PIO (Parailel 1O} clk 001901050 0x0130105¢
leds PIO (Parallel IO) ik 0301901060 0x0150106¢
~ B sram SRAM clk 001880000 Ox0LSfEEFE
T B sdram SDRAM Controller clk 0300800000 Ox00ffff£fE
led Character LCD clk 0%01901070 0x0150107¢
E ext_bus \Avalon-iM Tristate Bridge
b avalon_slave Avalon Slave clk 0x00000000 0200000000
C Iristate_master \Avalon Tristate Master
flash Flash Memory (CFI) clk O0x01400000 OxOL7Ef£5f
a hd Address Map..] I Eier... I

\, Warring: buttons: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation
‘Warning switches: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.
@ Info: flash: Flash memory capacity. 4.0 MBytes (4194304 bytes)
To Do: cpu: Mo reset veclor has been specified for this CPU. Please parameterize the CPU 10 resolve this issue
To Do: cpu: Mo exception vector has been specified for this CPU, Please parameterize the CPU to resolve this issue

(ea) (] 4

Figure 17.14 This is the completed Nios II design in SOPC Builder.

The Nios II processor uses a memory-mapped I/O scheme for accessing
peripherals. Each component added to the system is assigned a unique set of
memory addresses. Any device or data registers needed for a particular
peripheral can be accessed by reading from or writing to its respective memory
address. In general, the specific memory address assignments do not matter as
long as the assigned memory address spaces do not overlap. If the Nios II
system is going to be a part of a legacy system, there may be some constraints
placed on the memory address assignments; however, there is nothing intrinsic
within the Nios II system that restricts the settings. For this tutorial, let SOPC
Builder make the memory assignments automatically by selecting System =
Auto-Assign Base Addresses. Next, select System = Auto-Assign IRQs to
have SOPC Builder automatically assign the IRQ values to the devices that
support interrupts.

17.14 Finalizing the Nios Il Processor

Now that the memory modules have been added, the Nios II processor
configuration can be completed. Select the cpu module by clicking on it and
then click the Edit... button. The Nios II Processor dialog box will appear
allowing you to modify the program memory device and beginning address. For
this tutorial, set the Reset Vector and Exception Vector to sram and keep the

366

Rapid Prototyping of Digital Systems

Chapter 17

default offsets as shown in Figure 17.15. Click Finish to save the new
processor settings.

"™ Nios Il Processor - cpu

K

Mogolors

Version 7.1

Nios II Processor

Advanced Features

Custom Instr

Documentation

&

Core Nios |l
Select a Hios |l core:
ONios Il/e |®Nios Ilfs ONios IIff
- RISC RISC RISC
Nios Il 32.bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone Branch Prediction Branch Prediction
Hardware Multiphy Hardware Multiply
fsystem: 48.0 MHZ Hardware Divide Hardware Divide
i Barrel Shifter
cpuiet 0 Data Cache
Dynamic Branch Prediction
Performance at 48.0 MHz Up to 5 DMIPS Up to 21 DMIPS Up to 47 DMIPS
Logic Usage 600-700 LEs 1200-1400 LEs 1400-1800 LEs
Memory Usage Twio M4Ks (or equiv.) Two M4Ks + cache Three M4Ks + cache
Harcware Mutioly: || ooic. Elements v | [[] Hardwvare Divide
Reset Yector: Memory: | syam « |Offset | gy 0x01420000
Exception Yector: Memory: | oo, w |Offset: | py2p 0x01420020
Cancel Next > || Einish

Figure 17.15 These are the processor configuration settings for the Nios Il processor.

In the SOPC Builder window, click the Next button. The System Generation
dialog box is the final group of settings. For this tutorial, you will not be
simulating the processor in ModelSim or other third-party simulation tool,
therefore, unselect the Simulation. Create simulator project files option.
Click the Generate button to generate the design files for your Nios II
processor. It will take 2-3 minutes to generate your Nios II processor. When it
completes, the console should contain a message that states that your processor
was generated successfully. If your system does not generate successfully,
study the error log display in the console, correct the problem, and re-generate
the Nios II processor. When you have successfully generated your Nios II
system, click the Exit button to close SOPC Builder.

17.15 Add the Processor Symbol to the Top-Level Schematic

When SOPC Builder closes, return to your blank top-level schematic window,
rpds17.bdf. Double click on a blank area of your empty top-level schematic

Tutorial IV: Nios Il Processor Hardware Design 367

file to add a component. In the Libraries pane of the Symbol dialog box,
expand the Project item and select the nios32 component. Click OK to add the
selected component. Click in the middle of schematic file to place your Nios
system.

17.16 Create a Phase-Locked Loop Component

SDRAM and the Nios II processor core operate on different clock edges. The
Nios processor uses the rising edge and SDRAM the falling edge. The SDRAM
would need a clock signal that is phase shifted by 180 degrees. An inverter
would do this, but the phase shift also needs to be adjusted a bit to correct for
the internal FPGA delays and the distance between the SDRAM and the FPGA
on the DE board. To create this SDRAM clock signal, a phase-locked loop
(PLL) component can be implemented on the FPGA. To create a PLL, use
Quartus II’s MegaWizard Plug-in Manager by selecting Tools ®MegaWizard
Plug-In Manager.... Click Next on page 1 of the wizard to create a new
component. On page 2, select the Installed Plug-Ins =1/0 = ALTPLL module
from the list. Enter the full path of your project directory followed by the
filename up3_pll into the output filename field. Complete the remaining fields
with the information shown in Figure 17.16. Click Next to continue.

MegaWizard Plug-In Manager [page 2a] E]

Which megafunction would you ke to customize? Whn:g device family will you be Cyclone Il ﬂ
Select a megafunction from the list below usngf
+ @ Arithmetic A Which lype of output file do you want to create?
+- @l Communications " AHDL
+ [DSP & WHDL
+ @ Gates
- & 10 ™ Verilog HOL
:JJ What name do you want for the gutput file? Browse...
/] ALTASMI_PARALLEL |C:\pour_project_directonyde_pl

-'1-] ALTCLKCTRL
+] ALTCLKLDCK

~] ALTDDIO_BIDIR

ra :ﬂgg:&?m I~ Retumn to this page for ancther create operation

Iz -

,| ALTDQ Note: To compile a pioject successfully in the Quartus | software,

_{__] ALTDQS your design files must be in the project directory, in the global user

] libraries specified in the Dptions dialog box [Tools menu), or a user
library specified in the User Libraries page of the Settings dialog

_,J box [Assignments menu)

A amves

] ‘Your cunent user library directonies are:
Global User Libraries:

j ALTPLL c:\alterah71sp1 \university_programicomponentsh

i

e

|

+ @l Interfaces v

Cancel | <§ack| Neut > I |

Figure 17.16 These are the initial settings for the ALTPLL module.

On page 3 of the MegaWizard manager, enter 50.00 MHz as the frequency of
the inclock0 input. Leave the other options set to their default values. Click
Next to continue. On page 4 of the MegaWizard manager, un-select all
checkmarks. Click Next twice to advance to page 6.

On page 6 of the MegaWizard manager, enter a Clock phase shift of -54 deg
(-3 ns). Leave the other options set to their default values. Click Finish to skip

368

Rapid Prototyping of Digital Systems Chapter 17

pages 6 and 7 and jump to page 8 of the MegaWizard manager. Click Finish
again to complete the MegaWizard manager and create the files for the PLL
component.

Double click on a blank area of the top-level schematic file. Select the Project
=up3_pll module and add it to your top-level schematic as shown in the
completed schematic in Figure 17.17.

IMPORTANT NOTE: Different or future versions of the Altera software may
generate slightly different hardware time delays for the SDRAM clock. If you
experience SDRAM errors after running memory tests on your final design or
the program downloads to SDRAM do not verify, and after double checking
that everything else is correct in your design, the PLL phase shift may need to
be adjusted a small amount. Most designs seem to fall within about 30 degrees
of -54 degrees. This corresponds to a time delay adjustment of only 1 or 2 ns.

17.17 Complete the Top-Level Schematic

To complete the top-level schematic, add the input, output, and bi-directional
pins (and pin names) shown in Figure 17.17. Also, complete the connections
between the two top-level components as shown in the figure. Finally, if you
added the LCD component for the DE2 board, add a VCC symbol and connect
it to the LCD_ON and LCD_BLON output pins to tie them High. If you have
trouble reading the signal names in the figure, the file is available on the DVD.

17.18 Design Compilation

Verify that the pin assignments discussed in Section 17.2 were made correctly
by going to Assignments ®Pins. A long list of pin numbers and names
corresponding to the pin names you entered into the top-level schematic should
appear. If it does not, then repeat the steps in Section 17.2 to import the pin
assignments.

Verify that the global assignments discussed in Section 17.2 were made
correctly by going to Assignments = Device... ®Device & Pin Options &
Unused Pins.

The Reserve all unused pins option should be set to As input tri-stated. If it
is not, then select this option. Click OK until all dialog boxes are closed.

Select Processing = Start Compilation to begin compiling your project.

Tutorial IV: Nios Il Processor Hardware Design 369

|

de_pll I 1 e N W
OED_{ inclkp fraquencsy: 50.000 hHz £l T T T
Operation hiade: Mormal
[Fatic])
inst1 Cyelone 11
bl e P
ningd2
i o
HE RESES LR
RUSHBUTTONE 0] i n_port _to_the_uttans(3..0]
address_to_the_flash[21..0] T e LA H AR o]
data_to_and_from_the_flash[7. 0] pe—ils———; FLASH_DATA..0]
read_n_to_the_flash TP~ FLASH_OE N
zelect_n_to_the_flash SUTPUT — FLASH CE N
write_n_to_the_flash UTRUT - FLASH_WE_N
LCD_E_from_the_lcd S T EN
LCD_RS_fram_the_lod ITRUT — LCD_RS
LCO_Rw_fram_the_lod AUTRUT —— LCD_ R
LCD_data_to_and_from_the_|cd[7. 0] |je—m"t b =
out_port_from_the_leds[T 0] e e = o])
z=_addr_from_the_sdram[11..0] AUTRUT _—— SDRAV_ADDR[TT.0]
zs_ba_from_the_sdram[1..0] .:.”TPUT [SORAMBA[D]
zs_cas_n_from_the_sdram X
7s_cke_from_the_sdram AUTPUT —— SORAM CKE
z5_cs_n_from_the_sdram ATPUT - SORAM_CS_N
zz_do_to_snd_from_the_sdram[15.0] jeeb—"tl -~ SDRA_DATAS. f
z5_dgm_from_the_sdram[1 0] CUTPUT —— SORAM DOM[T.0] ¢
zg_ras_n_from_the_sdram SUTPUT — SORAMRAS_H |
zz_we_n_from_the_sdram UTRUT —— SORAWMNE_H
SRAM_ADDR_from_the_sram[17..0] TEUT_ — SRAW_ADDR[I7. 0]
SRAM_CE_M_from_the_sram "'{1"—"" — ?ff’M_CE_N :
SRAM_DO_to_snd_from_the_sram[15..0] |je—_RlE SRA_DATA[TS..0]
SRAM_LE_M_from_the_sram UTPUT _—— SRAb_LE_N
SRAM_CE_M_from_the_sram AUTPUT __—— SKHAW_OE_N
SRAM_UB_M_from_the_sram CUTRUT SR UB_N
SRAM_WE_M_from_the_sram CUTPUT —— SRAW_IWE_N
CEWITEHES. O] T W, in_port_to_the_switches(7..0]
rrd_to_the_uart txd_from_the_uart LUTRUT _ —— UART_THD
inst

Figure 17.17 The final top-level schematic for the Nios II system on a DE2 board is shown here. The

DE1 board schematic is similar except the LCD bus signals will not be present.

17.19 Testing the Nios Il Project

To fully test your Nios II project, you will need to write a software program to
run on the Nios II processor that tests each component. To complete this task,
refer to the previous chapter, which contains Tutorial Ill: Nios II Processor
Software Design.

You might want to try your test program from the previous chapter first to
verify that memory still works in your new design. After switching to a new
workspace for the new project in Nios II IDE, create a blank project with a new
system library that is based on your Nios II processor design. You can then

370

Rapid Prototyping of Digital Systems Chapter 17

import an existing software project into a new design project’s software
directory using File @®Import. You will need to clean and rebuild the software
project since the system library changes for each new hardware design.
IMPORTANT: In the reference hardware design, SW9 is used as the Nios II
processor’s reset signal. Before code can be downloaded to the processor, it
must be brought out of reset by setting SW9 in the up (or on) position.

ALL SOURCE FILES FOR THIS N10S I HARDWARE REFERENCE DESIGN

CAN BE FOUND ON THE DVD IN THE \DEX \CHAP17 DIRECTORY.

17.20 For additional information

This chapter has provided a brief overview of Nios II hardware development.
Additional information can be found at Altera’s website (www.altera.com) in
the Nios Il Processor Reference Handbook, Embedded Peripherals Handbook
and Hardware Development Tutorial. Nios Il components for the DE boards
and other reference designs can be found at Altera’s University Program
website. The Nios Community Forum (www.niosforum.com) also contains
useful information and downloads for Nios II projects.

17.21 Laboratory Exercises

1. Add two 8-bit PIOs to the Nios II hardware design that connect to the 5 volt I/O pins on
the board’s header connector. Setup one port for input and one port for output. Connect
the PIO port’s I/O pins to eight input pins and eight output pins on the header. This is a
handy way to interface external devices and sensors like those used in the FPGA robot
projects in Chapter 13 to the FPGA board’s Nios II processor.

2. Add a PIO port to the Nios II hardware design and use the PIO port’s I/O bits to design

an I°C hardware interface to the FPGA board’s real-time clock chip. Software will be
needed to send I°C commands, the PIO port just provides a hardware interface to the I*C
SDA and SLC bits (see Section 12.4).

3. Add a parallel port to the Nios II hardware design. Use two 8-bit ports, one for data and

one for status and control bits. Connect the PIO port’s I/O bits to the parallel port
connector on the FPGA board. Software will be needed to monitor and control the
handshake lines (see Section 12.1) when connecting to a device like a parallel printer.

4. Add an SPI interface to the Nios II hardware design and use it to interface to an external

SPI device connected to one of the FPGA board’s expansion connectors.

Tutorial IV: Nios Il Processor Hardware Design 371

10.

11.

12.

Implement one of the FPGA robotics projects from Chapter 13 using a Nios II processor
running C code. See problem 1 for robot interface suggestions.

Design an automatic setback HVAC thermostat using the FPGA. Interface a temperature
sensor to the FPGA. Some temperature sensors are available with digital outputs that
would not require a separate analog-to-digital IC. Display the current time, temperature,
heat, fan, and A/C status, and the temperature settings in the LCD. Use the pushbuttons
to change the temperature settings and setback times. Use the LEDs to indicate the heat,
A/C, and fan control outputs from the thermostat. You can heat the temperature sensor
with your finger to cycle the thermostat and cool it with ice or an aerosol spray can of
dust off cleaner.

Interface a PS/2 keyboard or mouse to the Nios II processor using PIO ports. Write
software to demonstrate the new keyboard or mouse interface. Display the output on the
LCD or the UART. There are two major options to consider, use the keyboard and mouse
cores from Chapter 11 or do everything in software.

Use the video sync core and character generation ROM from Chapter 10 to add a video
text display to the Nios processor. Add a dual port memory to store a screen full of
characters. Write charcters to the dual port memory from the Nios II processor using PIO
ports added to the Nios II design. The video system constantly reads the characters out of
the dual port memory and then uses the character generation ROM to generate the video
display. Write a software driver for the video display and attach a monitor to the FPGA’s
VGA connector to demonstrate your design.

After solving the previous two problems, develop software for a video game that uses the
mouse or keyboard for input and displays output on the monitor. If you need graphics for
your game, consider replacing the character memory and text display with a larger
memory containing only pixels used in a graphics display. Keep in mind that the internal
FPGA memory is limited.

Add a custom instruction to the Nios II processor designed to speed up a particular
application area. See the Nios Il Custom Instruction User Guide. Demostrate the speedup
obtained with the new instruction by running the application with and without the new
instruction.

Interface the dual port video display memory used in one of the earlier problems directly
to the Avalon system bus instead of using PIO ports. See the Avalon Interface
Specification Manual.

Program the FPGA’s serial flash device so that your Nios II hardware design loads
automatically at power up. See Appendix E for instructions on programming the FPGA’s
serial flash configuration chip.

372 Rapid Prototyping of Digital Systems Chapter 17

13. Program a complete Nios II design into both Flash memories so that the FPGA board
loads both the FPGA hardware configuration data and the software from the two Flash
memories automatically at power up. See the Nios Il Flash Programmer User Guide and
study the section on how to port the Flash programmer to a new board type. A full
version Altera software license is required for Flash programming of Nios II program
code.

