CHAPTER 17

Tutorial 1V: Nios |11
Processor Hardware
Design

Altera SOPC Builder - nios32.sopc (C:\altera\qdesigns\rpds17\nios32.s0pc)
Edt Modue System View Iools MNosl Help
System Corterts | System Generation

3 Atera SOPC Builder

Target
¥ Create new component)

Nios Il Processor Device Family:| Cyclone v Name Source Pipeine
+-Bridges and Adapters el [Entarnal O ‘
#-Intertace Protocols
£ Memories and Memory Controllers
Peripherals
PLL
+-University Program DE1 Board Use Connec Module Name Description Clock Base End I
#- Universtty Program DE2 Board B cpu Nigs I Processor
+- UP3-Development Ki — instruction_master ‘Avalon Master cik

— data_master Avalon Master IRQ O IRQ 31

M flag_debug_module |Avalon Slave 001440800 0x01440££5
=] —— B jtag_uart JTAG UART clk 0x01441090 0x01441057
= [B vart UART (RS-232 Serial Port) clk 0%01441000 |0x0144101¢
] ~—— B timerd Interval Timer clk 0x01441020 0x0144103¢
=] [—— B buttons PIO (Parallel 110} clk 0x01441050 |0x0144105¢
¥ —— @ switches PIO (Paraliel 110) chk 0x01441060 0x0144106f
= ——| & leds PIO (Parallel 110) clk 0301441070 |0x0144107£
2] E ext_bus \Avalon- Tristate Bridge

[—— avalon_slave Avalon Slave ok 0x00000000 0x00000000

tristate_master Avalon Tristate Master

B flash Flash Memory (CF) ol 0x01200000 (0x0L3I£LELE
= B sram SLS_UP3_SRAM 0501420000 0x0143£ €€
=] B led SLS Tri-State 16x2 Cheracter LCD ok 0x01441080 |0x0144108¢
[] | =@ sdram SORAM Cortroller clk 0500800000 D00 FEEEEE

‘N 4 Address Map.

Warning buttons: PIO inputs are not hardwired in test biench. Undefined values will be read from PIO inputs during simulstion
Warning: switches: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation
@ Info: flash: Flash memory capacity: 2.0 MBytes (2097152 bytes)

Help | Next b

SOPC Builder is a GUI-based hardware design tool used to configure the Nios II
processor core options and to design bus and I/O interfaces for the processor.

354

Rapid Prototyping of Digital Systems Chapter 17

I® Create New System E]

System Name:| niog32

Target HOL: () Werilog

() VHDL

Figure 17.3Specifying the name of the Nios II processor for your system.

In the Create New Systemdialog box, enter the name nios32 and set the
Target HDL to VHDL as shown in Figure 17.3. Click OK to open SOPC
Builder with a blank project titled nios32.

The system settings in the top part of SOPC Builder window must be set for the
board and device that you are using. For the DE boards, the on-board clock
circuit generates several clock frequencies, including 24 MHz, 27 MHz, and
50 MHz. For this tutorial, the 50 MHz clock signal will be used; therefore,
enter 50.0 in the clk field. Select Cyclone Il as Device Family. When these
settings have been entered, your SOPC Builder window should look similar to
the screen shot in Figure 17.4.

IT IS CRITICAL THAT THE FREQUENCY SELECTED IN THE SOPC BUILDER IS THE ACTUAL

CLOCK RATE USED IN YOUR HARDWARE DESIGN. IF A PLL IS USED TO GENERATE A DIFFERENT
N10S IT CLOCK SIGNAL, THEN THAT CLOCK FREQUENCY MUST BE ENTERED INTO THE SOPC
BUILDER BEFORE THE SYSTEM IS GENERATED. [F YOU MODIFY THE CLOCK FREQUENCY FOR

THE NIOS II PROCESSOR LATER, THEN YOU MUST RE-GENERATE THE NIOS II PROCESSOR WITH

THE UPDATED FREQUENCY SPECIFIED HERE.

Take a minute to familiarize yourself with the layout of the SOPC Builder
window. Along the left-hand side, there is an expandable list of components
organized by category that can be added to a Nios II system. Click on the “+”
symbol next to the items in this list to expand the list of components for each
category. If board support packages have been installed, then those
development boards will be listed as an item. Expanding these items will reveal
components that are specific to these boards. If you installed the design files as
discussed in Section 17.1, then the University Program DE1l Board and
University Program DE2 Board categories will appear.

Tutorial 1V: Nios Il Processor Hardware Design 355

'™ Altera SOPC Builder - nios32.sopc (C:\alteralqdesignsirpds1 7\nios32.sopc) Q@E|
File Edit Modue System YView Tools Help

System Contents || System Generstion

£ Atera SOPC Builder Target Clock Settings

o9 Crest ...
N,;Es f p’::,:;::;pune Device Family:| Cyclone I Name Source MHz Pipeline
& Bridges and Adapters clk External 50.0 | O ‘

- Intetface Protocols

#-Memories and Memory Controllers
- Peripherals

E-PLL

- University Program DE1 Board

i University Program DE2 Board

it UP3-Developmert Kit

Use Module Name

Description

Clock

Base

End

[Address Map.

J

[Eitter..

@ Info: Your system is ready to generate

Figure 17.4Beginning a Nios II design in the SOPC Builder.

17.4 Adding a Nios Il Processor

The first component that you will add to your Nios II processor design is the
processor core itself. In the list of components on the left-hand side of the

SOPC Builder, the Nios Il Processorcomponent. Click the Add... button at
the bottom of the component list.

When a component is added to your system, a dialog box will appear that
allows you to select options and set specific parameters for this particular
implementation. For the Nios II processor, the dialog box shown in Figure 17.5
will appear. This first selection will determine the general parameters of the
Nios II processor. Notice that there are three general configurations allowed
that vary in size, performance, and functionality. Select the middle
configuration, Nios IlI/s as shown in Figure 17.5. In the Hardware Multiply
field, select Embedded Multipliers, and click Next to continue.

The next dialog box allows you set the size of the instruction cache in the Nios
II processor. Keep the default value (4 KB), and click Next twice to advance to
the JTAG Debug Module dialog box.

356

Rapid Prototyping of Digital Systems Chapter 17

"™ Nios Il Processor - cpu @

Nios II Processor

Version 7.1

Advanced Features JTAG Debug Module Customn Instructions

Select a Hios Il core:

ONios Il/fe |@Nios Il/s ONios IIf |
. RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone I Branch Prediction Branch Prediction
Hardware Multiphy Hardwvare Multiply
Tsystem: 50.0 MHZ Hardware Divide Hardware Divide
" Barrel Shifter
cpuict 0 Data Cache
Dynamic Branch Prediction
Performance at 50.0 MHz Up to 5 DMIPS Up to 25 DMPS Up to 51 DMIPS
Logic Usage 600-700 LEs 1200-1400 LEs 1400-1800 LEs
Memory Usage Twvo Mdks (or equiv.) Two M4Ks + cache Three M4Ks + cache
Hardhware Muliply | Empeddied Mutipliers v ‘ (] Hardware Divide
Reset Vector: Memory: + | Offset: ‘ 0x0
Exception Vector: Memory: I |Olfse1: 0x20

Warning: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

G o EEw)

Figure 17.5Nios II supports three different general configurations. Select Nios II/s for this tutorial.

Nios II processors can be compiled with support for one of four different
debugging systems. The differences between them are shown in Figure 17.6,
along with the FPGA resources required to implement each type of debugging.
There is an order of magnitude difference in the number of logic elements
required to implement Level 4 debugging versus Level 1 debugging. This
difference is significant when compared to the overall size of the Nios II
processor. The Level 4 debugging system is two to three times larger then the
Nios II/s processor itself. Since the cost of FPGAs are largely based on their
size, the debugging logic will typically be removed before a design enters
production to minimize the number of logic elements, and thus the size of the
FPGA, required for the production quantities.

The full features of Level 3 and Level 4 debugging are only available when a
license from First Silicon Solutions, a third-party company, is purchased. The
availability of this license within your company or school along with the
complexity of your end system and the size of the FPGA available will be the
primary factors in determining which debugging system should be selected for

Tutorial 1V: Nios Il Processor Hardware Design 359

an RS-232 UART module can be useful when debugging systems by providing
an additional communication channel.

Add the RS-232 UART peripheral by expanding Interface Protocols DSerial.
Select UART (RS-232 serial port) and click Add.... When the UART
configuration dialog box appears, set the options as shown in Figure 17.7. Click
Finish to add the component.

17.6 Adding an Interval Timer Peripheral

Most processor designs require at least one timer. This timer is used to delay
the processor, coordinate transactions, timestamp events, generate time slice
interrupts for an operating system scheduler, a watchdog timer, and more. The
Nios II timer peripheral is flexible; it has several options and three predefined
configurations. Add a full-featured interval timer to your Nios II processor by
expanding Peripherals DMicrocontroller Peripherals. Select Interval Timer
and click Add.... When the timer configuration dialog box appears, set the
options as shown in Figure 17.8. Click Finish to add the component. In the
SOPC Builder, rename the timer module to timerQ. The “0” is appended to the
timer name here to provide a consistent naming convention for your timers if
additional timers are added at a later time. It is not unusual for a processor to
have two or three timers — often of different configurations for specific uses.

'® |nterval Timer - timer

“ Interval Timer
Megotors Version 7.1

Parameter
Settings

Timeout period

Period: | 4 ms v
Hardware options
Presets: | Fup.featured v

Registers

Output signals

Figure 17.8These are the settings for the interval timer device to be added to the Nios IT system.

360 Rapid Prototyping of Digital Systems

Chapter 17

= PIO (Parallel 1/0) - pio

“ PIO (Parallel I/0)
Version 7.1

Width

Wictth (1-32 bits) : [4

Direction

= PIO (Parallel 1/0) - pio

“ PIO (Parallel I/0)

=

Megeters Version 7.1

dge capture register
Synchronously capture

(3) Rising edge

(O Bidwectional (tristate) ports O Faling edge

(® Input ports only AL

) Both input and output ports Internipt

O Output ports only Generale RQ
Q Level

(irterrupt CPU when any unmasked 11O pin is logic true)

@ Edge
(Irterrupt CPL when any unmasked bt in the edge-capture register
is logic true)

Wiarning: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO input Warning PIO inputs are not hardwired in test bench. Undefined values will be read from PIO input
o] 2| L *|
-

(a) (b)

Figure 17.9These are the settings for the pushbutton PIO device to be added to the Nios IT system.

17.7 Adding Parallel /O Components

Many processors require a certain amount of general-purpose I/O pins. These
pins can be attached directly to pushbuttons, switches, LEDs, and similar I/O
devices. They can also be attached to relatively simple or low bandwidth
interfaces that don’t have a large amount of overhead associated with data
transmission. Examples of these types of interfaces include PS/2, I°C, SPI, and
parallel data interfaces.

In addition, general-purpose I/O pins can be used to pass low-bandwidth data
between a custom VHDL or Verilog block and the Nios II processor. A faster
method of transferring data to a VHDL block is to create a custom peripheral
that can attach to the Avalon bus. Implementing a VHDL module that is
compliant with the Avalon bus specification is more involved and requires more
logic elements than using general-purpose I/0O pins, but it does provide a faster
more efficient interface.

General-purpose I/O pins are added to the Nios II processor with the PIO
(Parallel I/O) component. The PIO component has a number of options for
customizing general-purpose I/O interfaces. PIO interfaces can be specified as
input only, output only, or bidirectional. If bidirectional is selected here, then
the direction of each pin must be set in the direction register at run-time via
software. Input PIO interfaces can also have various interrupt and edge capture
capabilities including the capturing of either or both edges and edge or level-
sensitive interrupt triggers.

Tutorial 1V: Nios Il Processor Hardware Design 363

Nios II processor by expanding Peripherals DDisplay. Select Character LCD
and click Add.... When the LCD component dialog box appears, click Finish
to add the component. This component does not have any configuration
options; therefore, the LCD component dialog box contains information only.
The LCD component will be added to the list of peripherals in your Nios II
processor.

17.11 Adding an External Bus

Multiple external devices can share the same address and data bus pins and
dramatically reduce the number of pins required on the FPGA. The Nios II
processor supports this type of bus sharing with its tristate bus components. On
many boards the SRAM, SDRAM, Flash, and even an LCD device can share a
signal external tristate bus. To accommodate the bidirectional data bus and
multiple devices on a single bus, an Avalon Tristate Bridge component must be
added. The Avalon tristate bridge creates a peripheral (tristate) bus to which
multiple memory controllers and other external components can be attached. It
also provides a seamless interface between the peripheral bus and the main
system bus. A conceptual drawing of this arrangement is shown in Figure
17.12. For the DE boards, the Flash device is the only peripheral attached to the
tristate bus. The SDRAM, SRAM, and LCD devices all attach directly to the
main system bus.

Nios 1T Timer UART

(bus master) (bus slave) (bus slave)

I S
L]

(bus slave) (bus slave) (hus slave)
valon Tri—state Bridgs
PIO PIO (bus master)
Peripheral Tri—state Bus
(bus slave) (bus slave) (bus sfave)
SRAM Flash LCD

Figure 17.12This is a conceptual drawing of the bus configuration with the Tristate Bridge
connecting the main system bus and the shared peripheral bus.

Add the Avalon Tristate Bridge component by expanding Bridges and
Adapters DMemory Mapped. Select Avalon-MM Tristate Bridge and click
Add.... There is only one option for this component: registered or not
registered. Select Registered and click Finish to add the component. In the
SOPC Builder, rename the bridge module to ext_bus

364 Rapid Prototyping of Digital Systems Chapter 17

™ Flash Memory (CFI) - cfi_flash

17.12 Adding Components to the External Bus

Once the Avalon tri-state bridge has been added, the peripherals that are going
to connect to the external peripheral bus can be added. First, add the Flash
memory controller by expanding Memories and Memory
Controllers DFlash. Select Flash Memory (CFI) and click Add.... When the
Flash memory configuration dialog box appears, set the options as shown in
Figure 17.13. In the SOPC Builder, rename the flash module to flash.

'™ Flash Memory (CFI) - cfi_flash

“ Flash Memory (CFI) Flash Memory (CFI)
Megetors VeErsion 7.1 Version 7.1
Timing >
Presets: | Custom - setup: [1 wiait: [70 Hold: [1 Units: g 3
Size Awalon clock period is 20,0 ns.
Address WWidth (sis): [22 = Timing granularity is in units of &valon clock period
DstaWidth (bts): [3 Actusl setup time for read and write transfers: 20.0 ns
Actusl hold time for read and write transters: 80.0 ns
Actusl wail-state time for read and write transfers: 20.0ns
Create an interface to any industry-standard CF| (Cammon Flash Interface)-compliart
flash memory device. Select from a list of tested flash memories or provids nterface
and timing information for a CFl memory device which does not appear on the list
[3) Infe: Flash memory capacty: 4.0 MEytes (4184304 bytes) 3 Info: Flash memory capacty: 4.0 MBytes (4194304 bytes)

Figure 17.13These are the Flash memory settings for use with the Flash on the DE boards.

17.13 Global Processor Settings

All of the necessary peripherals have been added now. The next step is to
configure some global settings for your processor.

To view and modify the bus connections in your processor, select View DShow
Connections Column (If Show Connections Columnis already selected, then
un-select it and select it again.) This will expand the cpu and ext_busmodules
in the table of peripherals and show the bus connections. The three buses are
displayed vertically. From left-to-right, the buses are the main system
instruction, main system data, and tri-state data bus. Notice that the UARTS,
timer, LCD, and PIO components are only attached to the system data bus since
they don’t normally interact with instruction memory. SRAM, SDRAM, and the
Avalon Tristate Bridge are connected to both the system instruction and system
data buses, because the memory devices can store both data and instruction
memory. Finally, the Flash memory device is unconnected. It must be manually
connected to the appropriate tristate bus. Hover your mouse over the
connections column just to the left of the flash module. An open circle will
appear on the tri-state data bus. Click on the open circle to connect the flash
module to the external tristate bus (a connection is denoted by a solid, filled-in
circle). The final SOPC Builder window should look like the screen shot in
Figure 17.14.

Tutorial 1V: Nios Il Processor Hardware Design 367

file to add a component. In the Libraries pane of the Symbol dialog box,
expand the Project item and select the Nios32component. Click OK to add the
selected component. Click in the middle of schematic file to place your Nios
system.

17.16 Create a Phase-Locked Loop Component

SDRAM and the Nios II processor core operate on different clock edges. The
Nios processor uses the rising edge and SDRAM the falling edge. The SDRAM
would need a clock signal that is phase shifted by 180 degrees. An inverter
would do this, but the phase shift also needs to be adjusted a bit to correct for
the internal FPGA delays and the distance between the SDRAM and the FPGA
on the DE board. To create this SDRAM clock signal, a phase-locked loop
(PLL) component can be implemented on the FPGA. To create a PLL, use
Quartus II’s MegaWizard Plug-in Manager by selecting Tools DMegaWizard
Plug-In Manager.... Click Next on page 1 of the wizard to create a new
component. On page 2, select the Installed Plug-Ins DI/O DALTPLL module
from the list. Enter the full path of your project directory followed by the
filename up3_pll into the output filename field. Complete the remaining fields
with the information shown in Figure 17.16. Click Next to continue.

MegaWizard Plug-In Manager [page 2a] @

\Which megafunction would you ke to customize? \Which device family will you be Cyclone Il ﬂ
7
Select a megafunction from the list below usngf

+ i Arthmetic A Which lype of output file do you want to create?

+ @ Communications " AHDL

+ (@ DsP @ yHDL

+ @ Gates -

- & 110 ™ Verilog HOL
j What name do you want for the gutput file? Browse...
7] ALTASMI_PARALLEL |C:\pour_project_diectonde_pl
,1] ALTCLKCTARL
~| ALTCLKLOCK
~] ALTDDIO_BIDIR
ra :ﬂgg:&?m I~ Retumn to this page for ancther create operation
Iz |
,| ALTDQ Note: To compile a pioject successfully in the Quartus | software,
_{__] ALTDQS your design files must be in the project directory, in the global user
] libraries specified in the Dptions dialog box [Tools menu), or a user

library specified in the User Libraries page of the Settings dialog
j ATOVDS box [Assignments menu]
’J ‘Your cunent user library directonies are:
Global User Libraries:

j ALTPLL c:\alterah71sp1 \university_programicomponentsh
S
el
|

+ @l Interfaces v

Cancel | <§ack| Neut > I |

Figure 17.16These are the initial settings for the ALTPLL module.

On page 3 of the MegaWizard manager, enter 50.00 MHz as the frequency of
the inclockO input. Leave the other options set to their default values. Click
Next to continue. On page 4 of the MegaWizard manager, un-select all
checkmarks. Click Next twice to advance to page 6.

On page 6 of the MegaWizard manager, enter a Clock phase shiftof -54 deg
(-3 ns). Leave the other options set to their default values. Click Finish to skip

368

Rapid Prototyping of Digital Systems Chapter 17

pages 6 and 7 and jump to page 8 of the MegaWizard manager. Click Finish
again to complete the MegaWizard manager and create the files for the PLL
component.

Double click on a blank area of the top-level schematic file. Select the Project
Dup3_pll module and add it to your top-level schematic as shown in the
completed schematic in Figure 17.17.

IMPORTANT NOTE: Different or future versions of the Altera software may
generate slightly different hardware time delays for the SDRAM clock. If you
experience SDRAM errors after running memory tests on your final design or
the program downloads to SDRAM do not verify, and after double checking
that everything else is correct in your design, the PLL phase shift may need to
be adjusted a small amount. Most designs seem to fall within about 30 degrees
of -54 degrees. This corresponds to a time delay adjustment of only 1 or 2 ns.

17.17 Complete the Top-Level Schematic

To complete the top-level schematic, add the input, output, and bi-directional
pins (and pin names) shown in Figure 17.17. Also, complete the connections
between the two top-level components as shown in the figure. Finally, if you
added the LCD component for the DE2 board, add a VCC symbol and connect
it to the LCD_ON and LCD_BLON output pins to tie them High. If you have
trouble reading the signal names in the figure, the file is available on the DVD.

17.18 Design Compilation

Verify that the pin assignments discussed in Section 17.2 were made correctly
by going to AssignmentsDPins. A long list of pin numbers and names
corresponding to the pin names you entered into the top-level schematic should
appear. If it does not, then repeat the steps in Section 17.2 to import the pin
assignments.

Verify that the global assignments discussed in Section 17.2 were made
correctly by going to AssignmentsDDevice...DDevice & Pin OptionsD
Unused Pins

The Reserve all unused pinsption should be set to As input tri-stated. If it
is not, then select this option. Click OK until all dialog boxes are closed.

Select ProcessingDStart Compilation to begin compiling your project.

Tutorial 1V: Nios Il Processor Hardware Design 369

|

de_pll I 1 e N W
OED_{ inclkp fraquencsy: 50.000 hHz £l T T T
Operation hiade: Mormal
[Fatic])
inst1 Cyelone 11
bl e P
ningd2
i o
HE RESES LR
RUSHBUTTONE 0] i n_port _to_the_uttans(3..0]
address_to_the_flash[21..0] T e LA H AR o]
data_to_and_from_the_flash[7. 0] pe—ils———; FLASH_DATA..0]
read_n_to_the_flash TP~ FLASH_OE N
zelect_n_to_the_flash SUTPUT — FLASH CE N
write_n_to_the_flash UTRUT - FLASH_WE_N
LCD_E_from_the_lcd S T EN
LCD_RS_fram_the_lod ITRUT — LCD_RS
LCO_Rw_fram_the_lod AUTRUT —— LCD_ R
LCD_data_to_and_from_the_|cd[7. 0] |je—m"t b =
out_port_from_the_leds[T 0] e e = o])
z=_addr_from_the_sdram[11..0] AUTRUT _—— SDRAV_ADDR[TT.0]
zs_ba_from_the_sdram[1..0] .:.”TPUT [SORAMBA[D]
zs_cas_n_from_the_sdram X
7s_cke_from_the_sdram AUTPUT —— SORAM CKE
z5_cs_n_from_the_sdram ATPUT - SORAM_CS_N
zz_do_to_snd_from_the_sdram[15.0] jeeb—"tl -~ SDRA_DATAS. f
z5_dgm_from_the_sdram[1 0] CUTPUT —— SORAM DOM[T.0] ¢
zg_ras_n_from_the_sdram SUTPUT — SORAMRAS_H |
zz_we_n_from_the_sdram UTRUT —— SORAWMNE_H
SRAM_ADDR_from_the_sram[17..0] TEUT_ — SRAW_ADDR[I7. 0]
SRAM_CE_M_from_the_sram "'{1"—"" — ?ff’M_CE_N :
SRAM_DO_to_snd_from_the_sram[15..0] |je—_RlE SRA_DATA[TS..0]
SRAM_LE_M_from_the_sram UTPUT _—— SRAb_LE_N
SRAM_CE_M_from_the_sram AUTPUT __—— SKHAW_OE_N
SRAM_UB_M_from_the_sram CUTRUT SR UB_N
SRAM_WE_M_from_the_sram CUTPUT —— SRAW_IWE_N
CEWITEHES. O] T W, in_port_to_the_switches(7..0]
rrd_to_the_uart txd_from_the_uart LUTRUT _ —— UART_THD
inst

Figure 17.17The final top-level schematic for the Nios II system on a DE2 board is shown here. The

DE1 board schematic is similar except the LCD bus signals will not be present.

17.19 Testing the Nios Il Project

To fully test your Nios II project, you will need to write a software program to
run on the Nios II processor that tests each component. To complete this task,
refer to the previous chapter, which contains Tutorial I1l: Nios Il Processor
Software Design.

You might want to try your test program from the previous chapter first to
verify that memory still works in your new design. After switching to a new
workspace for the new project in Nios II IDE, create a blank project with a new
system library that is based on your Nios II processor design. You can then

