

SOPC Builder is a GUI-based hardware design tool used to configure the Nios II
processor core options and to design bus and I/O interfaces for the processor.

CHAPTER 17

Tutorial IV: Nios II
Processor Hardware
Design

354 Rapid Prototyping of Digital Systems Chapter 17

Figure 17.3 Specifying the name of the Nios II processor for your system.

In the Create New System dialog box, enter the name nios32, and set the
Target HDL to VHDL as shown in Figure 17.3. Click OK to open SOPC
Builder with a blank project titled nios32.
The system settings in the top part of SOPC Builder window must be set for the
board and device that you are using. For the DE boards, the on-board clock
circuit generates several clock frequencies, including 24 MHz, 27 MHz, and
50 MHz. For this tutorial, the 50 MHz clock signal will be used; therefore,
enter 50.0 in the clk field. Select Cyclone II as Device Family. When these
settings have been entered, your SOPC Builder window should look similar to
the screen shot in Figure 17.4.

IT IS CRITICAL THAT THE FREQUENCY SELECTED IN THE SOPC BUILDER IS THE ACTUAL
CLOCK RATE USED IN YOUR HARDWARE DESIGN. IF A PLL IS USED TO GENERATE A DIFFERENT
NIOS II CLOCK SIGNAL, THEN THAT CLOCK FREQUENCY MUST BE ENTERED INTO THE SOPC
BUILDER BEFORE THE SYSTEM IS GENERATED. IF YOU MODIFY THE CLOCK FREQUENCY FOR

THE NIOS II PROCESSOR LATER, THEN YOU MUST RE-GENERATE THE NIOS II PROCESSOR WITH
THE UPDATED FREQUENCY SPECIFIED HERE.

Take a minute to familiarize yourself with the layout of the SOPC Builder
window. Along the left-hand side, there is an expandable list of components
organized by category that can be added to a Nios II system. Click on the “+”
symbol next to the items in this list to expand the list of components for each
category. If board support packages have been installed, then those
development boards will be listed as an item. Expanding these items will reveal
components that are specific to these boards. If you installed the design files as
discussed in Section 17.1, then the University Program DE1 Board and
University Program DE2 Board categories will appear.

 Tutorial IV: Nios II Processor Hardware Design 355

Figure 17.4 Beginning a Nios II design in the SOPC Builder.

17.4 Adding a Nios II Processor
The first component that you will add to your Nios II processor design is the
processor core itself. In the list of components on the left-hand side of the
SOPC Builder, the Nios II Processor component. Click the Add… button at
the bottom of the component list.
When a component is added to your system, a dialog box will appear that
allows you to select options and set specific parameters for this particular
implementation. For the Nios II processor, the dialog box shown in Figure 17.5
will appear. This first selection will determine the general parameters of the
Nios II processor. Notice that there are three general configurations allowed
that vary in size, performance, and functionality. Select the middle
configuration, Nios II/s as shown in Figure 17.5. In the Hardware Multiply
field, select Embedded Multipliers, and click Next to continue.
The next dialog box allows you set the size of the instruction cache in the Nios
II processor. Keep the default value (4 KB), and click Next twice to advance to
the JTAG Debug Module dialog box.

356 Rapid Prototyping of Digital Systems Chapter 17

Figure 17.5 Nios II supports three different general configurations. Select Nios II/s for this tutorial.

Nios II processors can be compiled with support for one of four different
debugging systems. The differences between them are shown in Figure 17.6,
along with the FPGA resources required to implement each type of debugging.
There is an order of magnitude difference in the number of logic elements
required to implement Level 4 debugging versus Level 1 debugging. This
difference is significant when compared to the overall size of the Nios II
processor. The Level 4 debugging system is two to three times larger then the
Nios II/s processor itself. Since the cost of FPGAs are largely based on their
size, the debugging logic will typically be removed before a design enters
production to minimize the number of logic elements, and thus the size of the
FPGA, required for the production quantities.
The full features of Level 3 and Level 4 debugging are only available when a
license from First Silicon Solutions, a third-party company, is purchased. The
availability of this license within your company or school along with the
complexity of your end system and the size of the FPGA available will be the
primary factors in determining which debugging system should be selected for

 Tutorial IV: Nios II Processor Hardware Design 359

an RS-232 UART module can be useful when debugging systems by providing
an additional communication channel.
Add the RS-232 UART peripheral by expanding Interface Protocols DSerial.
Select UART (RS-232 serial port) and click Add…. When the UART
configuration dialog box appears, set the options as shown in Figure 17.7. Click
Finish to add the component.

17.6 Adding an Interval Timer Peripheral
Most processor designs require at least one timer. This timer is used to delay
the processor, coordinate transactions, timestamp events, generate time slice
interrupts for an operating system scheduler, a watchdog timer, and more. The
Nios II timer peripheral is flexible; it has several options and three predefined
configurations. Add a full-featured interval timer to your Nios II processor by
expanding Peripherals DMicrocontroller Peripherals . Select Interval Timer
and click Add…. When the timer configuration dialog box appears, set the
options as shown in Figure 17.8. Click Finish to add the component. In the
SOPC Builder, rename the timer module to timer0 . The “0” is appended to the
timer name here to provide a consistent naming convention for your timers if
additional timers are added at a later time. It is not unusual for a processor to
have two or three timers – often of different configurations for specific uses.

Figure 17.8 These are the settings for the interval timer device to be added to the Nios II system.

360 Rapid Prototyping of Digital Systems Chapter 17

Figure 17.9 These are the settings for the pushbutton PIO device to be added to the Nios II system.

17.7 Adding Parallel I/O Components
Many processors require a certain amount of general-purpose I/O pins. These
pins can be attached directly to pushbuttons, switches, LEDs, and similar I/O
devices. They can also be attached to relatively simple or low bandwidth
interfaces that don’t have a large amount of overhead associated with data
transmission. Examples of these types of interfaces include PS/2, I2C, SPI, and
parallel data interfaces.
In addition, general-purpose I/O pins can be used to pass low-bandwidth data
between a custom VHDL or Verilog block and the Nios II processor. A faster
method of transferring data to a VHDL block is to create a custom peripheral
that can attach to the Avalon bus. Implementing a VHDL module that is
compliant with the Avalon bus specification is more involved and requires more
logic elements than using general-purpose I/O pins, but it does provide a faster
more efficient interface.
General-purpose I/O pins are added to the Nios II processor with the PIO
(Parallel I/O) component. The PIO component has a number of options for
customizing general-purpose I/O interfaces. PIO interfaces can be specified as
input only, output only, or bidirectional. If bidirectional is selected here, then
the direction of each pin must be set in the direction register at run-time via
software. Input PIO interfaces can also have various interrupt and edge capture
capabilities including the capturing of either or both edges and edge or level-
sensitive interrupt triggers.

 Tutorial IV: Nios II Processor Hardware Design 363

Nios II processor by expanding Peripherals DDisplay. Select Character LCD
and click Add… . When the LCD component dialog box appears, click Finish
to add the component. This component does not have any configuration
options; therefore, the LCD component dialog box contains information only.
The LCD component will be added to the list of peripherals in your Nios II
processor.

17.11 Adding an External Bus
Multiple external devices can share the same address and data bus pins and
dramatically reduce the number of pins required on the FPGA. The Nios II
processor supports this type of bus sharing with its tristate bus components. On
many boards the SRAM, SDRAM, Flash, and even an LCD device can share a
signal external tristate bus. To accommodate the bidirectional data bus and
multiple devices on a single bus, an Avalon Tristate Bridge component must be
added. The Avalon tristate bridge creates a peripheral (tristate) bus to which
multiple memory controllers and other external components can be attached. It
also provides a seamless interface between the peripheral bus and the main
system bus. A conceptual drawing of this arrangement is shown in Figure
17.12. For the DE boards, the Flash device is the only peripheral attached to the
tristate bus. The SDRAM, SRAM, and LCD devices all attach directly to the
main system bus.

Figure 17.12 This is a conceptual drawing of the bus configuration with the Tristate Bridge
connecting the main system bus and the shared peripheral bus.

Add the Avalon Tristate Bridge component by expanding Bridges and
Adapters DMemory Mapped. Select Avalon-MM Tristate Bridge and click
Add…. There is only one option for this component: registered or not
registered. Select Registered and click Finish to add the component. In the
SOPC Builder, rename the bridge module to ext_bus.

364 Rapid Prototyping of Digital Systems Chapter 17

17.12 Adding Components to the External Bus
Once the Avalon tri-state bridge has been added, the peripherals that are going
to connect to the external peripheral bus can be added. First, add the Flash
memory controller by expanding Memories and Memory
Controllers DFlash. Select Flash Memory (CFI) and click Add… . When the
Flash memory configuration dialog box appears, set the options as shown in
Figure 17.13. In the SOPC Builder, rename the flash module to flash.

(a) (b)

Figure 17.13 These are the Flash memory settings for use with the Flash on the DE boards.

17.13 Global Processor Settings
All of the necessary peripherals have been added now. The next step is to
configure some global settings for your processor.
To view and modify the bus connections in your processor, select View DShow
Connections Column. (If Show Connections Column is already selected, then
un-select it and select it again.) This will expand the cpu and ext_bus modules
in the table of peripherals and show the bus connections. The three buses are
displayed vertically. From left-to-right, the buses are the main system
instruction, main system data, and tri-state data bus. Notice that the UARTs,
timer, LCD, and PIO components are only attached to the system data bus since
they don’t normally interact with instruction memory. SRAM, SDRAM, and the
Avalon Tristate Bridge are connected to both the system instruction and system
data buses, because the memory devices can store both data and instruction
memory. Finally, the Flash memory device is unconnected. It must be manually
connected to the appropriate tristate bus. Hover your mouse over the
connections column just to the left of the flash module. An open circle will
appear on the tri-state data bus. Click on the open circle to connect the flash
module to the external tristate bus (a connection is denoted by a solid, filled-in
circle). The final SOPC Builder window should look like the screen shot in
Figure 17.14.

 Tutorial IV: Nios II Processor Hardware Design 367

file to add a component. In the Libraries pane of the Symbol dialog box,
expand the Project item and select the nios32 component. Click OK to add the
selected component. Click in the middle of schematic file to place your Nios
system.

17.16 Create a Phase-Locked Loop Component
SDRAM and the Nios II processor core operate on different clock edges. The
Nios processor uses the rising edge and SDRAM the falling edge. The SDRAM
would need a clock signal that is phase shifted by 180 degrees. An inverter
would do this, but the phase shift also needs to be adjusted a bit to correct for
the internal FPGA delays and the distance between the SDRAM and the FPGA
on the DE board. To create this SDRAM clock signal, a phase-locked loop
(PLL) component can be implemented on the FPGA. To create a PLL, use
Quartus II’s MegaWizard Plug-in Manager by selecting Tools DMegaWizard
Plug-In Manager…. Click Next on page 1 of the wizard to create a new
component. On page 2, select the Installed Plug-Ins DI/O DALTPLL module
from the list. Enter the full path of your project directory followed by the
filename up3_pll into the output filename field. Complete the remaining fields
with the information shown in Figure 17.16. Click Next to continue.

Figure 17.16 These are the initial settings for the ALTPLL module.

On page 3 of the MegaWizard manager, enter 50.00 MHz as the frequency of
the inclock0 input. Leave the other options set to their default values. Click
Next to continue. On page 4 of the MegaWizard manager, un-select all
checkmarks. Click Next twice to advance to page 6.
On page 6 of the MegaWizard manager, enter a Clock phase shift of -54 deg
(-3 ns). Leave the other options set to their default values. Click Finish to skip

368 Rapid Prototyping of Digital Systems Chapter 17

pages 6 and 7 and jump to page 8 of the MegaWizard manager. Click Finish
again to complete the MegaWizard manager and create the files for the PLL
component.
Double click on a blank area of the top-level schematic file. Select the Project
Dup3_pll module and add it to your top-level schematic as shown in the
completed schematic in Figure 17.17.
IMPORTANT NOTE: Different or future versions of the Altera software may
generate slightly different hardware time delays for the SDRAM clock. If you
experience SDRAM errors after running memory tests on your final design or
the program downloads to SDRAM do not verify, and after double checking
that everything else is correct in your design, the PLL phase shift may need to
be adjusted a small amount. Most designs seem to fall within about 30 degrees
of -54 degrees. This corresponds to a time delay adjustment of only 1 or 2 ns.

17.17 Complete the Top-Level Schematic
To complete the top-level schematic, add the input, output, and bi-directional
pins (and pin names) shown in Figure 17.17. Also, complete the connections
between the two top-level components as shown in the figure. Finally, if you
added the LCD component for the DE2 board, add a VCC symbol and connect
it to the LCD_ON and LCD_BLON output pins to tie them High. If you have
trouble reading the signal names in the figure, the file is available on the DVD.

17.18 Design Compilation
Verify that the pin assignments discussed in Section 17.2 were made correctly
by going to Assignments DPins. A long list of pin numbers and names
corresponding to the pin names you entered into the top-level schematic should
appear. If it does not, then repeat the steps in Section 17.2 to import the pin
assignments.
Verify that the global assignments discussed in Section 17.2 were made
correctly by going to Assignments DDevice… DDevice & Pin Options D
Unused Pins.
The Reserve all unused pins option should be set to As input tri-stated. If it
is not, then select this option. Click OK until all dialog boxes are closed.
Select Processing DStart Compilation to begin compiling your project.

 Tutorial IV: Nios II Processor Hardware Design 369

Figure 17.17 The final top-level schematic for the Nios II system on a DE2 board is shown here. The
DE1 board schematic is similar except the LCD bus signals will not be present.

17.19 Testing the Nios II Project
To fully test your Nios II project, you will need to write a software program to
run on the Nios II processor that tests each component. To complete this task,
refer to the previous chapter, which contains Tutorial III: Nios II Processor
Software Design.
You might want to try your test program from the previous chapter first to
verify that memory still works in your new design. After switching to a new
workspace for the new project in Nios II IDE, create a blank project with a new
system library that is based on your Nios II processor design. You can then

