
SFWR ENG Assignment 3: Digital Control Implementation

Due: 1600 Monday December 2, 2002

For this assignment you will hand in one copy of the assignment for each lab group.

1. Control Systems Implementation I (20 marks)

a) (5 marks) The code fragment shown in Figure 1 is taken from the RTAI real-time Linux source
for the file /usr/src/rtai/include/asm-i386/rtai_sched.h.

#define __STR(x) #x

#define STR(x) __STR(x)

#define rt_switch_to(tsk) \

__asm__ __volatile__(\

"pushl %%eax\n\t" \

"pushl %%ebp\n\t" \

"pushl %%edi\n\t" \

"pushl %%esi\n\t" \

"pushl %%edx\n\t" \

"pushl %%ecx\n\t" \

"pushl %%ebx\n\t" \

"movl "SYMBOL_NAME_STR(rt_current)", %%edx\n\t" \

"pushl $1f\n\t" \

"movl %%esp, (%%edx)\n\t" \

"movl (%%ecx), %%esp\n\t" \

"movl %%ecx, "SYMBOL_NAME_STR(rt_current)"\n\t" \

"ret\n\t" \

"1: popl %%ebx\n\t \

popl %%ecx\n\t \

popl %%edx\n\t \

popl %%esi\n\t \

popl %%edi\n\t \

popl %%ebp\n\t \

popl %%eax\n\t" \

: \

: "c" (tsk));

Figure 1: Excerpt from rtai sched.h

i) What is does the rt switch to(tsk) macro do?

ii) Typically real-time schedulers make use of macros and inline functions. Why?

b) (3 marks) The RTAI-Linux system call rt task init(. . .) is used to create a real-time
task. One of its arguments is defined as int stack size, the size of the task’s stack. How does
the real-time kernel use the stack space of each real-time task when running multiple tasks?

c) (6 marks) Suppose a system has three levels of interrupts with level 1 being the highest priority
and level 3 being the lowest priority. Use a diagram to explain what happens to the system at
each step when the following sequence of events occurs.

1

(a) At time t = 0µs the processors is initially executing the low priority interruptable process
Task 1.

(b) At time t = 5µs a level 2 interrupt occurs.

(c) At time t = 8µs a level 1 interrupt occurs.

(d) At time t = 9µs a level 3 interrupt occurs.

(e) No further interrupts occur.

Assume that a context switch takes negligible time and that the interrupt service routines (ISRs)
and process require the following amount of execution time:

CPU execution
Process time (µs)

ISR 1 3
ISR 2 4
ISR 3 2
Task 1 10

d) (6 marks) What type of H/W & Software would you recommend for the proposed systems shown
in Table 1?

Match each application in the column on the left with a method of implementation from the
column on the right as has been done for System A, the programmable theromstat. The reasons
for choices are to be given in Table 2. Complete the tables by making similar well thought out
choices for the remaining 6 systems and record a brief explanation for each of your choices.

2. Control Systems Implementation II (15 marks)

Your hard work in 4A03 has paid off and landed you a consulting job. You have to implement
an embedded digital position control system for a robot that has a built in DSP (digital signal
processing) chip. The DSP chip does not have built in A/D converters but it does have 16 digital
(i.e. 0/1) inputs.

a) (3 marks) What type of position sensor might you recommend and why? Justify any additional
external hardware that might be used.

b) (3 marks) The sensor for the system has recently been upgraded so that it now provides 32-bit
digital position readings by taking the current position and truncating it to a 32-bit quantity.
What is the maximum quantization error associate with this sensor?

c) (5 marks) While the DSP chip only has 16 digital inputs, it also has an additional digital output
that is currently unused in the system design. Sketch a simple circuit that would allow you to use
this digital output with minimal additional external hardware to interface with the new 32-bit
sensor to obtain more accurate measurements. (HINT: Remember 2D04? Think MUXes - that’s
MUltipleXers).

d) (2 marks) For this scheme to work, what assumption must the robot system satisfy relative to
the digital controller?

e) (2 marks) What are two possible sources of quantization error that could occur in any computa-
tions that take place in the DSP?

3. Scheduling (25 marks)

a) (4 marks) The standard Linux fix priority scheduler can be replaced with an alternative scheduler.
In Figure 2 and Figure 3 we illustrate the scheduling results two different alternative RT-Linux
schedulers studied in class.

2

System Implementation

A Programmable Thermostat Single loop program running directly on
widely used 486 controller board with EPROM

and error correcting memory
B Missile guidance 16-bit microcontroller with integrated A/D,

control system RAM & ROM running a C program
C Distributed networked process control C++ application on a Linux PC

D Robotic control in a University Lab Custom harware with highend DSP

E Garage door opener PCs with A/D cards running RT-Linux

F Video Conferencing System x86 industrial PC
with integrated network, I/O & RTOS

G Reactor shutdown system A 8-bit microcontroller
programmed in assembler

Table 1: System implementation choice table to be filled in for question 4(c)

System Reasons for choice of implementation

A - its a simple task requiring little processor power - high volume product
- very cost sensitive, code in assembler to fit program in onboard ROM

B

C

D

E

F

G

Table 2: Reasons for choices in question 4(c)

3

Figure 2: Scheduler 1

Figure 3: Scheduler 2

4

i) What scheduler do you believe has been used in Figure 2? Why do you believe this?

ii) What scheduler do you believe has been used in Figure 3? Why do you believe this?

b) (10 marks) Given the following 5 independent tasks with the specified periods, determine if it is
possible to schedule the tasks if:

Task Period Max. Execution Time

A 30 5
B 4 1
C 10 1.5
D 8 1
E 20 1

i) The tasks are NOT pre-emptable? Justify your answer.

ii) All tasks except Task B are preemptable? Justify your answer.

iii) Use a well known scheduling algorithm to assign priorities between 1-5 to the tasks so that the
tasks will be properly executed by the RT-Linux fixed priority scheduler with no interruptions
occurring to Task B. What scheduling policy did you use to choose your task priorities?

c) (4 marks) Assume now that some of the tasks share a resource. Explain how “Priority Inversion”,
where a lower priority task prevents a higher priority task from runing, could arise.

d) (4 marks) Assume a fixed priority scheduler is used. For some well thought out reason, the
priorities are assigned to the tasks in alphabetical order (i.e., Task A is assigned priority 1, Task
B is assigned priority 2, . . . Task E is assigned priority 5).

Assume that two of the tasks share a semaphore but the remaining tasks are all independent.
Which tasks could share the semaphore without the risk of priority inversion occurring?

e) (3 marks) Explain the differences between Fixed priority, RM and EDF scheduling. (NOTE: This
is only for 3 marks, so keep it short!)

BONUS: In the lab create and briefly document a “Sprinker” module that makes the servo track a
waveform mimicing a lawn sprinkler shown in Figure 4.

θ (degrees)

t0

180

Figure 4: Sprinkler reference siginal for Bonus Question

5

