Introduction to Digital Control

Systems

(©2000 M. Lawford



Outline

e Brain dead digital control

e What's the picture?

e Digitization: A 1st Approximation

e Effect of delay due to sampling

e A 1st implementation of PID Control

©2000 M. Lawford



Brain Dead Digital Control

Idea: Implement compensator D(S) using a
computer and numerical integration.

Most physical control systems tend to behave
as a form of low pass filters (why?).

The system bandwidth (wgy/) is defined to be
the maximum frequency for which the system
output will “track a sinusiod input in a satis-
factory manner’ .

Provided the computer samples the system at
at least 30 times the system bandwidth, and
the A/D and D/A conversion is suffciently ac-
curate you can expect the computer control
system to closely approximate the original con-
tinuous control.
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System Bandwidth wpy,

By “satisfactory” tracking we roughly mean

that the power from the input to the output is

reduced by no more than %

Since power varies as the square of the ampi-
tude of the signal we have at the bandwidth
frequency wpw:

1 Py |Y(Guwpw)l|? .
Lo By YUwswWIE ) Gupg 2
2 Py |UQGww)
So we must have |GGwgw| = % ~ 0.707.

Measuring the gain (reduction) of power in
decibels (dB) we have

1010g10(1/2)
1010910 |GGwaw)|?
2010919 |GGwpw)|

—3 dB
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A /D Resolution

Analog to digital (A/D) conversion often uses
10, 12 or even 16 Dbits:

A/D Converter Bits | Resolution
10 0.1%
12 0.024%
16 0.0015%

With a sampling rate > 30wpgy, of the closed
loop(!) system and 16-bit A/D resolution,
the following straight forward digital approx-
imations closely approximate their continuous
counterparts.

So why not use 16-bit samples at > 30wpgw
samples/sec all the time? Cost & hardware
limitations.

Fast 16-bit hardware costs more. Also some
control systems are too fast (i.e., 30wgy is
faster than the fastest A/D boards).
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What'’s the Picture?

See Fig 3.1. What do each of the signals look
like?

Assume we do A/D conversion of y(t) every T
seconds then:

T is the sample period

1/T and 2x/T corresponds to the sample rate
in Hz (sample per second) and radians/second
respectively.

y(kT) : for k € Z is the sampled or discrete
signal as opposed to the continuous signal
y(t). For a fixed T we often write y(k) and
it is understood to denote y(t)|t:kT.

uw(kT) aka u(k) is the result of difference equa-
tions approximating D(s) which becomes
continuous signal u(t) via D/A and a zero-
order hold (ZOH).

Similarly r(kT) (aka r(k)) is discrete reference
signal and e(k) = y(k) — r(k).
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A 1st Approximation of D(s)

Here we use Euler's method in the forward
difference method as follows:

dr im Az im x(t + At) — x(t)
dt  At—0 At At—0 At

So for sufficently small T

dx ~ x(k+1) —x2(k) (3.2)
dt T

Thus differentiation is replaced by a difference
equation.

We will use t;, to denote sampling time kT
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Example Approximation of D(s)

Suppose

U(s) _ KOS + a
E(s) s+ b
then (s 4+b)U(s) = Ko(s+ a)E(s) soO

du de
T bu(t) = Ko(% + ae(t))
Using (3.2) to approximate we obtain:

ulk+1) — u(k)-l—bu(k) _ Ko[e(k + 1) —e(k)
T T
which can be rearrange to:

+ae(k)]

u(k+1) = (1-bT)u(k)+Ko(aT—-1)e(k)+Koe(k+1)
Let a1 ;= 1-0bT and as := Ky(aT — 1) we have

u(k+1) = aju(k) + are(k) + Koe(k + 1)

which is a more computationally efficient dif-
ference equation.
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Digital Implementation of D(s)

Besides precomputing a7 and ao we can im-
plement controller as follows:

x=0; a1 = 1-bT; ap = K,(aT —1); /* initialization */
while True do

Read A/D to get y and r;

e=1r—1Y,

u=ux+ Koye;

Output u to D/A and ZOH;

r = aiu + aze; /*compute x for next loop */

end while

Note: This is important since we want to

1. minimize overall computation time to in-
crease maximum possible sampling rate,

2. minimize the time between A/D and D/A.
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Effects of Sampling

Even without the computational delay associ-
ated with u between A/D and D/A, the aver-
age value of the digital version of u(t) roughly
becomes a T'/2 lagged version of the continu-
ous u(t).

Why? Values of u(kT) are held constant over
sample period T (See Fig. 3.3).

What is the effect of the delay?

Suppose g1(t) = g(t — ) for some X > 0 (i.e.
g1 is g delayed by \).

If g(t) = 0 for t < 0, then G1(s) = e 5*G(s)
(why?)

Result: Delay tends to reduce stability and
damping of the system.
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Effects of Sampling (cont.)

Why? Consider phase margin (PM) of system
(see Sec 2.4.4):

/G1(w) = ZG(jw) + Le 99 = /G(Gw) — w

So a delay of T'/2 will reduce the phase of the

system by A = —%.

Thus for a cross-over frequency we i.€.,

|D(jwe)G(jwe)| =1

the phase is roughly reduced by “’CT

©2000 M. Lawford 10



Approximating PID Control

Recall the transfer function for PID controller:

UGs) ., K
E(s) = Kpt S T Ras

which results in the control law:

t de
u(t) = Kpe(t) + K7 | e(n)dn + K (t)

If we use the backward rectangular version of

Euler's method approximation:
de . (k) —z(k—1)
dt T
then for proportional

u(k) = Kpe(k) (3.14)

for integral where u(t) = K7 [§e(n)dn take deriva-
tive of both sides to get

u(k) =u(k — 1)+ K;Te(k) (3.15)
and derivative then for proportional

C(s) =

(k) = %[e(k) Ce(k—1)]. (3.16)
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Approximating PID Control (cont.)

Considering each component separately, we would
approximate PID control as:

u(k) = uk— 1)+ Kyt K T+ De(k) 7 De(k—1)

However, considering PID all together we have:

du de d?e
a(t) = Kpa(t) + Kre(t) + Kddt—Q(t)

which, using the backward rectangular approx
results in:

w(k) = ulk— 1)+ (Kp+ K T+ De(k)

2K
(K, + =4

)e(k — 1)+ —e(k 2)
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