Design & Implementation of

Digital Control Systems

©2000 M. Lawford

Outline

e Example Real-Time Systems

e Hardware for real-time control systems

e Design Decisions

o Implementing Real-Time Behavior

e Task decomposition of control software

©2000 M. Lawford

Example Real-Time Control Systems

Many real-time systems are real-time control
systems.

These systems typically involve:
e control algorithms
e process presentation & display
e operator communication
e data communication

e a mix of continuous and discrete dynamics

Types of real-time control systems:

1. Industrial Control Systems: separate dis-
tributed and/or hierarchical control, e.g.
process control, manufacturing.

2. Embedded Systems: dedicated controller
is part of system, e.g. aerospace, robots,
automotive.

©2000 M. Lawford 2

Simple Process Control: Buffer Tank
Raw material buffer + heating

Goals:

e Level control: open V when level below L,
keep the valve open until level above L4

e [emperature control: PI- controller

©2000 M. Lawford 3

Simple Process Control: Buffer Tank

Characteristics:

e Concurrent activities:
— fluid level control

— fluid temperature control

e Hard Timing Requirements

e Analog (temperature) & Digital (level) in-
put sensors

e Analog (heating coil current) & Digital (Valve
On/Off) actuator outputs

e Continuous (time driven) control and Dis-
crete Event driven control

©2000 M. Lawford 4

Electro-Mechanical Control: Active
Magnetic Bearings

Ref: RTIC Lab Manual in course pack
http://www.revolve.com

Control position of rotating shaft using electro-
magnets to provide variable attractive force.

Problem: As the air gap between rotor con-
taining shaft and (fixed) magnet (actuator)
decreases, the attractive forces increase, i.e.,
electromagnets are inherently unstable.

A control system is needed to regulate the cur-

rent and provide stability of the forces, and
therefore, position of the rotor.

©2000 M. Lawford 5

Electro-Mechanical Control: Active
Magnetic Bearings

Computational tasks:

0.

1.

o o » w N

emergency stop

periodic fixed rate closed loop suspension
(control) loops

. Spin rate measuring system

. open loop balancing controller

data transfer & plotting
network transfer tasks

miscellaneous additional tasks, e.g. screen
refresh, diagnostics

NOTE: AMB systems usually have mechani-
cal backup
©2000 M. Lawford 6

Watchdog Control: Reactor Shut-
down System (SDS)

What is an SDS?
e control system that monitors reactor parameters

e shuts down (trips) reactor if it observes “bad” be-
havior

e process control is performed a separate Digital Con-
trol computer (DCC) - not as critical

SDS Safety/Performance Considerations:
e Check for short circuits/sensor failures
e Use dead-band to eliminate “chatter”

e Power dependent set points increase operating mar-
gin

e “Condition out” sensor in unreliable operating re-
gion

e Digital trip output uses “-ve logic” (fail-safe in power
loss)

©2000 M. Lawford 4

Additional SDS Considerations:
e Use multiple sensors to improve reliability

e Some use of redundant variables to reduce risk of
memory errors

Hard real-time requirements:

e different reactor trips must check inputs & respond
in as little as approximately 70 msec

e Other slower dynamics require monitoring of input
sequences over 2-5 seconds.

Soft real-time requirements:

e send data to and receive commands from operator
display/interface computer

e data-logging to external system via serial commu-
nication

e self-checks

©2000 M. Lawford 3

Hardware for real-time control

Control systems typically need:
1) analog & digital I/O hardware & sensors

Ii) computational engine(s)

e Can use analog sensors with additional hard-
ware to perform A/D

e Analog to digital (A/D) converters often
uses 10, 12 or even 16 bits

e encoders can have up to 32-bit accuracy

e Use relays for digital output

Computational engines:

DSPs & micro-controllers

embedded boards

Programmable Logic Controllers (PLCs)
Standard PCs with I/O cards

N

©2000 M. Lawford 9

Design Decisions

Hardware & Software partitioning of control
systems

Cost: High volume vs. Low volume product

Complexity: Is it a large distributed plant or
computationally intensive controller? En-
sure adequate resources available but co-
ordination increases complexity

Reliability: What are uptime requirements &
operating environment? May need redun-
dancy in hardwre & software

Verifiability: Does system need to be formally
verified for regulatory requirement? Isolate
safety critical functionality & keep it sim-
ple.

©2000 M. Lawford 10

Design Revisions

Over their development and life-cycle control
systems often go through many revisions:

Implementation Revisions: upgrading to faster
computational engines or I/O components
Structural Revisions: include changing
e controller PI to PID or statespace

e sampling style: clock driven vs. event
driven

e adding new features, e.g., new trip be-
ing added to SDS

Parameter Revision: e.g. tuning parameters
in a PID controller

©2000 M. Lawford 11

Design Decisions:
Hardware & Software Partitioning

Real-time systems are reactive, responding to
events. Events may occur at the same time

(concurrency).

Work done to service an event is called the
task associated with the event.

Generally it is good design practice to handle
different tasks independently in design.

Example: Buffer Tank

Temperature Loop Level Loop

LOOP LOOP

measure temperature; wait until level below Lg;
calculate temperature error; open inlet valve;
calculate heater PI-control; wait until level above Lq;
output the heater signal; close inlet valve;

wait for h seconds; END;

END

©2000 M. Lawford 12

Design Decisions:
Hardware & Software Partitioning

Programming paradigms:

Sequential: Single CPU with manual interleav-
ing of tasks in a cyclic executive

Parallel: Multiple CPUs each running one task

Multi-tasking: Concurrent tasks running on a
single shared CPU that switches between
processes

Multi-processing: parallel programming on mul-
tiple compute engines, each of which might
be sequential or multi-tasking

©2000 M. Lawford 13

Manual Interleaving (bad

LOOP

WHILE level above LO DO
measure temperature;
calculate temperature error;
calculate heater PI-control;
output the heater signal;
wait for h seconds;

END;

open inlet valve;

WHILE level below L1 DO
measure temperature;
calculate temperature error;
calculate heater PI-control;
output the heater signal;

wait for h seconds;
END;

close inlet valve;
END

Complex (brutal) spaghetti code.
©2000 M. Lawford

way)

14

Manual Interleaving (better way)

1) Define module to take care of each task

Ii) Call update function for each task from
within main loop

Example: Buffer Tank
Main Loop:

LOOP
update_temperature_control();
update_level_control();
wait for h seconds;

END;

©2000 M. Lawford 15

Manual Interleaving (cont.)

Temperature Module

update_temperature_control()
BEGIN
measure temperature;
calculate temperature error;
calculate heater PI-control;

output the heater signal;
END;

Level Module

update_level_control()
BEGIN
IF level below LO THEN
open inlet valve;
ELSIF level above L1 then

open inlet valve;
END;
END;

©2000 M. Lawford

16

Manual Interleaving (cont.)

For more complex scheduling to meet time
constraints can change relative frequeny of up-
date functions within main loop. E.g.,

Main Loop:

LOOP
update_task_A(Q) ;
update_task_B();
update_task_A(Q);
update_task_C(Q);
update_task_B();
update_task_A();
wait for h seconds;

END;

Problem: Main loop timing depedent upon
timing of each task. A change in one module
can force redesign of main loop to meet timing
constraints.

Solution: Let RTOS schedule tasks.
©2000 M. Lawford 17

Implementing Real-Time Behavior

Real-time behavior can be achieved by:
e using a stand-alone (single loop) program
e faking it by being fast
e using timer interrupts
e Wwriting a real-time kernel

e using an existing (uncertified) real-time op-
erating system

What do we mean by each of these choices?

When it is appropriate to implement real-time
behavior by each of the above?

What are the advantages and disadvantages?
©2000 M. Lawford 18

Stand-alone Single Loop Program

This just corresponds to the manual interleav-
ing case already described.

Advantages:

e low overhead - no resources required for
oS

e casier to verify since only relies on your
code

Disadvantages:

e Difficult to get timing right using manual
interleaving when there are multiple tasks

e Change in timing of one task affects over-
all timing of main loop, possibly forcing re-
design on pre-run schedule

©2000 M. Lawford 19

Faking it by Being Fast
It is possible to implement some limit RT be-

havior using a non-RT OS such as Linux or
NT.

How?

1. Use interrupt service routines to process
events

2. Use OS’'s scheduler

With Linux or NT can achieve average response
on order of ms but process can be blocked by
system activity (e.g., mouse or keyboard input,
network activity, etc).

©2000 M. Lawford 20

Implementing Periodic Tasks

Using an RTOS with real-time API to imple-
ment general periodic behavior.

Attempt 1:

LOOP
PeriodicActivity;
rt_sleep(h);

END;

Does not work.

Period > h and time-varying.

The execution time of PeriodicActivity is not
accounted for.

©2000 M. Lawford 21

Implementing Periodic Tasks
Attempt 2:

LOOP
Start=rt_get_time();
PeriodicActivity;
Stop=rt_get_time();
elapsed := Stop - Start;
rt_sleep(h-elapsed);
END;

Does not work. An interrupt causing suspen-
sion may occur between the assignment and
rt_sleep().

In general, an rt_sleep(Delay) primitive is not
enough to implement periodic processes cor-
rectly.

A rt_sleep_until(DelayUntil) primitive is needed.
©2000 M. Lawford 22

Implementing Periodic Tasks
Attempt 3:

LOOP
t=rt_get_time();
PeriodicActivity;
t=IncTime(t,h);
rt_sleep_until(t);

END;

Does not work. An interrupt may occur be-
tween the rt_sleep_until(t) and rt_get_time().

©2000 M. Lawford 23

Implementing Periodic Tasks
Attempt 4:

t=rt_get_time();
LOOP
PeriodicActivity;
t=IncTime(t,h);
rt_sleep_until(t);
END;

Best solution using “one shot” timers.

Will try to catch up if the actual execution
time of PeriodicActivity occasionally becomes
larger than the period.

©2000 M. Lawford 24

Implementing Periodic Tasks

Implementing periodic behavior with “one-shot”
timers is inefficient.

Typically requires 3x longer setup time than
using periodic timer.

Solution: Make the task periodic and allow
RT-scheduler to schedule task using its peri-
odic timers.

Example: Generate a 10kHz square wave on
a pin of the parallel port.

The variation in time of execution of a periodic
process is known as jitter, i.e.,

. time of expected actual time
Jitter = . — . .
execution start execution begins

RTOS try to minimize jitter.
©2000 M. Lawford 25

The Real-Time Linux API

The RT-Linux function calls used in the 10kHz
square wave program are:

rt get time returns the time in ticks .

rtl task init sets up, but does not schedule a
task.

rt task make periodic asks the periodic sched-
uler to the run task at a fixed period (given
as a parameter).

rt_task wait vields the processor until the next
time slice for this task.

©2000 M. Lawford 26

Concurrent Programming

What happens when there is more than one
task we want to run?

1. Multiprogramming: the processes multiplex
their execution on a single CPU

2. Multiprocessing: the processes multiplex
their execution on a multiprocessor system
with tightly coupled processors

3. Distributed processing: the processes mul-
tiplex their

There is (some) true parallelism in (2) and (3).

Often we have a single CPU (1) or fewer CPUs
than tasks (2), so we need to ‘“fake” concur-
rent processes via interleaving semantics. This
IS known as logical parallelism.

©2000 M. Lawford 27

RTOS Basics

A Real-Time Operating System (RTOS) typ-
ically consists of

e a sequential language (C) with real-time
primitives (the real-time API)

e real-time kernel for process handling

The Kernel is the part of multitasking sys-
tem responsible for management of CPU time
(scheduling) and providing facilities for inter-
process coordination, i.e.

e Mmanagement of the tasks
e communication between tasks

When the kernel decides to run a different task,
it simply saves the Task's Context (CPU reg-
isters) in the current tasks storage area.

©2000 M. Lawford 28

Context Switching

In a preemtive kernel the highest priority task
ready to run is always given the CPU. A con-
text switch happens when:

e the running process voluntarily releases the
CPU (e.g., process calls rt_task wait)

e when the running process performs an op-
eration that causes a blocked process of
higher priority to become ready

e when an Interrupt Service Routine has oc-
curred which causes a blocked process of
higher priority to become ready

With a preemptive kernel, execution of the
highest priority task is deterministic (i.e., it can
be determined when that task will get control
of the CPU).

©2000 M. Lawford 29

Context Switching (cont.)

What happens during a context switch?
1. Disable all interrupts

2. Save the state of the processor immedi-
ately before the switch is saved on the stack
of the suspended process

3. Switch the context:
e the value of the stack pointer is stored

in the process record of the suspended

process
e the stack pointer is set to the value that

iIs stored in the process record of the
New process

4. Restore the state of the resumed process
is restored (popped from its stack)

5. Renable interrputs

The time required to switch from one task to
another is the context switching time.
©2000 M. Lawford 30

Interrupts

(see class notes)

interrupt latency

interrupt service routine

interrupt priority level

kernel

kernel module

©2000 M. Lawford

31

What's a Priority?

How does the kernel decide which process has
the highest priority?

Each process is assigned a number that reflects
the importance of its time demands. Typically
a lower number means a higher priority i.e.,

“The Number 1 priority is . . . ”

RT-Linux starts priorities at 1 though some
other RTOS including the RTAI version of Linux
start priorities at 0. Both real-time versions of
linx have a lowest priority RT_LOWEST PRIORITY.

Using priority-based scheduling, processes that
are Ready to execute are stored in task queue
according to priority.

©2000 M. Lawford 32

Static vs. Dynamic Priorities

With (static) priority-based scheduling the pri-
ority of a process is fixed. This is known as
Fixed priority scheduling.

There are different methods of having dynamic
priorities that change depending upon time and
circumstance. One common dynamic priority
based scheduling policy is familiar to Engineer-
ing students: Earliest Deadline First (EDF)
scheduling.

In EDF scheduling the closeness of the dead-
line for completion of a task determines its pri-
ority.

©2000 M. Lawford 33

RT-Linux Fixed Priority Scheduler

How is a task chosen to preempt a running
task?

In one-shot timer mode, if there are no periodic
tasks it uses:

inline static struct rtl_thread_struct *
find_preemptor(schedule_t *s,
struct rtl_thread_struct *chosen){
struct rtl_thread_struct *t;
struct rtl_thread_struct *preemptor=0;
for (t = s->rtl_tasks; t; t = t->next) {
if (t->state == RTL_THREAD_DELAYED)
{
if (t->sched_param.sched_priority >
chosen->sched_param.sched_priority)
{
if (!preemptor ||
(t->resume_time < preemptor->resume_time))
{
preemptor = t;
}
}
}
}
return preemptor;

}
©2000 M. Lawford 34

Scheduling Theory

How do we maximize use of resources & de-
termine if we can meet all deadlines?

Problem: Sometimes these goals conflict.

E.g., to maximize throughput (number of tasks
run in a given amount of time) a multitasking
OS such as Linux or NT might try to minimize
the:

e (weighted) sum of completion times
e schedule length
e humber of processes required

These metrics are not useful for real time sys-
tems since there is no direct assesment of tim-
ing properties.

©2000 M. Lawford 35

Scheduling Theory (cont.)

Minimizing the sum of completion times is use-
less if it causes large jitter in a periodic process
or forces task to be completed after its dead-
line.

We need some real-time scheduling policies that
are “optimal’ . Lets consider the following def-
inition of optimal:

A scheduling algorithm is optimal if,
when it fails to meet a deadline then
no other algorithm can meet it.

©2000 M. Lawford 36

EDF Dynamic Scheduler

States of EDF task model (from its rt_sched.h):

enum {RT_TASK_READY, RT_TASK_DELAYED, RT_TASK_DORMANT};

struct rt_task_struct {

int
int
int
int
int
int
int

stack; / hardcoded */
uses_fp; /* this one is too */
magic;

state;

*stack_bottom;

priority;

identifier; /* EDF x*/

RTIME period;

RTIME resume_time;

RTIME relative_deadline; /* EDF */
RTIME absolute_deadline; /* EDF x/
struct rt_task_struct *next;

};

typedef struct rt_task_struct RT_TASK;

Note: Task also has an implicit state of “RT_TASK RUNNING"

when it is the task pointed to by variable rt_current.

©2000 M. Lawford 37

EDF Dynamic Scheduler (cont)

The EDF scheduler is:

void rt_schedule(void)

{
RTIME now;
RTIME preemption_time;
RT_TASK *task;
RT_TASK *new_task;
RT_TASK *preemptor;
int flags;
RTIME next_deadline; /* EDF */

r_save_flags(flags);
r_cli();
now = rt_get_time();

for (task = rt_tasks; task; task = task->next) {
if (task->state == RT_TASK_DELAYED &&
task->resume_time < now + 10) {
task->state = RT_TASK_READY;

}
Above for loop implements Task model transitions :

RT_TASK_DELAYED — RT_TASK_READY

©2000 M. Lawford 38

EDF Dynamic Scheduler (cont)

Core of the EDF algortithm is:

new_task = &rt_linux_task;

/% BEGIN EDF sk k sk sk sk sk 3k 5k ok ok 3k 3k 3k 3k ok 5k ok 3k 3k 3k ok ok >k 3k 3k 3k 3k ok >k 3k 3k 3k ok ok ok >k ok sk %k /
next_deadline = rt_linux_task.absolute_deadline;

for (task = rt_tasks; task; task = task->next) {
if (task->state == RT_TASK_READY &&
task->absolute_deadline < next_deadline) {
new_task = task;
next_deadline = task->absolute_deadline;
}
}

preemptor = 0;
preemption_time = RT_TIME_END;
for (task = rt_tasks; task; task = task->next) {
if (task->state == RT_TASK_DELAYED &&
task->resume_time < preemption_time) A
preemption_time = task->resume_time;
preemptor = task;

}
}

/* END EDF sk sksk sk sk sk ok sk 3 ok sk 3k ok sk ok ok 3k ok sk 3k ok 3k 3 ok sk ok ok 3k ok ok 3 ok sk 3 ok sk ok ok sk ok ok k /

1st for loop determines ready task with earliest deadline.

2nd loop determines when next task will become ready
and we’ll have to reschedule again.

©2000 M. Lawford 39

EDF Dynamic Scheduler (cont)

if (preemptor) {

rt_set_timer (preemption_time) ;
} else {

rt_no_timer();

}
if (new_task == rt_current) {
r_restore_flags(flags);
return;
}

if (new_task == &rt_linux_task) {
SFIF = linux_irq_state;

} else if (rt_current == &rt_linux_task) {
linux_irq_state = SFIF;
SFIF = 0;

}

new_task->state = RT_TASK_READY;
rt_switch_to(new_task);
r_restore_flags(flags);

}

For the ready task with earliest deadline rt_switch to(new_task)
implements transition:

RT_TASK_READY — RT_TASK _RUNNING

©2000 M. Lawford 40

Rate Monotonic (RM) Scheduler

Core of the RM algortithm is:

new_task = &rt_linux_task;

/* begin rate-monotonic scheduling */
shortest_period = rt_linux_task.period;

for (task = rt_tasks; task; task = task->next) {
if (task->state == RT_TASK_READY &&
task->period < shortest_period) {
new_task = task;
shortest_period = task->period;
}
}

preemptor = 0;
preemption_time = RT_TIME_END;
for (task = rt_tasks; task; task = task->next) {
if (task->state == RT_TASK_DELAYED &&
task->resume_time < preemption_time) {
preemption_time = task->resume_time;
preemptor = task;

}
}

/* End of rate-monotonic scheduler */

1st for loop determines ready task with shortest period

2nd loop determines when next task will become ready
and we’ll have to reschedule again.

©2000 M. Lawford 41

