
Proving Real-time Properties of Embedded

Software Systems

0-0

Outline of Presentation

• Introduction and Preliminaries

• Previous Related Work

• Held For Operator

• Sensor Lock System

• Verified Design for Timing Properties

• Delayed Trip System

• Optimization

• Conclusion

1

Real-time Safety Critical Systems

A system whose correctness depends on

• the system outputs values

• the times at which these outputs are generated

Failure results in:

• physical injury or loss of life

• unacceptable financial loss

Applications Areas:

• Medical equipment

• Aerospace

• Process control - e.g. Darlington Nuclear Generating Station

Shutdown Systems (SDS)

2

Motivation

• Minor changes result in another extensive (&expensive) round of

testing and review

• Capture and validate system requirements

• Guide the design and verification

• Reduce the verification work by modular design

• Approach to formally verified design optimization

Research Scope

• Will consider real-time systems in a discrete time setting

• Only one clock working in one real time system

• No concurrent clocks at different sample rates

• Ignore the intersample behaviour when modeling real-time systems

• No tolerance on timing specifications

3

Preliminaries

4-Variable Model (Parnas &Madey)

M C

I O

REQ

SOF

IN OUT

M - Monitored Variable statespace

C - Controlled Variable statespace

I - Input Variable statespace

O - Output Variable statespace

M,C, I,O are time series vectors and REQ, SOF , IN , OUT are

relations.

4

We use a special case where all relations are functional resulting in proof

obligation:

REQ = OUT ◦ SOF ◦ IN (1)

Here REQ and SOF are the one step transition functions of the

requirements and design respectively.

5

Example: Tabular Requirements

Many of the system requirements involve simple input/output logic,

possibly dependent upon the previous value of the state variable:

e.g., Power Conditioning

Power

Time

Kin

Kout
FALSE

TRUE

t1

No Change

6

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool =

Power ≤ Kout Kout < Power < Kin Power ≥ Kin

FALSE Prev TRUE

What about more complicated timing properties?

7

Clocks Theory (Dutertre and Stavridou)

For a positive real number T , we define a clock of period T , denoted

clockT , to be a set of “sample instances”

clockT := {t0, t1, t2, . . . , tn, . . .}

= {0, T, 2T, . . . , nT, . . .}

For a period T = 5, the clock of period 5 is simply

clock5 := {0, 5, 10, 15, . . .}

Note that clock5, like all clocks as defined above, “starts” at time t0 = 0.

Define init, nextT and preT operators on the elements of clockT as

follows:

8

init(tn) :=

8

<

:

TRUE, n = 0

FALSE, otherwise

preT (tn) :=

8

<

:

tn−1, n ≥ 1

undefined, otherwise

nextT (tn) := tn+1

9

Held For Operator (Lawford, Wu, OPG)

pred(clockT) := {f |f : clockT → {TRUE, FALSE}}

HELD FOR : pred(clockT) × R
≥0 → pred(clockT)

such that (P)HELD FOR(duration)(tn) = TRUE iff

(∃tj ∈ clockT)(tn − tj ≥ duration)∧

(∀ti ∈ clockT)(tj ≤ ti ≤ tn ⇒ P (ti))

Here we use R
≥0 to denote non-negative real numbers.

10

Example:

Let T=150, Sensor(t) be a clock predicate

Ff TFF

3

tn

0

T

time

450

2

300

1
F

0 150

F TFFg

Sensor

n

f(450) = (Sensor)Held For(295)(450) = TRUE

g(450) = (Sensor)Held For(310)(450) = FALSE

Note: We ignore the intersample behaviour of Sensor.

11

Sensor Lock System

Sensor

Reset

SenLock
Sensor Lock

RT controller

Sensor Lock Real-time Controller

• Takes two boolean valued inputs, Sensor and Reset, and produces a

single boolean valued output SenLock that is updated

• Sampling rate T ,e.g., T=100ms

Behaviour

• When input Sensor is continuously TRUE for k ldelay = 150ms or

longer, then the channel is “locked” and SenLock output is TRUE

• Once “locked” (i.e., SenLock becomes TRUE), the system will not

“unlock” (SenLock becomes FALSE) until manually reset

(Reset = TRUE)

12

Software Requirements

The required behaviour of the update function is summarized by

the following table:

Result

Condition SenLock

(Sensor) Held for (k ldelay) TRUE

NOT [(Sensor) Held Reset FALSE

for (k ldelay)] ¬Reset No Change

Here k ldelay = 150ms. When the conjunction of atomic

proposition in a given row of the Condition columns is TRUE,

then SenLock is set to the Result value for that row. E.g., when

NOT [(Sensor)Held For(k ldelay)] ∧ Reset

then SenLock = False.

13

Software Design

The SDD or “implementation” of this specification is given by the

following table:

Results

Condition Elock LTime

Elock Reset GOOD 0

NOT =LOCK ¬Reset LOCK 0

Sensor Elock6=LOCK GOOD 0

LTime=0 BAD next(LTime)

Sensor 0 <LTime<k ldelay NC next(LTime)

LTime≥k ldelay LOCK 0

14

Notes:

1. Here Elock has type {GOOD, BAD, LOCK}. The designer

wants to use the additional information elsewhere in the

system.

(Elock = LOCK) ≡ (SenLock = TRUE)

2. “NC” denotes “No Change”.

3. LTime is timer variable used to implement the Held For.

15

Systematic Design Verification

SenLock_ELOCK: THEOREM

SenLock(t) = LOCK?(Elock(ELOCK(t)))

To apply PVS to this Verification Problem we use the strategy

(INDUCT "t" 1 "clock induction"). This breaks proof into two

parts: (i) Base Case when t=0, and (ii) inductive case. In the

course of proving these cases, we find the following errors:

1. Wrong initial condition for Elock.

2. Elock becomes unlocked without a manual reset.

3. Cases exist where manual reset unlocks the SenLock but not

Elock.

16

Systematic Design Verification (cont)

The complete specification and design require fail-safe operation so

the value of SenLock was initially set to TRUE. In the original

design Elock was initialized to BAD.

The SDD becomes unlocked because the LTime counter is reset to

0 when Elock is set to LOCK. As a result the system loses the

“history” of Sensor. Although Elock does not correctly implement

this requirement as specified by SenLock, it also illustrates how

SenLock could be made “safer”. When Sensor = TRUE, Elock

will not allow a manual reset, while SenLock will permit such a

reset if Sensor was FALSE in the recent past.

17

Systematic Design Verification (cont)

Taking these issues into consideration, we provide “fixed” versions

of the specification and implementation below:

Result

Condition SenLock

(Sensor) Held for (k ldelay) True

NOT [(Sensor) Reset ¬Sensor False

Heldfor (k ldelay)] Sensor No Change

¬Reset No Change

18

Results

Condition Elock LTime

Elock Reset GOOD 0

NOT =LOCK ¬Reset LOCK 0

Sensor Elock 6=LOCK GOOD 0

LTime< Elock 6=LOCK BAD next(LTime)

Sensor k ldelay Elock=LOCK LOCK next(LTime)

LTime≥ k ldelay LOCK NC

19

Software Requirements Specification (SRS)

Result

Condition SenLock

(Sensor) Held For (k ldelay) True

NOT [(Sensor) Held Reset ¬Sensor False

For (k ldelay)] Sensor No Change

¬Reset No Change

Software Design Description (SDD)

Results

Condition Elock LTime

Elock Reset GOOD 0

NOT =LOCK ¬Reset LOCK 0

Sensor Elock6=LOCK GOOD 0

Sensor LTime<k ldelay NC next(LTime)

LTime≥ k ldelay LOCK NC

20

A Systematic Approach

Problem: Getting complicated timing properties right in the

implementation can be difficult when designer has to start and stop

timers to implement timing constructs.

Solution: Used pre-verified blocks of code to implement recurring

types of timing requirements.

Timing Behaviour in SRS and SDD of Sensor Lock System

• SRS: (Sensor)Held For(k ldelay)

• SDD: Sensor ∧ LTime ≥ k ldelay

Why not reuse this verified design for Held For operator?

21

Monolithic Verification v.s.
Modular Verification
Monolithic Verification

• All-in-one structure for code and verification

• Difficult to identify and implement timing properties

• Difficult to verify the system

• Non-re-usability

• One change in requirement need to verify the whole system again.

• Potential performance advantage

Modular Verification

• Modularized structure easier for code maintenance

• Clear implementation of timing properties

• Easy to use and guarantee the correctness. Developer can easily use the module

implementing a timing property

• Easier verification by instantiating a pre-verified theorem to complete the system specific

verification

• Greatly reduced the verification work if changes happen to requirements

• Re-usability and Portability

• Overhead may exist due to modularization

22

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � �

� � � � �

� � � � �

� � � � �

Modular ProofMonolithic Proof

Clocks

Held_For Held_For

Clocks Clocks

Held_For

SensorLock

SensorLock

TimerGeneral TimerGeneral

DelayedTrip

Held_For.pvs

Held_For.prf

DelayedTrip.pvs

DelayedTrip.prf

TimerGeneral.pvs

TimerGeneral.prf

System Specific proof

Reusable Proof

Existing Proof

Clocks.prf

Clocks.pvs

23

TimerGeneral [T:posreal] : THEORY

BEGIN

IMPORTING Held_For[T]

t, previous: VAR clock

P:var pred[clock]

timeout : VAR posreal

CurrentP:VAR bool

TimerUpdate(CurrentP,timeout,previous):clock= TABLE

%------------------------------------%

|[previous<timeout|previous>=timeout]|

%--%

|CurrentP | next(previous) | previous ||

%--%

|NOT CurrentP | 0 | 0 ||

%--%

ENDTABLE

24

Timer(P,timeout)(t):RECURSIVE clock=

IF init(t) THEN TimerUpdate(P(t),timeout,0)

ELSE TimerUpdate(P(t),timeout,Timer(P,timeout)(pre(t)))

ENDIF

MEASURE rank(t)

TimerGeneral: THEOREM

IF init(t) THEN FALSE

ELSE P(t) AND Timer(P,timeout)(pre(t))>=timeout ENDIF

= Held_For(P,timeout)(t)

END TimerGeneral

25

Delayed Trip System

Delayed Trip

SystemPower

Pressure

Relay State

Delayed Trip Controller

• Takes 2 boolean inputs Power and Pressure; output Relay as time

predicate

• If power and pressure both exceed the Power Threshold (PT) and

Delayed Trip Point(DSP) for k timeout1 = 3s, then open the relay

for k timeout2 = 2s. The DTS block’s cycle time is T = 100ms,

which means system inputting and updating every 0.1 seconds

Timing behaviour

• Need to use 2 Held For Operators to specify requirements (SRS)

• Nesting of 2 Held For Operators is necessary

26

Delayed Trip System SRS

Result

Condition relay open

(PP) Held For k timeout1 TRUE

(¬ [(PP) Held For k timeout1]) Held For k timeout2 FALSE

[¬ (PP) Held For k timeout1] ∧

(¬ [¬ (PP) Held For k timeout1)] Held For k timeout2) No Change

27

Delayed Trip System PVS for Requirements

DelayedTrip_SRS(P,t,k_timeout1,k_timeout2): RECURSIVE bool=

IF init(t) THEN FALSE ELSE

LET NoChange = DelayedTrip_SRS(P,pre(t),k_timeout1,k_timeout2) IN

TABLE

|Held_For(P,k_timeout1)(t) | TRUE ||

|Held_For(NOT Held_For(P,k_timeout1),k_timeout2)(t) | FALSE ||

|NOT Held_For(P,k_timeout1)(t) &

(NOT Held_For(NOT Held_For(P,k_timeout1),k_timeout2)(t))| NoChange ||

ENDTABLE

ENDIF

MEASURE rank(t)

Delayed Trip System PVS for Design

SDD_State: TYPE = [# Relay: Relay_State, Timer1: clock, Timer2:clock #]

RelayUpdate(k_timeout1,k_timeout2,CurrentP,S):Relay_State =

LET NoChange = Relay(s) IN

TABLE

|CurrentP & (Timer1(S) >= k_timeout1) |OPEN ||

|NOT (CurrentP&Timer1(S)>=k_timeout1) & Timer2(S)>=k_timeout2 |CLOSED ||

|NOT(CurrentP& Timer1(S)>=k_timeout1) & NOT(Timer2(S)>=k_timeout2)|NoChange||

ENDTABLE

28

Delayed Trip System PVS for Design (Continued)

SDD(Power,Pressure)(t):RECURSIVE SDD_State =

LET pp = Power(t)>=PT & Pressure(t)>=DSP IN

IF init(t) THEN (# Relay := CLOSED,

Timer1:=TimerUpdate(pp,k_timeout1,0),

Timer2:=TimerUpdate(TRUE,k_timeout2,0) #)

ELSE

(#

Relay:=RelayUpdate(Power(t),Pressure(t),SDD(Power,Pressure)(pre(t))),

Timer1:=TimerUpdate(pp,

k_timeout1,

Timer1(SDD(Power,Pressure)(pre(t)))),

Timer2:=TimerUpdate(NOT (pp & (Timer1(SDD(Power,Pressure)(pre(t)))>=floor(k_timeout1/T)*T)),

k_timeout2,

Timer2(SDD(Power,Pressure)(pre(t)))) #)

ENDIF

MEASURE rank(t)

Timer1_Timer: lemma Timer(P,k_timeout1)(t)=Timer1(SDD(P,k_timeout1,k_timeout2)(t))

Timer2_Timer: lemma

Timer(NOT Held_For(P,k_timeout1),k_timeout2)(t)= Timer2(SDD(P,k_timeout1,k_timeout2)(t))

DelayedTrip_Block :THEOREM

DelayedTrip_SRS(PP,k_timeout1,k_timeout2)(t)= OPEN?(Relay(SDD(PP,k_timeout1,k_timeout2)(t)))

29

Performance and Verification

Objective:

• Improve the performance

• Guarantee the correctness of Optimized Code (Implementation)

• Save the verifier and developer from repeated work

Methods:

• Use PVS theorem prover’s rewriting and propositional simplification

• Extend the Systematic Design Verification approach

30

REQ

SOF

IN OUT

idO

SOFopt

idI

M

O

O

C

I

I

31

DTS fastSDD implementation

How do you produce the “optimized” version with fewer conditional

evaluations?

Define function constant fastSDD of same type as SDD, then try to prove

they are equivalent.

fastSDD(Power,Pressure)(t):SDD_State

Optimize: PROPOSITION

fastSDD(Power,Pressure)(t)= SDD(Power,Pressure)(t)

You can actually use PVS to produce the optimized code by (skolem!),

rewrite the definitions of SDD and TimerUpdate, then (bddsimp) and

interpret the unprovable sequents as disctinct case.

There are now some compilers that do this sort of thing for you.

32

Pseudo code for “Optimized” Delayed Reactor Trip Example

IF Power>=PT & Pressure(t)>=DSP THEN

IF Timer1>=k_timeout1 THEN

Relay := OPEN,

Timer2 := 0

ELSIF Timer2>=k_timeout2 THEN

Timer1 := Timer1 + T

ELSE

Timer1 := Timer1 + T,

Timer2 := Timer2 + T

ENDIF

ELSIF Timer2>=k_timeout2 THEN

IF Power(t)<PT THEN

Relay := CLOSED,

Timer1 := 0

ELSE

Timer1 := 0

ENDIF

ELSE

Timer1 := 0,

Timer2 := Timer2 + T

ENDIF

33

0.01

0.1

1

10

100

1000

10000 100000 1e+06 1e+07 1e+08

tim
e(

s)

iterations

Performance Evaluation

fastSDD

0.01

0.1

1

10

100

1000

10000 100000 1e+06 1e+07 1e+08

tim
e(

s)

iterations

Performance Evaluation

fastSDD
SDD

0.01

0.1

1

10

100

1000

10000 100000 1e+06 1e+07 1e+08

tim
e(

s)

iterations

Performance Evaluation

fastSDD
SDD

fastSDD track

0.01

0.1

1

10

100

1000

10000 100000 1e+06 1e+07 1e+08

tim
e(

s)

iterations

Performance Evaluation

fastSDD
SDD

fastSDD track
SDD track

34

Conclusion

• PVS-RT method deliver a guarantee of domain coverage.

• Pre-verified timing properties provide significant aid to PVS-RT

method for re-usability and portability

• Formally verified Design Optimization

• Also PVS theorem prover can help to validate the requirements

Future Work

• Held For operator with timing tolerance

• Consider applying different clock rates for data streams in the

real-time systems.

• Create a real-time property verification library, including different

timing operators.

35

