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Control Basics

Feedback control: The use of information to

produce the desired behavior from a dynamical

system.

See Fig 2.8 for basic unity feedback diagram.

regulation : The process of holding output

y(t) close to the reference signal r(t) (i.e.

y(t) tracking r(t)).

disturbance rejection : Good regulation in

the presence of disturbance signals.

low sensitivity : A system has low sensitivity

to some plant parameters if it has good

regulation in the face of peturbation to

these parameters.

robust : good disturbance rejection + low

sensitivity
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Useful Facts

For signal x(t), t > 0, denote the Laplace trans-

form of x(t) by L(x(t)) = X(s).

Then L(dx
dt ) = sX(s) and L−1( A

s+a) = Ae−at.

A system is strictly stable if all poles are in

the open LHP. In this case the Final Value

Theorem (FVT) states:

lim
t→∞

x(t) = lim
s→0

sX(s)

From complex analysis: ejω = cosω + j sinω.

Any complex number z = σ + jω can also be

represented as a radius r and angle θ such that

z = rejθ (how?) which in “phasor” notation is

written r∠θ.

Then for complex numbers z1 and z2, we have

z1 · z2 = r1 · r2∠(θ1 + θ2).
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Block Diagram Manipulation

For Fig. 2.1 we have:

Y (s)

R(s)
=

G(s)

1 +H(s)G(s)
(2.10)

We can use this to obtain other transfer func-

tions (TFs). E.g. for Fig. 2.8:

Y (s)

R(s)
=

D(s)G(s)

1 +D(s)G(s)

Just take H(s) := 1 and G(s) := D(s)G(s) in

(2.10)

Typically unity feedback configuration is used

in digital control with error formed in the com-

puter.

What is the difference between these configu-

rations? Consider G(s) = 1
s(s+1)

and D(s) =

H(s) = K.
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Response vs. Pole Location

Consider TF H(s) = b(s)
a(s)

.

The poles (zeros) of H(s) are the values of s
s.t. a(s) = 0 (b(s) = 0).

Let δ(t) denote the unit impulse. Then L(δ(t)) =
1 The impulse response of H(s) is L−1(H(s)).

Each pole of H(s) can be identified with a par-
ticular response (see Fig. 2.5).

Note that complex poles (or zeros) appear in

pairs as complex conjugates

s = −σ ± jωd

which will result in partial fractions expansions

of the form:
α+ jβ

s+ σ + jωd
+

α − jβ

s+ σ − jωd

resulting in time domain response of the form:

e−σt[2α cosωdt+2β sinωdt]
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Time Domain Specifications

For Fig. 2.6. w.r.t. a system’s unit step re-

sponse:

rise time tr: Time it takes the system to go

from 10% to 90% of final value.

settling time ts: time it takes system tran-

sients to decay to within, e.g., 1% of the

final value

overshoot Mp: maximum amount systems over-

shoots its final value divide by the final

value.

steady state error ess:

ess := lim
t→∞

e(t)
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PID Control

Transfer function for PID controller:

C(s) =
U(s)

E(s)
= Kp +

KI

s
+Kds

where

• Kp = Proportional gain

• KI = Integral gain

• Kd = Derivative gain

which results in the control law:

u(t) = Kpe(t) +KI

∫ t

0
e(η)dη +Kd

de

dt
(t)
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Characteristics of P, I, and D con-

trollers

In general w.r.t. Gcl(s) system step response:

proportional controller (Kp) will reduce the

rise time and will reduce ,but never elimi-

nate, the steady-state error.

integral control (KI) will eliminate the steady-

state error, but may make the transient re-

sponse worse.

derivative control (Kd) will increase the sta-

bility of the system, reduce the overshoot,

and improve the transient response.
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Effects of Kp, KI and Kd Gains

Effects of each of controllers Kp, Kd, and Ki

on a closed-loop system Gcl are summarized in

the table shown below.

Gain tr Mp ts ess

Kp ↓ ↑ ∆ ↓
KI ↓ ↑ ↑ 0
Kd ∆ ↓ ↓ ∆

where ∆ =“small change”, ↑ = “increase” &

↓ = “decrease”

Note: These correlations may not always be

accurate, because Kp, KI, and Kd are depen-

dent of each other. Therefore the table should

only be used as a reference when you are de-

termining the values for the gains.
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General tips for designing a PID
controller

When you are designing a PID controller for a

given system, follow the steps shown below to
obtain a desired response.

1. Obtain an open-loop response and deter-
mine what needs to be improved

2. Add a proportional control to improve the
rise time

3. Add a derivative control to improve the
overshoot

4. Add an integral control to eliminate the
steady-state error

5. Adjust each of Kp, Ki, and Kd until you

obtain a desired overall response.
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Root Locus

Shows how system’s open loop dynamics influ-

ence closed loop. Usually used to study effect

of loop (proportional) gain but can be used to

study effect of any parameter of C(s).

For block diagram Fig. 2.8, we know that the

closed loop TF is:

Y (s)

R(s)
=

D(s)G(s)

1 +D(s)G(s)

Typically D(s)G(s) = K b(s)
a(s)

where

b(s) = b1sm + b2sm−1 + . . .+ bm+1

a(s) = a1sn + a2sn−1 + . . .+ an+1

Thus the poles of the closed loop system are

values of s such that:

1 +K
b(s)

a(s)
= 0 (2.26)
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Root Locus (cont)

Consider the case where K > 0. Eqn. 2.26 can

be rewritten as:

a(s) +Kb(s) = 0

so as K → 0 the poles of the closed-loop sys-

tem are a(s) = 0 or the poles of D(s)G(s).

Rewriting Eqn. 2.26 again we obtain:

a(s)

K
+ b(s) = 0

so as K → ∞, the poles of the closed-loop

system are b(s) = 0 or the zeros of D(s)G(s).

But there are n roots for all the above so when

n > m where do the other n − m poles go?

To ∞ (and beyond! ;-).
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Root Locus (cont)

Let’s be a little more specific. Since

1 +K
b(s)

a(s)
= 0

we know that K b(s)
a(s)

= −1. Therefore for K > 0

1. |b(s)
a(s)

| = 1
K , and

2. ∠
b(s)
a(s)

= π +2lπ rad for l ∈ Z

Assume that

b(s)

a(s)
=

∏m
i=1(s − zi)

∏n
i=1(s − pi)

Then

∠
b(s)

a(s)
=

m
∑

i=1

∠(s − zi)−
n
∑

i=1

∠(s − pi)
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Root Locus (cont)

For some s1 on the real axis, consider ∠
b(s1)
a(s1)

:

• zeros (poles) to the right of s1 on the axis

contribute +π (−π) rads.

• zeros & poles to the left of s1 on the axis

contribute 0 rads.

• angles of complex pairs of poles or zeros

cancel each other out.

If s1 lies on the root locus for K > 0, we must

have ∠
b(s1)
a(s1)

= π +2lπ for some l ∈ Z.

Therefore, there must be an odd number of

poles and zeros to the right of s1.
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Drawing the Root Locus

To sketch a root locus for a give

D(s)G(s) = b(s)
a(s)

, use the follow steps:

1. Mark the n open loop poles (roots of a(s))
with a × and the m open loop zeros (roots

of b(s)) with a ◦.

2. Draw the locus on the real axis where there

are an odd number of poles and zeros to

the right.

3. If there are two or more poles than zeros

(i.e. n − m ≥ 2), we will have this many

asymptotes to ∞, centered at α and at an-

gles φl where:

α =

∑

pi −
∑

zi

n − m

φl =
π +2lπ

n − m
, for l = 0,1, . . . n − m − 1
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Frequency Response Design

Suppose we have a strictly stable (all poles in

open LHP) linear time invariant (LTI) system

given by:

Y (s)

U(s)
= G(s)

Q: What is the steady state response to a si-

nusoidal input?:

u(t) = Uo sinω1t

A: In steady state transient response from sta-

ble poles → 0 so we are left with

y(t) = AUo sin(ω1t+ φ)

where

A = |G(jω1)|

φ = ∠G(jω1) = tan−1 Im[G(jω1)]

Re[G(jω1)]
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Frequency Response (cont)

So for a stable LTI system with TF G(s) with

sinusoidal input, the steady state magnitude

and phase of the output w.r.t. the input are

functions of the frequency ω, respectively de-

noted:

A(ω) = |G(jω)| and φ(ω) = ∠G(jω)

Plotting the frequency response A(ω) vs. ω and

φ(ω) vs. ω are often referred to as Bode plots.

They can be used to help design the system.

In general a stable closed loop system (cascade

configuration) has TF:

Y (s)

R(s)
= Gcl =

D(s)G(s)

1 +D(s)G(s)

Typically the output follows the input at low

frequency (|Gcl| = 1) and fails to track at higher

frequencies (|Gcl| < 1).
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What the hell is a decibel?

In systems we are often interested in how sys-

tem affects a signal from its input to its output.

One important measure is the power gain from

the input to the output Pout
Pin

. A bel is the log10

of this ratio. A decibel (dB) is one tenth of a

bel. Thus the power gain in decibels is

10 log10
Pout

Pin
= 10 log10

PY

PU

for our system G(s) = Y (s)
U(s)

.

For a voltage or a current, power varies as the

square of the amplitude of the signal. E.g.,

Pout

Pin
=

v2
out/R

v2
in/R

=

(

vout

vin

)2

or
Pout

Pin
=

i2outR

i2inR
=

(

iout

iin

)2

Thus the power gain
PY
PU

in decibels of G(s) for

sinusoidal input at frequency ω1 is:

10 log10

(

Y (jω1)

U(jω1)

)2

= 20 log10 |G(jω1)| dB
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System Bandwidth ωBW

The bandwidth of the system (ωBW ) is defined

to be the maximum frequency at which the sys-

tem will satisfactorily track a sinusoidal input.

By “satisfactory” tracking we roughly mean

that the power from the input to the output is

reduced by no more than 1
2.

Since power varies as the square of the ampli-

tude of the signal we have at the bandwidth

frequency ωBW :

1

2
=

PY

PU
=

|Y (jwBW )|2
|U(jwBW )|2 = |G(jwBW )|2

So we must have |G(jwBW | = 1√
2

∼= 0.707.

Measuring the power gain in decibels (dB) we

have

20 log10 |G(jwBW )| = 20 log10(
1√
2
)

= −3 dB
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Gain& Phase Stability Margins

Recall from the section on Root Locus that

the roots of 1 + KD(s)G(s) = 0 occur when

KD(s)G(s) = −1 or

|KD(s)G(s)| = 1 and ∠KD(s)G(s) = π +2lπ

As we change the gain K, the closed loop sys-

tem becomes stable or unstable when the root

locus crosses the imaginary axis, i.e.,

|KD(jω)G(jω)| = 1 and ∠KD(jω)G(jω) = π+2lπ

Case 1: If the system becomes unstable as K

increases, the stability condition is

|KD(jω)G(jω)| < 1 when ∠KD(jω)G(jω) = −π

Case 2: If the system becomes stable as K

increases, the stability condition is

|KD(jω)G(jω)| > 1 when ∠KD(jω)G(jω) = −π
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Gain Margin & Phase Margin

To provide an idea of just how stable a system

is, we can talk about the Gain Margin (GM),

the factor by which |KD(jω)G(jω)| differs from
1 when

∠KD(jω)G(jω) = −π

And the Phase Margin, the factor by which

∠KD(jω)G(jω) differs from π when

|KD(jω)G(jω)| = 1

These values can be determined from the Bode

plot of the system with the help of a quick root

locus sketch.
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Example: Consider the system:

D(s)G(s) =
K(s+1)

s(s − 1)

From the root locus we see that the system

corresponds to Case 2. For K = 3.35 we get

GM=-10.5dB and PM=56.8 degrees.
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Example (cont.): For D(s)G(s) = K(s+1)
s(s−1)

with

K = 5.83, the GM=-15.3dB and PM=70.5

degress.
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