CS734 Assignment 1: Typechecking, Tables & Functional Software
Verification

Due: 1330 Monday February 14, 2002

All of your PVS work for this assignment should be done in a single file called al.pvs. Create a new
theory for each question with the following naming scheme. The theory containing all work for question
1 should be called A1Q1, the theory for question 2 should be called A1Q2, etc. Please check the course
website for information on how to submit the PVS part of your work electronically. You can hand in your
written work at the start of class on the due date.

1. Basic Propositional Logic in PVS (15 marks)
Consider the following simple theorem of propositional logic:
(pANqg—1rVs)<(p—(g—rVs))
a) Using only the proof rules from slides 3 and 4 of the Sequent Calculus and PVS section of the
notes, do a formal proof of the above formula.

b) In PVS prove that the above using the (FLATTEN) and (SPLIT) commands.
c) In PVS prove that the above using the (BDDSIMP) command.

2. PVS Basics: Predicate Logic in PVS - Part 1 (15 Marks Total)

a) (b marks) Using PVS, you will determine if the following set of premises is consistent or incon-
sistent.

I':'={Vz(P(z) = FyQ(z,y)), ~[Fz~P(z) vV IyQ(y, y)]}
b) (5 marks) In the file al.pvs, create a theory called A1Q2b write down a formula called Q2b that
you would try to prove to show that the premises are inconsistent. Try to prove this formula.

c) (5 marks) Create a new theory called A1Q2c. In this theory, create an interpretation structure
(i.e., a model) that satisfies all of the premises and then state a theorem called Q2c that you can
prove to show that all of the premises are true. Prove this theorem.

3. PVS Basics: Predicate Logic in PVS - Part 2 (10 Marks Total)

a) (5 marks) Determine if the following argument is valid or invalid by attempting to prove a theorem
called Q3a in a PVS theory called A1Q3.

Premises: Vz(R(a,z) - a=2xVa=>5),3xR(a,z),S(a) A =S(b)
Conclusion: R(a,a) Here z is a variable while a and b are constants.

b) (5 marks) Determine if the following set of premises is consistent or inconsistent by proving an
appropriate theorem in PVS called Q3b.

['i={JaVy(z = y), FzTy(z # y)}
4. Partial Functions, Types & Predicate Subtypes in Logic (10 Marks Total)
a) (3 marks) Consider the function:

f(z) =Inz

In your PVS file, write down the best PVS definition for f. Make sure there are no unproved TCCs
resulting from the definition. (Define the In (natural logarithm) function as an uninterpreted
function.)



b)

(7 marks) Using the definition from part (a), create the “best” PVS definitions for the function:
f(z,y) = In(z — (y + 1)?) Again make sure there are no unproved TCCs resulting from the
definition.

5. Tabular Specification I: Weakening conditions on tabular definitions (30 Marks Total)

Consider the tabular definition:

a)

Cl(xa y) CZ(xa y) C3($, y)
filz,y) | folz,y) | f3(z,y)

(6 marks) Let U be the nonempty universe that variables z,y range over. For the table to be
properly specified, it need not be the case that each of the functions is of type U x U — U. We
need only assume functions f;, fo and f3 are defined when C, C5 and C3 are respectively true.

flz,y) =

Create a PVS definition for this table where the conditions C; are uninterpreted two place predi-
cates over U (i.e. they have type U x U — bool) and each of the 2-ary functions is an uninterpreted
function with its domain restricted to the predicate subtype defined by the predicate at the top
of its column (i.e. the domain of f; is given by the predicate subtype defined by C}).

Be sure that your definition type checks. You should be able to prove all TCCs except for the
two associated with the Disjointness and Completeness of the table.

b) (6 marks) Add the definitions contained in Figure 1 to your Q1 Theory. Typecheck the theory and
x: VAR real
fm—mmm o b
g(x): real = TABLE |[ x<0 | x>=0 ]|
fm—mmm o b
I x| 2%x ||
ENDTABLE %----==--=—---- A
fm—m b
h(x): real = TABLE |[ x<=0 | x>=0 ]|
hm—mmm b
Il x| 2%x ||
ENDTABLE %---—-—-———————- Y

same: THEOREM g=h

Figure 1: Disjointness condition counter example

have PVS try to prove the resulting TCCs with the PVS/Parsing and Typechecking/typecheck-
prove command. Take a look at the TCCs for the file with the PVS/Viewing TCCs/show-tccs
command. As you can see, the disjointness condition h_ TCC1 fails for the table defining h. Rerun
the proof PVS tried by placing you cursor on this TCC and invoking the prover. This is a case
where the table still defines a total function even though PVS’ disjointness condition is violated.
Why?

(6 marks) The PVS example in Figure 1 provides some insight as to why the Disjointness con-
dition generated by PVS is overly restrictive. The theorem “same” can be easily proved using
the (GRIND) command. For the table used to define f in part (a) above, what is a weaker
“disjointness” condition that together with the completeness condition provides necessary and
sufficient conditions for the table defining f to be a total function.



d) (2 marks) Although the weakened “disjointness” condition together with the usual completeness
condition provides necessary and sufficient conditions for a table to define a function. Why is it
preferable for software engineers to use the more strict disjointness condition when using tables
to specify the functional requirements of software?

e) (10 marks) Use PVS to prove that your weaker disjointness condition together with the complete-
ness condition provide necessary and sufficient conditions for f to be a function.



