CS734 Assignment 2: Algebra, Logic & Software Design & Verification

Due: 1330 Thursday March 21, 2002

Download from the course website the file called a2.dmp. Put this file in the directory where you wish
to do your work and undump it with the PVS—Files and Theories—undump-puvs-files command. This will
create several files. All of your PVS work for this assignment should be done in the a2.pvs file at the
locations indicated by the comments in the file. Email your completed assignments to
lawford@groke.mcmaster.ca with the subject “Assignment2”.

. Equivalence Kernels and Software Verification (15 marks)

In the following, let Vi, V5 and V3 be nonempty sets. Any function f : V4 — V3 induces an equivalence
relation ker(f), the equivalence kernel of f, given by

(v1,v;) € ker(f) if and only if f(v1) = f(v])

where (vy,v]) € V1 x V1.

The PVS definition of ker(f) appearing in theory equivker make use of the relations theory from the
prelude file.

We can define a partial order on equivalence relations as follows: Let E; and Es be equivalence relations
on Vi. Then we say that E; is a refinement of E,, written E; < E, iff Yuy,v] € Vi @ (v,v]) € E; —
(Ula Ui) € EZ-

Consider the following result from discrete mathematics:

Theorem: Given two functions with the same domain, f : Vi — Vs and g : Vi — V5, then there exists
h : Vo — V3 such that the diagram in Figure 1 commutes iff ker(g) < ker(f).

Vi f Vs
7

g /b

/

/
/

Vo

Figure 1: Commutative diagram for (3h : Vo — V3)h o g = f iff ker(g) < ker(f)

The interpretation of this result is that for A to exist, g must retain as much or more information about
its domain than f.

Given f : Vi — V3 we define the image of f, denoted Im(f), as follows:
Im(f) := {vs € V3|Fv1 € Vi(f(v1) = v3)}

Let us now consider the dual situation shown in Figure 2 where we are given f and h and want to know
if there exists g such that hog = f.

Theorem: Given two functions with the same codomain, f : Vi — V3 and h : Vo — V3, then there exists
g : Vi = Vs, such that the diagram in Figure 2 commutes iff Im(f) C Im(h).

The interpretation of this result is that for g to exist, A must be able to reach every point that f can reach.

These two theorems have already been stated and proved in the PVS file in the theory . You will now use
them in PVS to prove some properties of the commutative diagrams for the Systematic Design Verification
procedure.

Vi Vs

Figure 2: Commutative diagram for 3¢ : V; — Vi(ho g = f) iff Im(f) C Im(h)

a) Given a software requirements function REQ : M — C together with abstraction functions
Absty : M — M, and Abstc : C — Cp, state and prove in PVS necessary and sufficient conditions for
the existence of an implementation function SOFggq : M, — C), such that:

SOFREQ o} AbStM = AbStc ¢} REQ

RE
M @ C

Abst M Abstc

SOFREQ

]\4:,J _____________ = Cp

b) Given a software requirements function REQ) : M — C and functions Absty, : M — M, and
Abstc, : Cp — C. State and prove necessary and sufficient conditions for the existence of an imple-
mentation function SOF : M, — C), such that:

Abstc, o SOF o Abstyy = REQ

RE
M @ C

Abst Abstc,

SOF
My~ =G,

c¢) In this problem we revisit a version of the verification of a simplified pressure sensor trip from the
lecture slides. The proposed specification and the actual implementation for the sensor trip are give in
Figure 3 by f PressTrip and PTRIP, respectively.

Theorem Sentripl is the block comparison theorem to verify that the implementation satisfies the
specification. This theorem is unprovable. In fact, it is currently impossible to change the definition of
PTRIP so that it will satisfy the specification f PressTrip. Using PVS state and prove a theorem to
this effect.

sentrip : THEORY
BEGIN

Trip: TYPE = {Tripped, NotTripped}
Altype: TYPE = {i: nat |0 <iAi<5000}

f PressTrip(Pressure : real, f PressTripS1: Trip): Trip = TABLE
‘ Pressure < 2400 ‘ 2400 < Pressure A Pressure < 2450 ‘ Pressure > 2450 ‘

‘ NotTripped ‘ f PressTripS1 ‘ Tripped ‘
ENDTABLE

PTRIP(PRES : Altype, PREV : bool) : bool = TABLE
| PRES < 2400 | 2400 < PRESAPRES < 2450 | PRES > 2450 |

| FALSE | PREV | TRUE |
ENDTABLE

Trip2bool(TripVal : Trip) : bool = TABLE
‘ TripVal = Tripped ‘ TripVal = NotTripped ‘
\ TRUE \ FALSE |
ENDTABLE

bool2Trip(BoolVal : bool) : Trip = TABLE
| BoolVal = TRUE | BoolVal = FALSE |

‘ Tripped ‘ NotTripped ‘
ENDTABLE

real2Altype(z : real): Altype = TABLE
|2<0]0 < zAz < 5000 | z > 5000 |

| 0 | floor(x) | 5000 |
ENDTABLE

Sentripl : THEOREM
(V (Pressure : real, f PressTripS1: Trip) :
f PressTrip(Pressure, f PressTripS1) =
bool2Trip(PTRIP (real2Altype(Pressure), Trip2bool(f_PressTripS1))))

END sentrip

Figure 3: Formatted PVS specification for pressure sensor trip example

2. When you undumped the a2.dmp file it created the additional files Clocks.pvs, Held For.pvs and
TimerGeneral.pvs. Load each of these files in the above order and as each file is loaded run the PVS
command PVS—Prover Invocation—prove-pus-file. All of the TCCs and theorems should prove (note:
this is the PVS 2.3 version of the files PVS 2.4 chokes on some of the proofs). PVS is now aware of these
results and you can use any of the results from these files in your work. Now switch back to your a2.pvs
file and answer the following questions.

a) In the modular SenLock theory, create a new definition of ELOCK that implements the Software Re-
quirements Specification (SRS) function SenLock with a three valued output as was done in the slides,
only this time make use of the TimerUpdate function from the TimerGeneral.pvs file to update the
timer 1LockDly.

b) Show that your implementation is correct by proving the block comparison theorem SensorLock_Block.
(Hint: Use a lemma to show that 1LockD1ly is updated in a similar fashion to Timer and then make use
of the main result of the TimerGeneral. pvs file to show that your implementation correctly implements
the Held For.)

