Specification and Verification of
Real-Time Control Software
Using PVS

Mark Lawford

©2000,2002 M. Lawford

References

1. M. Lawford and H. Wu, “Verification of Real-Time
Control Software Using PVS,” In P. Ramadge and
S. Verdu, eds., Proceedings of the 2000 Confer-
ence on Information Sciences and Systems, vol. 2,
Dept. of Electrical Engineering, Princeton Univer-
sity, Princeton, NJ, pp. TP1-13—TP1-17, 2000.

2. H.Y. Wu, Formal Verification of Real-Time Soft-
ware, M.Sc. Thesis, Department of Computing and
Software, McMaster University, April 2001. (Also
available as SERG Report 394.)

3. B. Dutertre and V. Stavridou, “Formal Require-
ments Analysis of an Avionics Control System’,
IEEE Transactions on Software Engineering, Vol. 23,
no. 5, pp. 267—273, May, 1997.

4. N. Shankar, “Verification of Real-Time Systems Us-
ing PVS,” Computer Aided Verification, CAV ’'93,
LNCS 697, Springer-Verlag, pp. 280—291, 1993.

5. H. Pfeifer, A. Dold, F. W. v. Henke, and H. Ruel,
Guided Tour Through a Mechanized Semantics of
Simple Imperative Programming Constructs, Re-
vised version of Technical Report UIB 96-11 Uni-
versitat Ulm, Fakultat fur Informatik, July 1997

http://www.informatik.uni-ulm.de/ki/PVS/semantics.
html

©2000,2002 M. Lawford 1

Outline

e Modeling Real-Time = Clocks Theory

e Held For T heory

e Simple Example

e Sensor Lock Example

e Summary

©2000,2002 M. Lawford

Modeling Real-Time Properties

A clock of period K, is a set of “sample in-
stances’ :

clockg = {tog,t1,tp,...,tn,...}
= {0,K,2K,...,nkK,...}

E.g., for a period K = 5, the clock of period
5 is simply

clocks := {0,5,10,15,...}

Can define pre, next and init operators on
clock values:
N lp—1, n Z 1
preg(tn) = {undefined, otherwise
nexty(tn) ‘= tp41

{ TRUE, n=0

mnit(tn) = FALSE, otherwise

©2000,2002 M. Lawford 3

HELD FOR Operator

HELD FOR : pred(clockK)XR+ — pred(clock)
For P : clockyg — {TRUE,FALSFE},

P HELD_FOR(duration)(t,) = TRUE
iff (3t; € clockk) such that

(tnh — t; > duration)A
(Vt; € ClOCkK)(tj <t; <tn= P(t;))

Example 1: Let K = 150, duration = 295, and
Sensor(t) be a clock predicate:

SensorT
FA A A A

n 0 1 2
tn 0 150 300 450
f F F F T

time

f = (Sensor) HELD_FOR(295) example

NOTE: We ignore intersample behavior of Sensor.
©2000,2002 M. Lawford 4

Clocks Theory

Clocks[K: posreal]: THEORY

BEGIN

non_neg: TYPE = { x: real | x>=0 }
time: TYPE = non_neg

t: VAR time

clock: TYPE = { t: time|EXISTS(n:nat): t=n*K }
x: VAR clock

init(x): bool = (x=0)
noninit_elem: TYPE ={ x | not init(x) }
y: VAR noninit_elem

pre(y): clock =y - K
next(x): noninit_elem = x + K
rank(x): nat = x/K

clock_induction: PROPOSITION
FORALL (P: pred[clock]):
(FORALL (x: clock): init(x)
IMPLIES P(x)) AND
(FORALL (y: noninit_elem): P(pre(y))
IMPLIES P(y))
IMPLIES (FORALL (x: clock): P(x))

END Clocks

©2000,2002 M. Lawford

Held _For Theory

Held_For [K:posreal] : THEORY
BEGIN
IMPORTING ClocksI[K]

t, t_now: VAR clock
duration:VAR time
P: VAR pred[clock]

heldfor(P, t, t_now, duration):
RECURSIVE bool =

IF P(t) THEN
IF (t_now - t >= duration) THEN TRUE
ELSIF init(t) THEN FALSE
ELSE heldfor(P,pre(t) ,t_now,duration)
ENDIF

ELSE FALSE

ENDIF

MEASURE rank(t)

Held_For (P, duration): pred[clock] =
(LAMBDA (t:clock): heldfor(P,t,t,duration))

END Held_For

©2000,2002 M. Lawford

Alternative Held For Theory

Held_For [K:posreal] : THEORY
BEGIN
IMPORTING Clocks[K]

t, t_now,t_n,t_j: VAR clock
duration:VAR time
P: VAR pred[clock]

Held_For (P, duration): pred[clock]=
(LAMBDA (t_n):
EXISTS(t_j): (t_n-t_j>=duration) and
FORALL(t:clock|t>=t_j&t<=t_n) :P(t))

END Held_For

It is possible to prove that this version is equiv-
alent to the recursive version.

Sometimes one form is more convenient than
the other.

©2000,2002 M. Lawford 4

A Simple Example

T
Sensor - A A t
0 1000 1300
tn t]

simple : THEORY
BEGIN

K: posreal = 50
IMPORTING Held_For[K]

t: VAR clock

Sensor(t) :bool = IF (t<1000) THEN FALSE
ELSE TRUE ENDIF

duration:time = 295

good: THEOREM (t>=1000+duration) IMPLIES
Held_For(Sensor,duration) (t)

bad: THEOREM (t>=1000+duration-K)
IMPLIES Held_For(Sensor,duration) (t)

END simple

©2000,2002 M. Lawford

A Simple Example (cont.)

‘Theorem good is easily proved in PVS since 1st
clock value greater than 1000+duration=1295
is 1300.

Attempting bad results in unprovable sequent:

[-1] n!'l1 >= 0

[-2] 50 * n!1 >= 0

[-3] t!1 = 50 * n!1
[-4] (50 * n!1 >= 1245)

{1} Sensor (50 * n!1 - 300)

This sequent corresponds to the equation:

(Vitn, € clocksg)tn > 1245 = Sensor(t, — 300)

Notes: 1245 = 1000 4+ 295 - 50 = 1000 +
duration - K.

But for to5 = 1250 > 1245, all formulas are
true except 1 since Sensor(950)=FALSE.

©2000,2002 M. Lawford 9

Software Verification Example

Sensor —= Sensor Lock

%
Reset —= RT controller Senlock

Sensor Lock real-time controller:

e inputs Sensor and Reset and output Sen-
Lock are booleans

e Sampleinputs and update output K = 100ms.

Behavior:

e When Sensor is continuously TRUE for 150ms
or longer, then the sensor is “locked” and
SenLock is set to TRUE.

e Once sensor is “locked” (i.e. SenLock =
TRUE), it stays locked until manually reset
indicated by making Reset = TRUF.

©2000,2002 M. Lawford 10

Software Requirements

The required behaviour of the update function
IS summarized by the following table:

Result

Condition SenlLock

(Sensor) Held for (Idelay) TRUE

NOT [(Sensor) Held | Reset FALSE
for (Idelay)] —-Reset | No Change

Here ldelay = 150ms.

When the conjunction of atomic proposition in
a given row of the Condition columns is TRUE,
then SenLock is set to the Result value for that
row. E.g., when

NOT|[(Sensor)Held_For(ldelay)] N Reset
then SenLock = False.

©2000,2002 M. Lawford 11

Software Design

The SDD or “implementation’” of this specifi-
cation is given by the following table:

Results
Condition Elock LTime
Elock Reset Good 0
NOT | =Lock | —Reset | Lock 0
Sensor Elock#Lock Good 0
LTime=0 Bad | next(LTime)
Sensor | 0 <LTime<ldelay | NC | next(LTime)
LTime>ldelay Lock 0

Here ELOCK has type {GOOD,BAD,LOCK}.
The designer wants to use the additional in-
formation elsewhere in the system.

ELOCK = Lock = SenlLock = TRUFE

“NC"” denotes “No Change”.

LTime is timer variable used to implement the

Held_For.

©2000,2002 M. Lawford 12

Systematic Design Verification

SenlL.ock_ELOCK: THEOREM
SenLock(t) = lock?(Elock(ELOCK(t)))

To apply PVS to this Verification Problem we
use the strategy (INDUCT "t" 1 "clock induction").
This breaks proof into two parts: (i) Base
Case when t=0, and (ii) inductive case. 1In
the course of proving these cases, we find the
following errors:

1. Wrong initial condition for Elock.

2. Elock becomes unlocked without a manual
reset.

3. Cases exist where manual reset unlocks the
SenLock but not Elock.

©2000,2002 M. Lawford 13

Systematic Design Verification (cont)

The complete specification and design require
fail-safe operation so the value of SenLock was
initially set to TRUE. In the original design
Flock was initialized to Bad.

The SDD becomes unlocked because the LT ime
counter is reset to 0 when Elock is set to
Lock. As a result the system loses the “his-
tory” of Sensor. Although FElock does not cor-
rectly implement this requirement as specified
by SenLock, it also illustrates how SenLock could
be made “safer’”. When Sensor = TRUEFE,
Flock will not allow a manual reset, while SenLock
will permit such a reset if Sensor was FALSE
In the recent past.

©2000,2002 M. Lawford 14

Systematic Design Verification (cont)

Taking these issues into consideration, we pro-
vide ‘fixed” versions of the specification and

implementation below:

©2000,2002 M. Lawford

Result
Condition SenlLock
(Sensor) Held for (Idelay) True
NOT [(Sensor) | Reset | =Sensor False
Heldfor (ldelay)] Sensor | No Change
—Reset No Change
Results
Condition Elock LTime
Elock Reset Good 0
NOT =Lock —Reset Lock 0
Sensor Elock#Lock Good o)
LTime< | Elock#Lock | Bad | next(LTime)
Sensor ldelay Elock=Lock | Lock | next(LTime)
LTime> Idelay Lock NC
15

A Systematic Approach

Problem: Getting complicated timing proper-
ties right in the implementation can be difficult
when designer has to start and stop timers to
implement timing constructs.

Solution: Used preverified blocks of code to
implement recurring types of timing require-
ments.

E.g., In the previous example we actually im-
plement the (Sensor)Heldfor(ldelay) as:

Sensor A LTime > ldelay

Why not reuse this timer implementation for
all Heldfors?

©2000,2002 M. Lawford 16

TimerGeneral [K:posreal] : THEORY

BEGIN

IMPORTING Held_For[K]
t, previous:var clock
u:VAR noninit_elem
timeout : var posreal
P:var pred[clock]
CurrentP:var bool

TimerUpdate (CurrentP,timeout,previous) :clock= TABLE

e %

| [previous<timeout |previous>=timeout] |
- %
| CurrentP |next (previous) | previous | |
== - %
INOT CurrentP | O | 0 |
= == - %

ENDTABLE

Timer (P,timeout) (t) :RECURSIVE clock=
IF init(t) THEN TimerUpdate(P(t) ,timeout,0)
ELSE TimerUpdate(P(t),timeout,Timer (P,timeout) (pre(t)))
ENDIF
MEASURE rank(t)

Timer_Held_For: THEOREM
(P(u) AND Timer (P,timeout) (pre(u))>=timeout)
= Held_For(P,timeout) (u)

END TimerGeneral

©2000,2002 M. Lawford 17

Summary

e PVS has been used to verify simple timing
properties

e Unprovable sequents help to provide counter
examples

e No "domain reasoning’ required - PVS checks
ALL cases

e Current implementation ignores intersam-
ple behavior and timing tolerances and has
troubles with "large” time periods

e PVS can do much more for timing verifi-
cation!

©2000,2002 M. Lawford 18

