Computer Aided Verification of
Safety Critical Real-Time

Systems

Dr. Mark Lawford
Assistant Professor
Dept. of Computing And Software
Faculty of Engineering
McMaster University

lawford@mcmaster.ca

©2000 M. Lawford

Outline

e Safety Critical Systems

o CAV: Computer Aided Verification

e Example: Functional Verification

e Example: Concurrent real-time systems ver-
ification

©2000 M. Lawford 1

Safety Critical Systems

Failure results in:
e physical injury or loss of life
e unacceptable financial loss
Applications Areas:
e Medical equipment
e Aerospace

e Process control - e.g. Darlington Nuclear Generat-
ing Station Shutdown Systems (SDS)

NOTE: You have one chance to get it right!

©2000 M. Lawford 2

Example Software System Failures:

e Medical equipment -

THERAC-25 radiation therapy machine Kkilled sev-
eral patients

e Aerospace -

Space shuttle - 1st flight delayed timing bug at ini-
tialization

Ariane 5 launcher - 1st flight self-destructed after
45 seconds due to floating point overflow error in
Inertial Guidance System

Other software related problems:

Process control - e.g. Nuclear Generating Station Shut-
down Systems (SDS)

e Spurious trips cost $$$

e Difficult to make modifications & even more diffi-
cult to get regulatory approval for changes

©2000 M. Lawford 3

How can such systems be handiled
properly?

Review, Review, Review . . .

Multiple independent reviewers do:
e Software Requirements Specification (SRS) review
e Software Design Description (SDD) review
e Code review

Then . . . Test, Test, Test:

Independent testers do one & only one of:

e Unit Testing (UT) - test each individual program
separately

e Software Integration Testing (SWIT) - test com-
ponents when they are combined

e Validation Testing - test system against original sys-
tem requirements

Logic provides a precise, unambiguous method of spec-
ifying system details for reviewers and testers
©2000 M. Lawford 4

That’s still not enough!

e I've discovered incorrect designs that have
been reviewed by as many as 5 different
people - there is just too much detail for a
person to catch everything!

e Testing can’'t cover all possible cases - e.q.
1st shuttle flight initialization CPU over-
load had 1 in 67 probability of occuring

e Minor changes result in another extensive
(& expensive) round of testing & review

Logic provides a means of mechanizing verifi-
cation details - Computer Aided Verification!

©2000 M. Lawford 5

Computer Aided Verification

What is CAV? . . . Prove, prove, prove!

Use tools to mathematically “prove” a design imple-
ments a well defined specification. E.g.

e Automated theorem proving of functional equiva-
lence (i.e. use PVS or IMPS to prove for all inputs
X: Spec(x) = Design(x))

e Model-checking automatically verifies that a Design
is @ model of a Spec written as a logical formula

Why use CAV Tools?

e Independent check of system unaffected by veri-
fier's expectations

e Domain coverage - Tools can often be used to
check ALL input cases

e Tools let you automate verification and reverifica-
tion

e Provide additional capabilities (e.g. generation of
counter example for debugging, type checking, ver-
ifying whole classes of systems, etc.)

©2000 M. Lawford §)

Example:
Reactor Shutdown System (SDS)

What is an SDS?
e watchdog system that monitors system parameters

e shuts down (trips) reactor if it observes "bad"” be-
havior

e process control is performed a separate Digital Con-
trol computer (DCC) - not as critical

Consider simple subsystem: Power Conditioning

e Many sensors have a Power threshold below (or
above) which readings are unreliable so it’'s “condi-
tioned out” for certain Power levels.

e A deadband is used to eliminate sensor ‘“chatter”

Idea: Use code reuse - write one general routine and

pass in sensor parameters for different sensors

©2000 M. Lawford 4

General Power Conditioning Function

Power

Kin

Kout

ti Time
PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool =

Power < Kout | Kout < Power < Kin | Power > Kin
FALSE Prev TRUE

PVS (Prototype Verification System), a “proof assis-
tant” can automatically check for completeness and de-
terminism.

Problem: Determinism check fails when Kin < Kout.

Why? Implicit (undocumented) assumption from dia-

gram that Kin > Kout

©2000 M. Lawford 8

When Power:

e drops below Kout, sensor is unreliable so
it's “conditioned out” (PwrCond = FALSE).

e e&xceeds Kin, the sensor is “conditioned in”
and is used to evaluate the system.

e IS between Kout and Kin, the value of PwrCond
IS left unchanged by setting it to its previ-
ous value, Prev.

E.g. For the graph of Power above, PwrCond
would start out FALSE, then become TRUE
at time t1 and remain TRUE.

©2000 M. Lawford 9

PVS Specification of general PwrCond func-
tion

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool = TABLE

h—————— - b

| [Power<=Kout | Power>Kout & Power<Kin | Power>=Kin] |

h————— - /A

| FALSE | Prev | TRUE ||

== h
ENDTABLE

PwrCond_TCC1: OBLIGATION
(FORALL (Kin: posreal, Kout: posreal, Power: posreal):
NOT (Power <= Kout AND Power > Kout & Power < Kin)
AND NOT (Power <= Kout AND Power >= Kin)
AND NOT ((Power > Kout & Power < Kin) AND Power >= Kin));

PwrCond_TCC1

[-1] Kin!'1 > 0O

[-2] Kout!1l > O

[-3] Power!l > 0

[-4] Power!1l <= Kout!1l

[-5] (Kin!1l <= Power!'1)
[——

[1] FALSE

Rule?

©2000 M. Lawford 10

SDS Safety/Performance Considerations:
e Check for short circuits/sensor failures
e Use dead-band to eliminate " chatter”

e Power dependent set points increase operating mar-
gin

e " Condition out” sensor in unreliable operating re-
gion

e Digital trip output uses " -ve logic” (fail-safe in power
loss)

Additional SDS Considerations:
e Use multiple sensors to improve reliability

e T here are many sensor trips, parameter trips, chan-
nel trips, warning lights, input buttons, etc. that all
have to be given the same fail-safe treatment (i.e.
100s of functions)!

Electrical student’s reaction:

"But I never had to worry about that stuff in Matlab?”
- Welcome to the real world.

Computer science student’s reaction:

" Still way simpler than my 1st java text-editor applet.”

- Did it ever crash?
©2000 M. Lawford 11

Other Applications

e The Pentium™™ floating point bug could
have been detected by CAV.

e CAV was used after the bug was detected
to prove the proposed fix corrected the
problem.

e PVS has been used to verify similar circuits

©2000 M. Lawford 12

Concurrent Real-time Example

Simple reactor trip system

e monitors plant parameters (Primary Heat
Transport Pressure & Reactor Power) us-
ing sensors & A/D conversion

e if parameters exceed set-points in particu-
lar way, shutdown (trip) the reactor

e redundant systems run concurrently and per-
form majority vote to decide when to shut-
down system

e Old hardware implementation to be replaced
by microprocessor based system with 0.1ms
cycle time

©2000 M. Lawford 13

Delayed Trip System

Reactor Pressure —1 Reactor Trip

System — Trip Relay State

Reactor Power -

Figure 1: Block diagram for DTS

Pressure : :

AND>* Timer 1 . AND >7 Timer 2 Relay

pow% |

Figure 2: Analog implementation of DTS

©2000 M. Lawford 14

Concurrent Real-Time Systems

Does this real-time control system do what we want?

| C1: Controller
~ c2= VOTE -
7 c3
Power Plant -
Trip
REACTOR Relay
Pressure

Figure 1: Block diagram for DTS

©2000 M. Lawford 15

Research Interests

Computer Aided Verification:

e automating verification and re-verification
tasks

e modeling & verification of concurrent real-
time properties

e equivalence verification, model-checking &
model reduction

e implementing provably correct safety criti-
cal systems in hardware using PLDs

©2000 M. Lawford 16

