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Outline

e Model-Checking predicate calculus on fi-
nite interpretation structures

e Mu-calculus and fixpoint operators

e Explicit state Model-checking for:
— Linear Temporal Logic
— CTL & CTL*

— RTTL

e BDDs & Symbolic Model-checking
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Model-checking:

References:

e A. Arnold, Finite Transition Systems. Prentice Hall,
1994.

e J.R. Burch, E.M. Clarke, and K.L. McMillan, “Sym-
bolic model checking: 1020 states and beyond.” In-
formation and Computation, Vol. 98, 1992, pp.
142-170.

o J.S. Ostroff. Temporal Logic for Real-Time Sys-
tems. Research Studies Press/Wiley, Taunton, UK,

19809.

e E.A. Emerson et al. “Quantitative temporal rea-
soning.” Real-Time Systems, No. 4, pp. 331-352,
1992.

©2000 M. Chechik & M. Lawford 2



State formulas

For |U| finite (i.e. finite universe), dealing with
atomic propositions is sufficient to express all
predicate logic properties.

Why? Consider U := {aq1,a2,...an}

(Vz)¢ & dlai|z] A dlag|z] A ... A dlan|z]

(3z)¢ & dlai|z] V dlag|z] V...V ¢lan|z]

Any conjunction, disjunction or negation of
properties from set of atomic propositions is
called a state formula.
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CTL review

Computational tree logic - propositional branch-
ing time logic, permitting explicit quantifica-
tion over all possible futures.

Syntax:

1. Every atomic proposition is a CTL formula
2. If f and g are CTL formulae, then so are
~f, fAg, fVg AXf, EXf, AlfUg], E[fUg],
AFf, EFf, AGf, EGY.

Temporal operators - quantifier (A or E) fol-
lowed by F (future), G (global), U (until), or
X (next).
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CTL review - Cont’'d

Only X and U are necessary. The rest are ab-
breviations:

(fAg) = ~(~fV~g)
(f—=9) = (~fVyg)

AX f = ~EX(~f)
EFf = E[true U f]
AF f = Altrue U f]
EGf = ~AF(~F)
AGf = ~EF(~f)
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CTL review - Cont’d

Formula is defined with respect to a model
given by a Kripke structure:

M = <S, R, So, A, P>

e S is a set of states

e RC S xS is a transition relation (or equiv-
alently R: S — P(S))

e Sop C S is a set of initial states

e Ais aset of atomic propositions (e.g. y=1)

e P: S — P(A) labels each state with the
set of atomic propositions satisfied by the
state

A path in M is a sequence of states o:
e 0o .— SOS]_ c. . Sn E S_l_ and R(Sn) — @ Or,
e 0 .=50981... € 8Y

such that sg € Sp and for all ¢ > 0, (s;,s;4+1) € R
in which case we write s; — s;41.
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CTL review - Cont’'d

Temporal logic formulas are evaluated with re-
spect to a state in the model:

o EX(f) (AX(f)) is true in s; if f is true in
some (all) successor of s;

e E[fUg] (A[fUg]) is true in s; if along some
(every) path emanating from s; there is a
future state s; at which g holds and f is
true until state s; is reached

e EG(f) (AG(f)) is true in s; if f holds in
every state along some (every) path ema-
nating from s;
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Formally...

sl=p iff pe P(s)
seE~f iff sEf
se=fvg iIff sE=forskEg

S0 F EX(f) ifF (E| path (80,81,. . .)),81 — f

so = AX(f) iff (V paths (sg,s1,...)),81 = f
so = E(fUg) iff (3 path (sg,s1,-..)),

di s.t. s; =g and Vj <1,s;

so = A(fUg) iff (V paths (sg,s1,...)),
di, s.t. s; =g and Vj <i,s;
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Examples

What formulas hold in these models?

a) b)
C) d)
Legend: ( )-g @ -9
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Specifications using CTL
Thermostat.

1. Temperature is always above normal, below
normal or normal.

2. When temperature becomes above normal,
in the following state the AC will be turned on.

3. Thermostat is never running heater and AC
at the same time.
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CTL Model checking

Assumptions:

1. finite number of processes, each having a
finite number of finite-valued variables.

2. finite length of CTL formula

Problem:
Determine whether formula fg is true in the
finite structure M.

Algorithm overview:

Determine the set of states in which subfor-
mulas of fg of length 1 hold. Then length 2,
etc. until length fp is reached. If all starting
states sg € Sp are in the final set, then fg is
holds on M, i.e.

(so€e{s | M,s = fo}) = (M = fo)
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It iIs not as easy as it seems

Formula EFg represents the set of states from
which a state satisfying g can be reached in
some (finite) number of transitions:

gV EXgVEX(EXg) V...

So, we need to do the least fixed-point opera-
tion
EFg = pn.y(g VvV EXy)

starting with value false for y.

The entire state space of the model must be
constructed before the fixed-point algorithms
can be applied!!ll Most important problem -
state space explosion.
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Example

Model checking sg = EF(~ aA ~ b).

{a, ~b} {a, b} {a, ~b} {a, b}

n
w
(0]

w

{~a, ~b} {~a, ~b}
1. Model 2. (~a \~b) V EX (false)
So S1 So Sy
{a, ~b} {a, b} {a, ~b} {a, b}

S3 S3
{~a, ~b} {~a, ~b}
3. (~a/\ ~b) V EX (~a/\ ~b) 4. (~a\ ~b) V EX ((~a\ ~b) V EX (~a /\ ~b))
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CTL Model Checking in PVS

mcdemo : THEORY
BEGIN
S: TYPE = {s0,s1,s2,s3}
s,next: VAR S

output: TYPE = [# a, b:bool #]
T:bool=TRUE
F:bool=FALSE

P(s) :output = TABLE
| [ s=s0 | s=s1 | s=s2 | s=s3 11
| (#a:=T,b:=F#) | (#a:=T,b:=T#) | (#a:=F,b:=T#) | (#a:=F,b:=F#) | |
ENDTABLE

R(s,next) :bool = IF ((s=s0 AND (next = s1 OR next=s2))
OR (s=s1 AND (next = s1 OR next=s2))
OR (s=s2 AND next = s3)) THEN TRUE
ELSE FALSE
ENDIF

f(s):bool = (P(s)=(# a:=F,b:=F #))
IMPORTING ctlops[S]
check2:THEOREM EF(R,f) (s)

check3:THEOREM AF(R,f) (s)
END mcdemo
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CTL Model Checking in PVS (cont)

check?2 :

[1] FORALL (s: S): EF(R, £f)(s)
Rule? (model-check)

Starting least fixed-point calculation...
Fixed-point found in 3 steps.
MU simplification took 0.12 real, 0.08 cpu seconds
By rewriting and mu-simplifying,

Q.E.D.

check3 :

[1] FORALL (s: S): AF(R, £f)(s)
Rule? (model-check)
Starting greatest fixed-point calculation..
Fixed-point found in 2 steps.
By rewriting and mu-simplifying,

this simplifies to:
check3 :

{1} s27?(s'1) OR s37(s!'1)
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Symbolic model checking

Why?

Saves is from constructing a model’'s state space.
Effective " cure” for state space explosion prob-
lem.

How?

Sets of states and transition relations are rep-
resented by formulas, and set operations are
defined in terms of formula manipulations.

Data structures
BDDs - allow for efficient storage and manip-
ulation of logic formulas.
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Some more detail

- A system state represents an interpretation
(truth assignment) for a set of propositional
variables V.

- Formulas represent sets of states that satisfy
it

a - set of states in which a is true - ({so,s1})

b - set of states in which b is true - ({s1,s2})

aVb= {so,s1,s2}

- State transitions are described by relations
over two sets of variables, V (source state)
and V' (destination state)

Transition from s, to s3 is described by

(~ a AbA ~ alA\ ~ br).

Transition from sg to s1 and s», and from s; to s> and
to itself is described by (a A b/).

Relation R is described by

(aAb)V (~aAbA ~ al\ ~ bl)
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Symbolic model checking (Cont’'d)

The meaning for CTL formulas can be rede-
fined in terms of sets of states:

sEf
s~ f
sEfVg
s = EXf
s = AXf
s = E(fUg)
s = A(fUg)

Iff

iff
iff
iff
iff
if
if

-Mn

s € f where feV

s€f

se€(fVvg)

s € AVI(RA f(V/V)))

s €~ (V(RA ~ f(V/V")))
s€py-(gVv (fANEX ~y))
s € py-(gV (f NAXy))
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Symbolic model checking

- A CTL formula f is evaluated for a model by
deriving a propositional logic expression that
describes the set of states satisfying the CTL
formula for the model.

- The model checker verifies that the interpre-
tation of the model’s initial state sg satisfies
the expression.

Example - check sg &= EX(~ aA ~ b), i.e.,
compute a formula representing the states that
have successors where (~ aN ~ b) is true:

- R - the transition relation

- f - the formula being checked

- f(a,b/ar,br) - substitution, leading to reason-
ing about the next state

- Replace formulas like Jv, (f) by (f(v/true) v
f(v/false).
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Computation

EX(~aN ~b) =
Ja’, o' (((a AV) V (~a ABA ~a'A ~ b))

A((~an ~b)(a,b/d’, b)) =
da/, b/ (((a AY) V (~a ADA ~d A ~ 1))

A(~ad A ~b)) =
da’,b'((a AUA ~a’'A ~b)

V(~a AbA ~ad' A ~bAN ~a A ~b)) =
da’, b'((false) V (~a AbA ~a'A ~b)) =
da’, b (~a AbA ~ad'A ~Y) =
da'((~a A bA ~a'A ~true)V

(~a AbA ~a'A ~ false)) =
da’(~a AbA ~a') = (~a A bA ~true)

V(~a AbA ~ false) = ~a Ab
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Evaluation of example

The computed propositional logic formula rep-
resents the set of states whose interpretations
satisfy EX(~ aA ~ b), that is, {s>}.

EX(~ aN ~ b) is a theorem (i.e., sg = EX(~
aA ~ b)) if the values of a and b in sg satisfy
~ aAb.

In sg, a=true, b=false. So, sg &=~ aAb. Thus,
so = EX(~ aA ~ D).
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Symbolic model checking

Example: calculate EF(~ aA ~ b) for our model:

1) (~aN ~b) V EX false = (~aA ~b)

2) (~aN ~b) V EX(~aA ~b) = (~aA ~b) V(~aAb) = ~a

3) (~aN ~b)V EX(~a) =

(~aNn ~b) VvV Id, b (((aAb)V (~a ANbA ~a'A ~b))
AN(~a)(a/a’))) =

(~aNn ~b) VvV Id, bV (((aAV)V (~a AbA ~a' AN ~b))A ~a') =

(~aA ~b) VvV Id,b'((a ANU'A ~a')V (~a ADA ~ad'A ~b')) =

(~aN ~b) vV 3d (((a A trueN ~a’) V (~a AbA ~a’'N\ ~true))
V((a A falseN ~a') V (~a ANbA ~a'N\ ~ false))) =

(~aA ~b)V Id ((aA ~a') V (~a ABA ~a')) =

(~aA ~b) V ((aN ~true)
V(~a AbA ~true)) V ((aA ~ false) V (~a A bA ~ false)) =

(~aA ~b) V ((false) V (false)) V ((a) V (~a Ab)) =

(~aA ~b)V (~aAb)Va = true

4) (~aA ~b) V EX(true) = true
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Symbolic model checking

Note that the formulas at the end of each step
correspond to the set of states that is shaded
after that step.

- The first formula, (~ aA ~ b), corresponds to

{s3}

- The second formula, (~ a), corresponds to

{s2, s3}
- The last formula, true, corresponds to the
set of all states.
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Model-Checking LTL

Recall: M,s = ¢ iff for every path o in M
starting at s, it is the case that o = ¢.

For finite state system, satisfaction of tem-
poral formulas can be checked algorithmically
(i.e. model-checked).

Examples

e To verify M, s = G¢, check that all reach-
able states satisfy ¢. This means that the
set of states of M satisfying ¢ that are
reachable from s form an invariant set.

e To verify GF¢, check that ¢ is true in at
least one state of every reachable strongly
connected component.
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