Partial Functions and

Undefined Terms in Logic

©2001 M. Lawford

References

e W.M. Farmer, “A partial functions version of Church's
simple theory of types,” Journal of Symbolic Logic,
55:1269-1291, 1990.

e Parnas, D.L., “Predicate logic for software engi-
neering,” IEEE Transactions on Software Engineer-
ing, Vol. 19, No. 9, September 1993, pp. 856 —
862.

e J. Crow et al., "A tutorial introduction to PVS,” In
Proceedings of the Workshop on Industrial-Strength
Formal Specification Techniques, Boca Raton, Florida,
April 1995.

Also available at:
http://www.csl.sri.com/papers/wift-tutorial/

e J. Rushby, S. Owre, N. Shankar, "Subtypes for
specifications: Predicate subtyping in PVS,” IEEE
Transactions on Software Engineering, Vol. 24, No.
9, September 1998, pp. 709-720.
http://www.csl.sri.com/papers/tse98/

Outline

Preliminaries

Motivation

A cautionary tale

Methods of handling partial functions

Comparison of methods

Summary

Preliminaries:
Partial & Total Functions

Let A and B be sets. Let f C A x B such that
if (a,b) € f and (a,b') € f then b =¥'. In this
case we write f : A — B and call f a function.

We often do not make a distinction as to whether
the function is defined for every possible argu-
ment (i.e. Is f totally defined for all of A or
only partially defined?).

Def: Let dom(f) = {a € A|Fb € B : f(a) = b}
be the domain of f. If dom(f) = A we say that
f is a total function, otherwise we say that f
is a partial function.

E.g. Addition 4+ : RxR — R and multiplication
- R xR — R are total functions but division
/R xR — R is partial. (Why?)

Motivation:

In our definition of predicate logic:

e Only one “sort” of objects, those in our
universe A.

e All functions are total: f(a,b) is always
some element of A

e All predicates are always defined: P(f(a,b),c)
is either true or false. Le. P: A% — {F,T}
is total.

Value of logical expressions containing unde-
fined terms is undefined: 1/0 <2/0

Thus not “allowed” to reason about / on R!

Problems with current logic:
1. Often don’t care about all values.
2. Makes notation cumbersome.

3. Restricts what we can say.

Motivation:

Ex. 1 - Consider statement: “There is a stu-
dent who has a passing mark in every course.”

Jz(S(z) A Vy(C(y—P(m(z,y)))))
What is m(z,z) or m(y,y)?

Ex. 2 - Dealing with arrays: An n element ar-
ray f does not contain any duplicate elements:

ViVi(1<iAi<nA1l<jAj<n
N FE G — (@) # ()
or alternatively
ViVi(l<iAi<nAl<jAj<n
Af@E) = () = i=j)

Ex. 3: Consider code:

if (x>=0)
y=sqrt(x);
else y=sqrt(-x);

In PVS we could model this as:

P1: PROPOSITION IF x>=0 THEN y=sqrt(x)
ELSE y=sqrt(-x) ENDIF
This is logically equivalent to low level spec:

z>0=y=vV)A(z<0—=y=+—-2x)
Problem: Contains undefined terms for every

z # 0.

High level spec would be: y = /||

Partial functions in Logic Wish List

Partial functions are often used to specify soft-
ware and are implemented in software.

For software engineering we need a way of
specifying observed behavior of a program us-
ing logic that has:

1. Total predicates: Must have "yes" or “no”
answer, not “maybe”.

2. Concise notation: If it is too complicated,
it will not be used (correctly) or under-
stood.

3. Intuitive: Must capture engineer’s intended
meaning.

4. Consistent: Must not get “false positives”
(must not be able to “prove” that pro-
grams satisfies a specification when it does

not
) 7

Methods for handling partial func-
tions

a) Traditional analysis: Define consistent way
of dealing with undefined terms

b) Traditional logic: Eliminate undefined terms
by making all functions total through Types
and Bounded Quantification

Cc) Three valued logic - True, False & Undefined

Method (c) makes predicates partial so we won't
consider it.

A Cautionary Tale: Do formal “proof” of
1=2.

Traditional Analysis Approach to Par-
tial Functions and Undefinedness
Terms (expressions) may be undefined

e Constants, variables always defined

e Functions may be partial so their applica-
tion might be undefined (e.g. 1/0,+/-1)

e application of function is undefined if any
argument is undefined (e.g. 0« 1/0 is un-
defined!)

Once values are assigned to free variables, any
formula must be either true or false.

How? Make predicates total by say that pred-
icates (including =) are False if any argument

is undefined.

Thus 1/0#1/0

Traditional Analysis Approach:

Used in theorem prover IMPS and some prac-
tical software engineering approaches.

Main Idea: Any atomic predicate containing an
undefined term is False!

Note: EX. 3 now has intended meaning

(>20-2y=va)A(z<0—=y=+V-z)

is equivalent to y = /|z|.

Caveat: =(vz < /%) & V& > /Y

10

Restriction of Quantifiers

Often want to restrict ourselves to considering
z's of certain type.

Vo(P(z) = Q(z))
Fz(P(z) A Q(x))

E.g. In Dilbert Vx(Manager(z) — Idiot(x))
Jz(Animal(z) A —-Glasses(x))

What is the relationship between these two
forms?

—Vz(P(x) = Q(x)) iff Iz(P(x) A —Q(x))
Why?
Note: Other styles of quantification
(Vz € P)Q(z) or Vz € P : Q(z)
mean same as Vz(Pz — Qzx)
Jz(Px A Qz) is also written:
(3z € P)Q(z) or 3z € P : Q(x)
read “There exists an z in P such that Q(x) holds.”

This starts to lead into Type Theory.
11

Bounded Quantification

Idea: Restrict quantification to values in do-
main of function E.g. (Vz € dom(f))Q(f(z))

Problem: Works for Traditional Analysis Ap-
proach where undefined terms allowed but not
Traditional Logic Approach where all functions
must be total. Why?

(Vz € dom(f))Qf(z) means
Vz(x € dom(f) — Qf(x))

Solution: Make Bounded Quantification a prim-
itive operation and check that terms never un-
defined:

(Vz : P)Q(f(z)) is a formula of a (strongly)
typed logic if:
i) P Cdom(f) and
i) {f(z)|x € P} C dom(Q)
(Recall Q : dom(Q) — {T,F})
If (i) and (ii) hold then (Vz : P)Qf(z) is true in
an interpretation structure iff for every =z € P,
f(z) €Q.
12

Traditional Logic Approach (Bounded
Quantification):

Used by PVS and many formal mathematical
logics.

Main idea: Universe divided into different “types”.
All functions have their domain restricted to
the elements on which they are defined mak-
ing all functions total.

E.g. In PVS prelude file

nonzero_real: NONEMPTY_TYPE = {r: real | r /= 0}
nzreal: NONEMPTY_TYPE = nonzero_real

+, —, *: [real, real -> reall
/: [real, nzreal -> reall

/ Rx{reRjr£0}—-R
All function and predicate arguments are type
checked to insure that no terms are undefined.
Before reasoning about z/y, must prove y # 0.

13

Ex. 3 revisited
sqrt: [nonneg_real -> nonneg_real]

P1: PROPOSITION FORALL (x,y:real):
IF x>=0 THEN y=sqrt(x) ELSE y=sqrt(-x) ENDIF

P2: PROPOSITION FORALL (x,y:real):
IF x>=0 THEN y=sqrt(x) ELSE y=sqrt(-x) ENDIF
IFF (y=sqrt(abs(x)))

From PVS prelude file:

nonneg_real: NONEMPTY_TYPE = {x: reall x >= 0}
CONTAINING O

m, n: VAR real
abs(m): {n: nonneg_real | n >= m}
= IF m < O THEN -m ELSE m ENDIF

14

Eliminating Undefined Terms by Type-
checking

PVS forces you to prove that all terms are de-
fined before you can conclude your proof is
correct.

E.g. Taking v/—z in PROPOSITIONS P1 and
P2 results in following proof obligation or “Type
correctness condition”:

% Subtype TCC generated (at line 13, column 53)
% for —-x
% unchecked

P1_TCC1: OBLIGATION

(FORALL (x: real): NOT x >= Q0 IMPLIES -x >= 0);

15

Another Comparison of Styles

Ex. 4a: “The value of z is found in array f”

Fi(f(1) =)
When undefined terms are allowed, the size of
array, whether the index starts from 0 or 1 (or
-39) does not matter. This will be true only if
there is a matching value in the array.

In typed logic:

Define domain and range types and declare
type of array

index:TYPE

T: NONEMPTY_TYPE

f: [index->T]

x: VAR T

P3:PROPOSITION (EXISTS (i:index):f(i)=x)

16

Ex. 4b: "“The value of z is found in the N
element array f or all values in f are not equal
to x”

Fi(f(3) =z) VVi((1 <i < N) — f(i) # =)
The above formula is used when undefined

terms are allow. The predicate (1 < i < N)
is a necessary guard condition. \Why?

In typed logic:

Define domain and range types and declare
type of array before stating theorem.

N:posnat

index:TYPE={i:int| 1<=i & i<=N} CONTAINING 1

T: NONEMPTY_TYPE

f: [index—>T]

x: VAR T

P4:PROPOSITION (EXISTS (i:index):f(i)=x) OR
(FORALL (i:index) :NOT(£f(i)=x))

17

Summary
Traditional Analysis Approach

Allows undefined terms & makes any atomic
predicate applied to an undefined term False
(i.,e. a =1/0 is False).

Advantages:
e Directly supports partial functions

e Concise

e Supports abstract, implementation indepen-
dent specifications.

Disadvantages:

e Requires guard terms for universal quan-
tifications

e Treatment of undefined terms leads to non-
standard relationship among basic math op-
erators e.g. —(z < +/z) is not logically

equivalent to z > /= (Why?) 18

Summary
Traditional Logic Approach

Makes bounded quantification a primitive op-
eration and then uses types to eliminate unde-
fined terms, making all functions total.

Advantages:

e No guard terms for universal quantifica-
tions

e Normal relationship between standard math
operators

e Typechecking provides tool for detecting
errors

Disadvantages:
e Not as concise

e No direct support for partial functions - re-
quires definition of domain to make func-
tion total

e Specification closer to implementation 19

