
Static Analysis of Systems Using PVS
References:

D.L. Parnas, Tabular representation of relations. Tech. Report
CRL Report 260, Telecommunications Research Institute of
Ontario, McMaster University, Hamilton, Canada, 1992.

D.L. Parnas and J. Madey, Functional documentation for computer
systems (Ver. 2). Tech. Report CRL Report 237,
Telecommunications Research Institute of Ontario, McMaster
University, Hamilton, Canada, 1991.

S. Owre et al., Analyzing tabular and state−transition requirements
specifications in PVS. Tech. Report CSL−95−12, Computer
Science Laboratory, SRI International, Melno Park, CA, 1995
(revised 1996). pp. 1−50.

Wish list:

Need precise, unambiguous Software Requirements Specification
(SRS) (high level specification) and Software Design Description
(SDD) (low level, detailed implementation)

Method to rigorously (mathematically) verify that the
implementation satisfies the system requirements in an
understandable way that "scales up" to realistic systems (e.g. tool
support)

Notation must be easily understood by domain experts,
developers, verifiers, testers and maintainers

Proposed Solution:
Use mathematical functions described by tables to represent SRS
and SDD and then verify functional equality.

CS734 Formal Methods for Real−Time Systems © 2000 by M. Lawford

Software Verification Commutative Diagram

f
REQ

M −−−−−−−−−−−−−−−−−> C
 | ^

Abst
M
 | | Abst

O

v |

I −−−−−−−−−−−−−−−−−> O
f

SOF

 M− Monitored variables range space

 C − Controlled variables range space

 I − (software) Input variables range space

 O − (software) Output variables range space

 f
REQ

 − Software Requirements Specification function

 f
SOF

 − Software Requirements Specification function

 Abst
M
 − Monitored variable abstraction function

 Abst
O
 − Output variable abstraction function

Proof Obligation: For all m ε M

f
REQ

(m) = Abst
O
(f

SOF
(Abst

M
(m)))

CS734 Formal Methods for Real−Time Systems © 2000 by M. Lawford

Note:

If we take A/D and D/A imprecisions into account
then Abst

M
 and Abst

O
 become relations

f
REQ

 often a relations to specify tolerances

f
SOF

 is almost always a function for Safety Critical

Systems to provide deterministic behavior,
unambiuous implementation, etc.

Why use functional equality:

requirements can be decomposed into functional
blocks

controlled variables for many blocks depend only on
current value of block’s monitored variables

Other requirements blocks can be specified by a state
machine with internal state space X

REQ
 that is

isomorphic to implentation’s state space X
SOF

 − then
let:

M’ :=M x X
REQ

C’ := C x X
REQ

and verify functional equality of state transition
functions.
CS734 Formal Methods for Real−Time Systems © 2000 by M. Lawford

Why use tables to describe functions?
First recall the distinction between:

1.A function

2.The function’s description

3.A practical means of computing the function’s values

F(x)=x+1

λ(y) : y+1

F(x)=(x=1 → 2, x 1 → x+1)

{ (x,y) | y = x + 1}

are all descriptions of the same function with many possible means
of computation!

Advantages of Tables:

Visual & hence easily understood

Supports "divide & conquer" approach

SRS & SDD functions typically piecewise w/ possibly many
discontinuities at arbitrary points and input domain partitioned
into discrete subdomains

Do not imply a particular implementation, unlike flow charts or
psuedo−code

Can provide domain coverage and determinism checks

Have semi−automated tool support in PVS theorem prover

CS734 Formal Methods for Real−Time Systems © 2000 by M. Lawford

Tabular Representation of Functions

Simple Table:

dbStatus(temp)=
temp<SP−50 SP−50

�
temp<SP temp � SP

dbstatus normal db high

Want to guarantee:

All cases covered

No overlap between different outputs (i.e. defines a proper
function)

How?

Coverage: Check disjunctions of conditions are TRUE

c
1
 or c

2
 or ... or c

n
 = TRUE

Disjointness: Check conjunct of each pair of conditions is FALSE

c
1
 and c

2
 = FALSE

CS734 Formal Methods for Real−Time Systems © 2000 by M. Lawford

