Static Analysis of SystemsUsing PVS
References:

®D.L. Parnas, Tabular representation of relations. Tech. Report
CRL Report 260, Telecommunications Research Institute of
Ontario, McMaster University, Hamilton, Canada, 1992.

®D.L. Parnas and J. Madey, Functional documentation for computer
systems (Ver. 2). Tech. Report CRL Report 237,
Telecommunications Research Institute of Ontario, McMaster
University, Hamilton, Canada, 1991.

®S. Owreet a., Analyzing tabular and state-transition requirements
gpecificationsin PVS. Tech. Report CSL-95-12, Computer
Science Laboratory, SRI International, Melno Park, CA, 1995
(revised 1996). pp. 1-50.

Wish list:

® Need precise, unambiguous Software Requirements Specification
(SRS) (high level specification) and Software Design Description
(SDD) (low level, detailed implementation)

® Method to rigorously (mathematically) verify that the
Implementation satisfies the system requirementsin an
understandable way that "scales up" to redlistic systems (e.g. tool
support)

® Notation must be easily understood by domain experts,
developers, verifiers, testers and maintainers

Proposed Solution:

Use mathematical functions described by tables to represent SRS
and SDD and then verify functiona equality.

CS734 Formal Methods for Rea—-Time Systems © 2000 by M. Lawford

Software Verification Commutative Diagram

M- Monitored variables range space

C — Controlled variables range space

| — (software) Input variables range space
O — (software) Output variables range space

fREQ — Software Requirements Specification function

f . — Software Requirements Specification function

Abst — Monitored variable abstraction function
Abst_ — Output variable abstraction function
Proof Obligation: For all me M

freo(m) = Abst (f, (Abst, (m)))

CS734 Formal Methods for Rea-Time Systems © 2000 by M. Lawford

Note:

®|f we take A/D and D/A imprecisions into account
then Abst and Abst_ become relations

ofREQ often arelations to specify tolerances

®f__isamost aways afunction for Safety Critical

Systems to provide deterministic behavior,
unambiuous i mplementation, etc.

Why use functional equality:
@ requirements can be decomposed into functional
blocks

® controlled variables for many blocks depend only on
current value of block’s monitored variables

® Other requirements blocks can be specified by a state
machine with internal state space X___that is

REQ
Isomorphic to implentation’s state space X___ — then

|et:
M’ =M xXREQ
C:=Cx XREQ

and verify functional eguality of state transition
functions.

CS734 Formal Methods for Rea-Time Systems © 2000 by M. Lawford

Why usetablesto describe functions?
First recall the distinction between:

1.A function
2.The function’ s description
3.A practica means of computing the function’s values

F(X)=x+1
Aly) s y+1
F(X)=(x=1 - 2, x#1 - x+1)
{(xy)|ly=x+1}

are al descriptions of the same function with many possible means
of computation!

Advantages of Tables:

®\Visua & hence easily understood
® Supports "divide & conquer" approach

® SRS & SDD functions typically piecewise w/ possibly many
discontinuities at arbitrary points and input domain partitioned
into discrete subdomains

® Do not imply a particular implementation, unlike flow charts or
psuedo—code

® Can provide domain coverage and determinism checks
® Have semi—automated tool support in PV S theorem prover

CS734 Formal Methods for Rea—-Time Systems © 2000 by M. Lawford

Tabular Representation of Functions

Simple Table:
dbStatus(temp)=

temp<SP-50 SP-50<temp<SP temp>SP
dbstatus normal db high

Want to guarantee:

® All cases covered

® No overlap between different outputs (i.e. defines a proper
function)

How?

Coverage: Check digunctions of conditions are TRUE
corcor..orc =TRUE

Digointness. Check conjunct of each pair of conditionsis FALSE
c,andc, =FALSE

CS734 Formal Methods for Real—-Time Systems © 2000 by M. Lawford

