Practical Application of
Functional and Relational
Methods for the Specification
and Verification of Safety

Critical Software

Mark Lawford
Assistant Professor
Dept. of Computing And Software
Faculty of Engineering
McMaster University

lawford@mcmaster.ca

Credits

Joint work with:

Jeff McDougall
JKM Software Technologies Inc.
jkm@pathcom. com

Peter Froebel & Greg Moum,

Ontario Power Generation Inc.
peter.froebel@ontariopowergeneration.com
g.moum@ontariopowergeneration.com

Additional contributions:

Mike Viola

Manager

Software Engineering Standards & Methods

and
Paul Joannou
Director

Engineering Standards

both of Ontario Power Generation Inc.

Outline

Motivation

Mathematical Preliminaries

Functional 4-Variable Model & its decom-
position

Example of Functional Limitations

Relational 8-Variable Model

Conclusions & Further Research

Motivation:
Reactor Shutdown System (SDS)

What is an SDS?
e watchdog system that monitors system parameters

e shuts down (trips) reactor if it observes "bad” be-
havior

e process control is performed a separate Digital Con-
trol computer (DCC) - not as critical

Why use formal verification?
e Spurious trips cost $$%

e Difficult to make modifications & even more diffi-
cult to get regulatory approval for changes

e Minor changes result in another extensive (& ex-
pensive) round of testing & review

e Testing can’'t cover all possible cases

e Too much detail for person to catch everything by
review

Motivation: (cont)

The CANDU Computer Systems Engineering
Centre of Excellence Standard for Software En-
gineering of Safety Critical Software (Joannou
et al.) first fundamental principle states:

“The required behavior of the software
shall be documented using mathemat-
ical functions in a notation which has
well defined syntax and semantics.”

Why use functions?

Determinism: Want unambiguous description of safety
critical behavior

Clarity: Easier to understand functional requirements

Preference: Engineers prefer to specify precise behav-
ior and appeal to tolerances when necessary

Sufficient: Functional methods often sufficient - Work
“most of the time"” & are easily automated

Motivation (cont)

Verification uses tabular methods, custom tools
and SRI's PVS automated proof assistant to
handle typechecking and proof details.

Over 100 verification “blocks” in system. Each
block typically has multiple inputs.

Goals:

e Make formal methods practical: Minimize
effort required to perform systematic de-
sign verification.

e Address functional limitations by formaliz-
ing tolerance arguments.

How?

e Use of simple algebraic properties can re-
duce effort required for formal verification.

e Introduce 8-variable model.

Preliminaries

Let g : Vi — Vo and h: Vo — V3, then hog
denotes functional composition.

Let G C Vi3 x Vo and H C Vo X V3, then Ge H
denotes relational composition.

Given equivalence relations F1,E> C V XV, de-
fine partial order FE1 < Fo iff
(Vv,v' : V)((v,v") € E1 = (v,v") € E»).

Given f : V73 — V3, define ker(f), the equiva-
lence kernel of f to be the equivalence relation

given by: (v1,v}) € ker(f) iff f(v1) = f(v)).

Claim:

| %1 V3

(3h: Vo — V3)f = hog iff ker(g) < ker(f)

6

4-VVariable Model (Parnas & Madey)

RE
M @ C
IN oUT
SOF
I O

M - Monitored Variables statespace
C - Controlled Variables statespace
I - Input Variables statespace

O - Output Variables statespace

M, C,1I, O are time series vectors and REQ, SOF,
IN,OUT are relations.

We use a special case where all relations are
functional resulting in proof obligation:

REQ = OUT 0 SOF o IN (1)

Here RE(Q and SOF' are the one step transi-
tion functions of the requirements and design
respectively.

‘“Vertical’ Decomposition

RE
M ¢ C
Abst Abst
IN M e OUT
SOF;, SOF,., SOF

I —_— Mp Cp —_— O
AbStC O REQ — SOFfr'eq ©) AbStM (2)
Absty; = SOF;,oIN (3)
ide = OUT 0 SOF,,; o Absto (4)

M, and C, are the pseudo-monitored and pseudo-
controlled ‘variables” corresponding to soft-
ware's internal representation of monitored and
controlled quantities

(2) represents main verification block

(3) and (4) represent hardware hiding modules

Hardware Hiding Example

E.g. temperature of the primary heat transport
system which belongs to M might have a value
of 500.3 Kelvin.

A/D converters map this via IN to a value of
3.4 volts in a parameter of I.

A hardware hiding module might then process
this input corresponding to map SOFj,, pro-
ducing a value of 500 Kelvin in the appropri-
ate temperature variable of the software state
space My.

8-1

“Vertical” Decomposition (cont)

More “vertical’ decomposition obtained by iso-
lating outputs. In effect,

1) projecting C onto single output

Ii) restricting REQ to relevant subset of M
Note "“wrong way"’ Absto arrow - used to re-

duce number of required abstraction functions

Can reduce by up to 1/2 number of abstraction
functions required.

Proof obligation (4) precludes possibility of triv-
lal implementations

Invertibility of OUT not possible in all situa-
tions but applicable to majority of safety criti-
cal requirements

“Horizontal’ Decomposition

REQ
RE RE RE »
M Gy, BEQ oy BREG
Abst Absty, Absty, Absty, _, | Abstc
SOF; SOF>5 SOF,
M,—= Vy,,————= V3, ... Vg, = G,
e
SOF,¢

Main block comparison can be sequentially de-
composed into sequence of simpler obligations
of the form:

SOF’z o AbStV%_l — AbStVi o REQZ (5)

Cost of decomposition? Verifier must provide
cross reference in form of Absty, : V; — Vi,

Now we see benefit of “wrong way”’ arrow:
Same Abstw can be used on output then in-
put of successive blocks.

Note: Only need to check invertibility of Abstq
to satisfy (4).

10

Pressure Sensor Trip Example

Idea: when pressure exceeds setpoint, reactor
is “tripped” (shutdown).

Deadband where no change occurs is used to
eliminate sensor ‘chatter”.

Pressure

K PressSP F------~—A~---Xx~~"~

K_PressSP -
k_DeadBand

No':[Tri pped

t1

Time

Required behavior is specified by function f_PressTrip
and implemented by PTRIP.

In the function definitions, f_PressTripS1 and

PREV are corresponding state variables.
11

Pressure Sensor Trip Example (cont)

Abstraction functions posreal2AI and Trip2bool
map abstract datatypes to concrete implemen-
tations.

posreal2 AI models the A/D conversion by tak-
ing integer part of sensor values in [0, 5000]
MYV range.

Return type, AI, consists of integers between
O and 5000.

Resulting block comparison commutative dia-
gram is:

_ f_PressTrip _
posreal x Trip Trip

posreal2 Al X|T'rip2bool Trip2Bool

PTRIP
Al x bool bool

12

PVS for Pressure Sensor Trip

sentrip : theory
begin

k_PressSP : int = 2450
k_DeadBand : int = 50
KDB : int = k_DeadBand

KPSP : int k_PressSP
Trip : type = {Tripped,NotTripped}
Al : type = subrange(0,5000)

f_PressTrip(Pressure : posreal, f_PressTripS1: Trip): Trip

= table
Pressure < k_PressSP — k_DeadBand NotTripped
k_PressSP — k_DeadBand < Pressure || f_PressTripS1
A Pressure < Kk_PressSP
Pressure > k_PressSP Tripped

endtable

PTRIP(PRES : AI, PREV : bool): bool = table

PRES < KPSP — KDB FALSE
KPSP — KDB < PRESAPRES < KPSP | PREV
PRES > KPSP TRUE

endtable

Trip2bool(TripVal : Trip) : bool = table

TripVal = Tripped TRUE
TripVal = NotTripped | FALSE
endtable

13

PVS for Pressure Sensor Trip (cont)

posreal2Al(xz : posreal) : Al = table

x<O0 0
0 < zAz < 5000 || floor(x)
x > 5000 5000
endtable

Sentripl : theorem
(V (Pressure : posreal,f_PressTripS1 : Trip) :
Trip2bool(f_PressTrip(Pressure, f_PressTripS1)) =
PTRIP(posreal2AI(Pressure), Trip2bool(f_PressTripS1)))

end sentrip

Attempting block comparison theorem Sentripl
reduces to proving for all inputs:

—(f_PressTripS1 = TrippedA
2400 < Pressure < 2450 A floor(Pressure) < 2400)

Counter examples result when Pressure € (2400, 2401)
and f_PressTripS1 = Tripped.

In fact there does not exist a design that can
satisfy requirement f PressTrip Since

ker(posreal2AI x Trip2bool) £ ker(f_PressTrip)

14

Pressure Sensor Trip Example (cont)

While it is possible to ‘“fix” specification so
that it is implementable by changing inequali-
ties as follows:

f_PressTrip(Pressure : posreal, f_PressTripS1: Trip) : Trip
= table
Pressure < k_PressSP — k_DeadBand NotTripped
k_PressSP — k_DeadBand < Pressure | f_PressTripS1
A Pressure < k_PressSP
Pressure > k_PressSP Tripped
endtable

in practice this difference is a mathematical
irrelevancy since A/D converters have £5mV
accuracy.

Want to:

e Mmaintain functional requirements specifica-
tion and design description, and

e use formal mathematical proofs incorporat-
ing tolerances when necessary without an
excessive increase in proof complexity and

documentation.
15

8-Variable Model

MTRAN MTOL REQ CTOL CTRAN
BM IM IC BC FC

IN our

SOF

REQ and SOF still functions MTOL, CTOL
are Input/Output tolerance relations

REQUIREMENTS = MTOL e REQ e CTOL

DESIGN = IN ¢ SOF ¢ OUT

Design verification amounts to showing:

DESIGN C REQUIREMENTS, and (6)
DESIGN is total (7)

16

8-Variable Model (cont)

In the standard 4-variable model this is mod-
eled by the relation NAT C M x C. In the case
of the proposed 8-variable model we could have
NAT C BM x BC. In this case (7) could be re-
placed by the requirement:

dom(NAT) C dom(DESIGN) (8)

Sensor Trip Revisited

Revised block comparison theorem is easily proved:

Sentripl : theorem
(V (Pressure : posreal, f_PressTripS1 : Trip)
(3 (Pressure2 : {(x : posreal)|Pressure — 5 < x < Pressure + 5}) :
Trip2bool(f_PressTrip(Pressure2, f_PressTripS1)) =
PTRIP(posreal2AI(Pressure), Trip2bool(f_PressTripS1))))

17

Conclusions

e Tool supported functional 4-variable model
using tabular methods has been success-
fully applied to Darlington SDS

e Decomposition of 4-var model reduces ef-
fort required to perform and document ver-
ification process

e Simple algebraic *tricks” can make formal
methods more practical for industry

e 3-variable Relational model preserves func-
tional specification of requirements and im-
plementation & addresses functional limi-
tations

18

Future Work

e automating verification and re-verification
tasks

e modeling & verification of concurrent real-
time properties with tolerances

e equivalence verification, model-checking &
model reduction

19

