
Electronic Communications of the EASST
Volume 46 (2011)

Proceedings of the
11th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2011)

Positioning Verification in the Context of Software/System Certification

Marc Bender, Tom Maibaum, Mark Lawford, Alan Wassyng

15 pages

Guest Editors: Jens Bendisposto, Cliff Jones, Michael Leuschel, Alexander Romanovsky
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Positioning Verification in the Context of Software/System
Certification

Marc Bender, Tom Maibaum, Mark Lawford, Alan Wassyng

McMaster Centre for Software Certification (McSCert), McMaster University

Abstract: Formal verification applied to software has been seen as an important
focus in research for determining the acceptability of that software for use. However,
in examining the requirements for determining the safety of a software intensive
system for use in critical situations, it is quite clear that verification plays a role,
but not necessarily a central role. It is entirely possible that a piece of software
satisfies its specification, but is unsafe to use. (The first and foremost reason for
this is that the program satisfies an unsafe specification.) In this paper we will
address the nature of certification in the context of critical systems, decomposing it,
by means of a new philosophical framework, into four aspects: evidence, confidence,
determination and certification. Our point of view is that establishing the safety (in
a very general sense) of a system is a confidence building exercise much in the
same vein as the scientific method; our framework serves as a setting in which we
can properly understand and develop such an exercise. We will then place formal
verification and assurance cases in this setting, discussing their roles and limitations.

Keywords: Software certification, System certification, Formal specification, Veri-
fication, Critical systems, Safety, Assurance cases, Safety cases

1 Introduction

“Beware of bugs in the above code; I have only proved it correct, not tried it.”
– Donald Knuth

Formal (mathematical) verification has been an important and dominating focus in Computer
Science and Software Engineering since the days of Turing [Tur49]. The main motivation for
this is that formal verification applied to software has been seen, in academia, as the main focus
in determining the acceptability of that software for use, particularly in relation to software that is
used in critical applications. The purpose of verification in this context is the demonstration of the
correctness of the software in relation to a mathematical specification. (A related and later notion
is that of model checking: build a model of the intended software in the language of a model
checker and then check whether the model enjoys identified properties or not.) Verification has
been technically a highly challenging research area, and remains so to this day (as the attendees
at this conference well know!). We might call this emphasis on the paramount importance of
verification in guaranteeing the correct behaviour of software the verificationist view.

This perspective may be said to have reached its apotheosis, from the point of view of engi-
neering of critical systems, in Shao’s paper [Sha10], which appeared last year in CACM. In it, he
states that software should be certified in isolation of its operating environment, and that proof is

1 / 15 Volume 46 (2011)



Positioning Verification in the Context of Software/System Certification

tantamount to certification. We feel that this definition of “certified software” is seriously flawed.
Our intent in this paper is to refute this definition as unsound in the context of software and sys-
tems engineering of critical systems and to provide a more satisfactory definition of software
(and system) certification and the role of formal verification within this scope.

1.1 Software, engineering, and certification

In examining the requirements for determining the safety of a software intensive system for use
in critical situations, it is quite clear that verification plays a role, but not necessarily a central
role. It is exceedingly possible that a piece of software satisfies its specification, but is unsafe to
use. The first and foremost reason for this is that the program satisfies the wrong specification.
A second, and equally important reason, is that the formal models may not take into account
important details of the platform on which the corresponding program executes or other impor-
tant information about the environment of the program that may influence its behaviour. This
information may include details of the operational procedures related to the system controlled
by the software, the man/machine interface, hardware behaviour, timing requirements, including
failures, etc. It is also a fact that verification technology is limited in scale, and it is infeasi-
ble to consider the verification of a complete system of any reasonable size (see challenge 2 in
§2). (What this feasibility limit is at any one time is uncertain and the limit is expanding, per-
haps even quickly. However, even if the complete verification of a system is possible, it may be
economically infeasible.)

There are alternatives, involving ideas explored, for example, in the development of the safety
systems for the Darlington nuclear power station built by Ontario Hydro (OH), now Ontario
Power Generation (OPG) [WL03]. This involved a complete verification of the implemented
code for the shutdown system with respect to its formalised requirements. The shutdown system
was both physically and logically separated from the control system, which was certified to a
significantly lower level of criticality. The shutdown system was tens of thousands of lines of
code and was completely verified. The control system was around half a million lines. This
separation of concerns made verification feasible, even with the technology of the time (early
1990s). Nevertheless, though verification of the shutdown system was an important part of the
safety case made to the regulators, there was a lot more to it than that!

In this paper we will address the nature of certification in the context of critical systems, widely
defined, and its reliance on concepts such as evidence, measurement, assessment criteria and the
notion of confidence. The last is derived from the concepts discussed by epistemologists when
they try to understand how the results of experiments designed to test a hypothesis derived from
a scientific theory affect the strength of our belief in the validity of that theory. Our hypothesis is
that establishing the safety (in a very general sense) of a system is a confidence building exercise
very much in the context of the scientific method. We will then place verification of software in
this context, discussing its role and its limitations.

Proc. AVoCS 2011 2 / 15



ECEASST

2 Software Certification

For the moment, let us take certification simply to be some activity that involves the evaluation
or assessment of engineering artifacts. (We will define exactly what we mean by software in §2.1
and certification in §3.) What makes evaluating software challenging? On this question, Shao
makes three important points with which we strongly agree.

1. Software is everywhere. Software is being used in more and more safety-critical settings.
The need to develop and apply dependability criteria to critical software cannot be over-
stated. How can we deal with the huge number of domains that we interact with?

2. Software is complex. Our ability to reason about the dependability of production scale
software is already seriously lacking, and in the absence of a consensus on certification,
we are only falling further behind. How can we make certification scale?

3. We lack metrics for software dependability. As Shao says, this makes it difficult to com-
pare different techniques and make steady progress in the field. How can metrics be dis-
covered and developed, and how can we incorporate them when they exist?

Shao’s proposal for certified software addresses these challenges thus:

1. Ignore the domains; certify the software in isolation. Shao explicitly states, as his first key
insight, that “the dependability of a software system should be treated separately from its
execution environment”, a claim he repeats twice in the paper. He also explicitly states that
the execution environment “consists of not just hardware devices but also human operators
and the physical world”.

2. Shao is somewhat pessimistic, saying the following: “Constructing large-scale certified
software systems is itself a challenge. Still unknown is whether it can be done at all
(emphasis ours) and whether it can be a practical technology for building truly dependable
software.”

3. Consider the formal “dependability claim” as a metric. (He states that the dependability
claim is a specification expressed in a general purpose mathematical logic.) He gives no
indication of how this is to be done.

In our opinion, these views are all unacceptable. They highlight the problems with Shao’s defini-
tions of software, with which we are in some disagreement, and certification, with which we are
in complete disagreement: briefly, he sees takes software to mean (machine) code and certifica-
tion to mean formal proof. In the next section, we will present our own perspective on software
certification as contrasted with Shao’s. We will come back to the three challenges afterward.

2.1 What should software certification really certify?

Before we present our position on what software certification should be, let us look at what
software comprises. There is a bit of a problem with nomenclature: the word ‘software’ is often
taken to mean actual code on the one hand, and the field of endeavour on the other. By way of

3 / 15 Volume 46 (2011)



Positioning Verification in the Context of Software/System Certification

analogy, it is as if we used the same word for edifice as we do for architecture. Shao’s definition
of software is definitely the former. But when we talk about software as an engineering artifact,
we believe that the correct definition stretches much further into the latter, especially in the
context of certification. A software artifact is the collection of all documentation involved in the
production of the actual code (requirements, specifications, design descriptions), the code itself,
and the executable machine code; analogously, an architectural artifact could be said to contain
a list of materials, a blueprint, and an actual structure. Making claims about the dependability
of a structure in the absence of these extra pieces of information is ludicrous. Our view is that
the same is true of software: software certification should certify software artifacts, not just the
code.

But accepting that formal documentation is a part of the software artifact means that certifi-
cation must take into account the software’s environment. Certifying the artifact should include
checking the requirements, which means validating them against (a model of) the real world. As
Lawford, Maibaum and Wassyng say in [WML10], this includes epistemological questions that
are (generally) not subject to proof, but only to argument. The certification of software as an
engineering artifact must take the imperfections of these aspects into consideration. We agree
with Shao that software dependability becomes a much more difficult question once we take this
step. We strongly disagree that the solution is to remove all but the sterile notion of formal proof
from the factors that contribute to dependability.

Once we accept that dependability does not rely only on simple yes/no questions, certification
becomes quite an interesting and challenging problem. This is the motivation for our certification
framework, to which we now turn our attention.

3 A Certification Framework

What is certification? As mentioned above, it includes evaluation of engineering artifacts; fur-
thermore, a successful evaluation results in a certificate being bestowed upon the artifact. This is
a reasonable starting point but it is somewhat vague. To really understand what we are trying to
do, a better question is: what is the goal of certification? Following [HHL+09], we take the goal
of certification to be to systematically determine, based on the principles of science, engineering
and measurement theory, whether an artifact satisfies accepted, well defined and measurable
criteria. The challenge, then, is to develop a certification process that achieves this goal.

Our approach goes roughly along the following lines: we must evaluate pieces of evidence
about the artifact, which systematically increase our confidence that it is satisfactory, until the
point where we make the determination that the artifact is acceptable and assign a certification
to it.

We use this simplified process as the starting point for our certification framework. It was
while attempting to develop an idealized process of certification that this decomposition was
elucidated; however, it gradually became clear that developing a satisfactory idealized process
was very difficult. The main reason for this is that it is not at all clear what exactly we are working
with when certifying a system: what are the raw materials? To answer this question, we took a
step back and designed a certification framework with the goal of identifying and organizing the
aspects of certification. One of the primary aims of the framework is to provide a setting that can

Proc. AVoCS 2011 4 / 15



ECEASST

Figure 1: The framework

accommodate all approaches to certification, from current in-use standards based approaches to
our own vision for software certification. In fact, there is no reason that the framework could not
be applied to any setting in which evaluation takes place.

The framework decomposes any certification scheme into four aspects, indicated by the ital-
icized words in the simplified approach above: evidence, confidence, determination and certifi-
cation. The remainder of this section is devoted to discussing each of the aspects in detail. For
each, we give its philosophical basis, explain what it is meant to include and to exclude, give ex-
amples of the kinds of things that it indicates, and provide a (provisional) further decomposition
into useful sub-categories. Figure 1 presents the decomposition in graphical form.

3.1 Evidence

Evidence embodies the empirical part of the certification effort. It consists of the things under
consideration: the real-world objects and documents that form the informational foundation of
evaluation. Examples of evidence specific to the software setting include source code, require-
ments, specifications, machine executables, models, test results, proofs of correctness, real-world
trial results, etc. Evidence can also include things like personnel qualifications/certifications and
documented adherence to development processes.

When we discuss evidence in isolation from the other aspects, we are discussing how to iden-
tify, observe, measure, classify and organize items of interest. We are not talking about their
trustworthiness, accuracy, relevance, adequacy, or any other such interpretation: these issues are
epistemic and therefore fall into the confidence aspect. We are also not talking about the actual
performance of any observations or measurements, as this is a pragmatic consideration which is

5 / 15 Volume 46 (2011)



Positioning Verification in the Context of Software/System Certification

a part of determination. Finally, we do not treat certification artifacts—that is, items and docu-
mentation that are created during the certification activity—as evidence within the framework;
from the “internal” point of view of certification, these are pragmatic side-effects and so we see
them as part of the determination aspect (specifically, communication). (However, if we were
later evaluating the certification activity itself, then these would certainly be seen as evidence.)
Issues that pertain directly to evidence are reproducibility, traceability and identifiability.

We propose that evidence can be broken into subcategories based on how far removed it is
from the product that is being certified: these subcategories consist of immediate, direct and
indirect evidence. A helpful analogy to motivate the categorization comes from the legal setting:
immediate evidence corresponds roughly to the defendant, direct evidence to material evidence,
and indirect to circumstantial evidence.

1. Immediate evidence: evidence which is itself being evaluated; the parts of the candidate
artifact: machine executables, source code, specifications, requirements documents.

2. Direct evidence: evidence which presents properties of the candidate; things that are di-
rectly about the immediate evidence: test results, proofs of correctness, static analysis
results, hazards analyses, real-world trials, model checking results.

3. Indirect evidence: evidence which describes the circumstances relevant to the creation of
the candidate; information about the development of the artifact: development processes,
personnel qualifications, tool qualifications, content management systems.

In this context, our thesis can be restated more exactly: immediate evidence should include
more than just the machine code; as a result, direct evidence must include much more than
formal proofs. In fact, if we look carefully at Shao’s approach from the perspective of our
evidence categorization, our point makes itself. For besides the machine executable there is also
the dependability claim (specification), which falls into the immediate evidence category and is
therefore itself subject to evaluation. But meaningful examination of the dependability claim can
only be carried out in the larger (non-mathematical) context of the system, where formal proof
simply cannot be carried out. We will continue the discussion of where and how verification fits
into our framework in §4.1.

A point which we have previously made is that current standards tend to overemphasize in-
direct evidence. Our papers [MW08, WML10] present the view that direct evidence should be
the primary focus when certifying any system. We believe that the reason this is not the case
is related to the third challenge: we lack metrics that can serve as the direct evidence we need.
However, we do not make the claim that indirect evidence should be ignored altogether, as it
can definitely be of use in building our confidence in a system. We advocate the middle ground:
consider all the available evidence; incorporate metrics when they are or become available; allow
for progressive refinement of the incorporation and treatment of evidence.

3.2 Confidence

Confidence is the epistemic aspect of certification. It is about our knowledge and judgements,
how we value and reason about the evidence, consider and apply criteria, weigh the importance

Proc. AVoCS 2011 6 / 15



ECEASST

of pieces of information, and combine pieces of information. Its focus is the rationale, ranging
from qualitative and imprecise to quantitative and exact, about the evidence that is presented. As
such, confidence represents the “measuring stick” of the certification effort, and embodies the
reasoning behind the evaluation of the candidate product.

The confidence aspect of certification separates out the pure reasoning from the rest of the con-
siderations. As such, issues relating to the expression and communication of that reasoning are
outside of the scope of confidence; specifically, they fall under the communication component of
the determination aspect. Examples of confidence specific considerations are: arguments, pro-
fessional judgements, assumptions, uncertainty, weighting, inference (deductive or inductive),
criteria, probability, trust and trustworthiness, soundness, relevance, tolerance.

We see confidence as divided into 3 sub-areas: veracity, validity and adequacy.

1. Veracity: about the sources of our knowledge; deals with the level of trustworthiness or
accuracy of pieces of evidence: measurement tolerance, precision, trust, reliability, rep-
utability.

2. Validity: about the interpretation of the evidence; encompasses the inferences and logical
steps that we make: soundness, relevance, consistency, justifiability, defensibility, reason-
ableness.

3. Adequacy: about the sufficiency of our knowledge; focuses on what is required of a system
and the presented evidence to achieve certification: criteria satisfaction, completeness,
comprehensiveness, sufficiency, conclusiveness, acceptability.

Confidence is a very difficult aspect of certification. There are many fundamentally different
kinds of knowledge as outlined above; developing a systematic treatment of confidence in which
these can all be incorporated is hard to envision, let alone accomplish. The problem of com-
bining pieces of information in a consistent and meaningful way has no clear solution. Existing
logics and frameworks of uncertainty, though interesting and relevant, universally do not allow
us to treat some of the less mathematical sources of knowledge that we must deal with in an
engineering setting.

Our current research is centred on using assurance cases as the generic setting for representing
confidence issues (see §4.2). We have also explored formally modelling confidence in terms of a
complete upper semilattice, with joins representing combinations of evidence/confidence. This
general setting allows for the incorporation of other confidence metrics when we have them
(along with their respective operations), while also allowing for non-logical qualitative forms
of confidence such as judgements by professional engineers. Though there is still a great deal
of exploration and development to be done in this direction, we believe that our work shows
promise as a generic backdrop for reasoning about engineering confidence.

Besides the classification of confidence presented above, we have also developed a hierarchy
of types of support provided for claims. From weakest to strongest, support can be stratified
into belief (unsupported), judgement (statement by some (reputable) party), rationalization (pro-
vision of argument or logic behind claim), substantiation (provision of evidence supporting the
claim), and demonstration (showing a model or example of what is claimed). We do not delve
more deeply into this here, but only mention it to help support our statement that engineering
confidence is a tricky beast with many facets that make it difficult to comprehend and manage.

7 / 15 Volume 46 (2011)



Positioning Verification in the Context of Software/System Certification

3.3 Determination

Determination encompasses all of the pragmatic facets of the certification process (as distin-
guished from the development process which we see as indirect evidence). It denotes all of the
“feet-on-the-ground” aspects of certification as an activity: who does what, how measurement
and evaluation takes place, how things are recorded and communicated, what is produced.

Having determination as a separate aspect allows us to focus on and talk about the real-world
issues involved in certification in isolation, thus drawing a clear line between theory and prac-
tice. We believe that in the engineering setting such a line can be of great value. Engineering is
ultimately about making real products, and since our framework is intended to present a com-
prehensive decomposition of certification theory and practice, determination is a very important
aspect. Examples of some of the topics that determination encompasses are: examination, as-
sessment, spot-checking, inspection, professionals and professionalization, roles and responsi-
bilities, certificate-granting authorities, certificate creation and management, dialogue between
the developer and certifier, and certification maintenance and expiration.

Our tentative decomposition of determination breaks it into three parts: assessment, delegation
and communication. We make no claim that this breakdown is comprehensive but it serves to
help illustrate some of the various issues that come into play in practice.

1. Assessment: about how evidence is examined, verified and evaluated, and how rationale
is developed and scrutinized: inspection, re-running tests, checking sources, verifying
authenticity, appraising rationale, identifying problems, auditing processes.

2. Delegation: about the human/social aspects of certification; the roles, responsibilities and
functions of the parties involved: regulators, certifiers, independent evaluators, domain
experts, professionals (engineers and otherwise).

3. Communication: about expressing, relating, recording, tracking and archiving certification
activities: document formats, mathematical knowledge management, media, security and
encryption, clearance levels (“social information hiding”).

To those attending this conference, determination is perhaps the least interesting aspect of
certification; after all, practical considerations are often seen as uninteresting from a theoretical
point of view. Perhaps this is the reason that Shao’s scheme eschews practical questions alto-
gether. Our view, which has developed over time both through academic research and through
industry collaboration, is perhaps best put by Yogi Berra: “In theory there is no difference be-
tween theory and practice, but in practice there is.” It has been our experience that theoretically
reasonable ideas are often not useful to engineers because they are quite simply not practicable,
for one reason or another; on the other hand, tools that are theoretically unattractive sometimes
become quite popular in practice. This disconnect alone is, to us, reason enough to devote an
entire branch of our framework to pragmatics.

Even the simple question of how to manage certificates for software (reminder: we do not
subscribe to the view that software can be certified in isolation) is difficult: there has been an
entire workshop devoted to the problem [DFHJ05]. Interestingly, some of the papers in said
workshop were by researchers who we would classify as verificationists, but even from their
perspective that certificates are just proofs, managing certificates is quite complicated. Shao

Proc. AVoCS 2011 8 / 15



ECEASST

himself says that a general framework in which we can manage and connect “proof certificates”
would be a (so-far nonexistent) rich second-order logic. Once we widen our view to encompass
other pragmatic considerations, it becomes clear that we have a long way to go to understand
how determination fits into the overall picture of certification.

3.4 Certification

A certification is the result of a successful evaluation activity. It is a “marker” or designator that
results from the bid by a developer to certify or have certified their candidate product. We see
it as a signifier of that success; as such, certification in our framework embodies the semiotic
aspect of the certification scheme.

Before we explain the certification aspect further, it is important to distinguish the specific
usage of the word certification that is being adopted here. Note that certification can be given
both a “means” and “ends” reading—the word can be taken to mean both the process of certifying
on the one hand, and the resulting achievement on the other. The question might be asked as to
why we do not just use the term “certificate” instead to get rid of this problem. The reason is that
we see certificates as concrete entities, whereas certifications are abstract and can be represented
by many different kinds of certificate. A useful analogy might be the distinction between a degree
and a printed diploma: it is entirely possible to obtain multiple diplomas (one for home, one for
the office, etc.) for a single degree; more importantly, if diplomas are lost or destroyed they can
simply be reprinted, based on one’s academic records. Such academic records are in fact just
another representation of the degree, as we will explain

Examples of topics that are part of the certification aspect are: certificates, records of certi-
fication, standards, legal implications, contexts of applicability, limitations on use, and expira-
tion/reevaluation indications.

Following the traditional decomposition of semiotics, we break certification into three parts:
syntactics, semantics and pragmatics. Note that we do not adhere seriously to the semiotic
interpretation as presented in the literature, but rather adopt it as a helpful guide for how to treat
an entity whose primary purpose is to signify. To actualize this, we choose to call the syntactic
part presentation, the semantic part interpretation and the pragmatic part utilization.

1. Presentation: how a certification is presented, realized or actualized; the real-world rep-
resentation of the certification: certificate, database entry, proofs of certification, nam-
ing/numbering (e.g. IEC 61508).

2. Interpretation: about the meaning of a certification to various parties; the denotations
and connotations of certification: records of certification, engineering log books, list of
products certified, reputability of a certification.

3. Utilization: the implications, restrictions and limitations on the use of a certification or
standard; contexts of use and applicability: legal ramifications, liabilities, issues relating
to international use/interpretation.

We see the interpretation of a certification as being loosely divided into its vindicative and
indicative reading. The vindicative interpretation consists of (a presentation of) all of the evi-
dence, evaluation activities, involved parties, rationale, etc. that took place while obtaining the

9 / 15 Volume 46 (2011)



Positioning Verification in the Context of Software/System Certification

certification—the denotations of the certification, representing all of the actual facts that stand
behind it. The indicative reading is what the certification entails to the “outside world”—the
connotations of the certification, including any interpretation that goes beyond the established
facts of the certification activities involved. For example, an ISO 9001 certification vindicatively
means that the process and documentation put in place by a company has been evaluated and
assessed as conforming to the respective standard; indicatively, it can be interpreted as showing
the maturity of an organization, its trustworthiness, etc. If it were not for the indicative aspects,
why else would businesses hang the ISO 9001 banner outside their buildings?

There are many other interesting questions to discuss about certifications and what they mean.
The semiotic view allows for what we believe is a clean decomposition while at the same time
affording a novel interpretation of what a certification really is. The exploration of the semiotic
approach to certifications is still underway. Some other interesting questions are these: How do
we treat certifications of people, tools, other systems, etc. as evidence within another certification
scheme? What is the right way to incorporate the vindicative and indicative aspects in this
setting? What is the exact difference between indicative interpretation and utilization? These
topics are the subject of active research.

4 Applying the Framework

To help understand the framework and put it in context, we now turn our attention to how it
handles and organizes things, particularly verification and assurance cases. At the same time,
we will exploit the framework to help us understand and put into perspective those notions. To
achieve this, we will look at each and break it down into aspects by placing it into the framework,
and then discuss the interesting questions, challenges and issues that arise.

4.1 Incorporating verification

Generally speaking, verification consists of proofs that a program satisfies its specifications. In
Shao’s view, the specification of interest is a dependability claim, and the program is taken to be
a machine executable. So where does everything fit within the framework?

First, we classify the evidence that verification is concerned with.

• Code, specification: immediate evidence. These are all a part of the artifact that is being
certified (according to the arguments we put forward in §2.1), and are therefore treated as
immediate evidence in the framework.

• Proof: direct evidence. Proof is directly about both the code and specification which are
immediate evidence, and so proof is classified as direct evidence.

Elaborating on the points made in §3.1, when we place the evidence that is considered from
a purely verificationist stance into our framework, it can immediately be seen to be incomplete.
First of all, with specifications as a part of the immediate evidence, direct and indirect evidence
can only be comprehensive if it covers the specification as well. Secondly, it is more than likely
that the development effort should produce many more than these items of evidence; surely it

Proc. AVoCS 2011 10 / 15



ECEASST

would be prudent, from an engineering point of view, to consider them all in order to paint a
complete picture of the candidate. After all, software, being in itself abstract, can only be a part
of an engineered artifact. To understand its role in an overall system requires that we look at the
whole picture, in which verification plays but a limited part.

In order to fully understand this issue, let us now address the confidence-related (epistemic)
aspects of verification. It is from this point of view that the incompleteness of verification-
specific evidence can fully be appreciated.

1. Veracity. The veracity issues that are directly related to verification are straightforward:
how do we ensure that the proof indeed matches the given specification and code, and
that it is in fact correct? Thus, the pertinent issues are traceability and proof checking.
A possible source of evidence to support the first is checksumming; for the second, using
qualified (certified) proof-checking tools; indirect evidence pertaining to the personnel
involved can potentially be used to support both.

2. Validity. Here lies the real strength of verification. Proof presents, in a sense, the highest
form of validity: the unconditional truth of a statement. In the presence of such a proof,
the code is perfectly tied to the specification. But when we question the validity of the
specifications themselves, the question is far from answered. Are the specifications them-
selves valid, i.e., are they relevant and reasonable as a representation of the system? This
is an epistemic question, not subject to proof but to less formal kinds of reasoning like
argumentation.

3. Adequacy. Formal proof is more than adequate to show that specifications are met by the
code, but this is not the notion of adequacy that is being discussed here. What adequacy
addresses is whether or not the evidence and supporting rationale is sufficient to back up
the claim that is being made about the software/system. Is proof enough? We say definitely
not. Let us look at Shao’s dependability claim: what should we have in hand to make a
statement about dependability? Dependability, in an engineering setting, is a systemic
property that cannot be reduced to the reliability of individual components like software.
The issue of adequacy, in our view, is the final nail in the coffin for the verificationists.
There are simply (and obviously) too many other questions that need to be addressed
before an engineering artifact can seriously be called dependable.

We now turn to the practical issues relating to verification, that is, the aspect of determination.
Proofs can be mechanically checked—this is a real benefit to the evaluator (keeping in mind that
we must have established that the proof-checker itself is reliable). However, the task of evaluating
the specifications themselves cannot be automated. If the evaluator comes to the conclusion that
the specification must be changed, then the proof is essentially void and the job must be redone.
This is (in general) an expensive proposition, and one that should not be taken lightly: in real-
world engineering, resources and cost are of paramount importance. The verificationist approach
requires significant commitment to the specifications, but from a holistic, system-wide view, this
may well be unwise as during the course of the certification process the specification might
change. Although we agree that for highly safety-critical parts of the system such a commitment
is called for, this is not always the case. When is proof worth the effort?

11 / 15 Volume 46 (2011)



Positioning Verification in the Context of Software/System Certification

Finally, we look at the question of the certification. In the general setting, verification would
be a part of the evidence that was considered and would fall into the vindicative aspect of the in-
terpretation of a particular certification. This is how we see things. Shao, on the other hand, sees
the proof as the certificate. We believe that this is fundamentally untenable because, in practice,
certifications mean much more. How can a proof reflect, for example, legal implications? There
are large pieces missing from the vision of certification presented by Shao. Questions about how
a certification is interpreted are also very important—a proof does not reflect the evaluation ef-
fort that checks that same proof for correctness, or that ascertains that the specification that was
proved against was adequate, as discussed above.

All in all, our point of view is simple and in line with [FL07]: verification is a powerful tool
for certification, but it is one that has a significant practical cost and must be carefully positioned
when it is placed in the setting of certification.

4.2 Using assurance cases

An assurance case is a document (or a collection of documents) that presents, in a systematic,
structured form, the rationale or argument that some claim—usually a claim about a property, say
safety, of a system. An assurance case that makes that specific claim is commonly called a safety
assurance case or just a safety case; it is the most common kind of assurance case. They have
been widely employed, particularly in Europe, as an important component of the engineering
methodology used for safety-critical systems. Examples of organizations that mandate the use
of (safety) assurance cases are the UK Office of Rail Regulation [UK 00], the UK Ministry of
Defence [UK 07], and Eurocontrol [Eur01].

Assurance cases provide a setting in which to document, structure, archive, reuse, scrutinize
and communicate rationale [KW11]. Historically, (safety) assurance cases have been presented,
essentially, as a normal (textual) collection of documents. More recent work, however, has cen-
tred around representing rationale/argumentation graphically using Goal Structuring Notation
(GSN). This development is due in large part to work of Tim Kelly and colleagues at the Uni-
versity of York; Kelly’s dissertation [Kel99] contains the first fully elaborated goal-structured
notational system for assurance cases. The main benefit of a graphical representation of ratio-
nale is that the structure of the rationale is reflected in the structure of the documentation of
the rationale, thereby facilitating its comprehension and navigation; however, such graphical no-
tation can be problematic because of the amount of space it often requires. GSN also suffers
from a complete lack of any rigorous semantics, although we are actively developing ways to
incorporate them when we can (see below).

How do assurance cases fit into our framework? Our perspective is this: they should not be
treated as a simple piece of evidence that is provided by the developer, but rather as a part of
the communication aspect of determination. More exactly, assurance cases provide a setting in
which the developer and the certifier can engage in and record the dialogue about the candidate’s
safety, efficacy, fitness for purpose, etc. This point of view is perhaps surprising, so it merits a
bit of explanation.

In the traditional view, assurance cases would fit into the framework as immediate evidence,
being but one of the components of the artifact under consideration (albeit quite an important
one). The developer would record their rationale for the design decisions, provided evidence,

Proc. AVoCS 2011 12 / 15



ECEASST

etc. in the submitted assurance case. The certifier could then scrutinize the other evidence pro-
vided by the developer in the context of the assurance case, that is, the context of the developer’s
rationale about their product. Though we see the traditional approach as valuable, it also unnec-
essarily restricts the role of the assurance case in the certification setting and misses a tremendous
opportunity for supporting the certification process itself. A new approach, advocated by John
Knight [KW11], positions the assurance case as a living document which plays a part during
both the development and certification of a system, thus facilitating and recording the dialogue
just mentioned.

The primary purpose of the assurance case in our setting is as a tool for expressing, devel-
oping and communicating confidence. Because GSN allows us to express generic arguments
(rationale), it is well-suited to handling the qualitative, non-mathematical aspects of confidence
that are involved in certification. On the other hand, we are currently developing a method for
incorporating mathematical, calculational aspects of confidence into assurance cases when we
have them; for example, embedding deductive logical arguments into GSN without discarding
their semantics, and bringing in probabilistic forms of evidence with corresponding probability
operations encoded as GSN primitives.

5 Conclusion

In this paper, we have presented a new framework for certification, decomposing it into four
fundamental philosophical aspects: evidence, confidence, determination and certification. We
used our framework to position and analyse verification in the context of certification. We have
argued that verification is an important and powerful piece of evidence in a certification scheme,
but that it is not central to such a scheme. In particular, we have examined Shao’s [Sha10]
approach to software certification and presented our view that it is essentially and fundamentally
flawed.

To complete our argument, let us return to Shao’s three challenges faced by software certifi-
cation. We argue that our framework provides a setting in which we can gradually attack the
challenges instead of trying to solve them all at once, which we believe is practically impossible.

1. Software is everywhere. How do we manage the huge number of domains we have to
interact with?

Shao’s solution, to ignore the domains and certify the software in isolation, we have al-
ready addressed: we believe that this position is untenable. We must respect practice if our
approach to certification is to be taken seriously. To advocate verification as the solution to
all problems, while ignoring existing—though admittedly flawed—standards and certifica-
tion approaches is harmful to the already strained relationship between theory and practice
in our field. There are sound practical reasons for the evidence that is being considered,
as we write this, in real-world certification activities. We believe that it is important to
consider, however inexactly, all of the available evidence.

Considering, as we do, software as but one aspect of an engineering system, we need to
tie in to existing certification efforts and to continue to develop metrics and confidence
measures for software. Our certification framework is designed to allow for new measure-

13 / 15 Volume 46 (2011)



Positioning Verification in the Context of Software/System Certification

ments and analyses to be incorporated as they become available, but also to make use of
more qualitative evidence like process adherence and personnel qualifications, etc., for the
time being.

2. Software is complex. How can certification scale?

Rather than throwing up our hands in despair, we firmly believe that the problem can be
confronted gradually. Not all software systems need to be certified with the same level
of rigor; not all development activities must be treated in the same way. Highly critical
systems can be more strictly regulated and we can limit the complexity of the software
there deployed, just as Ontario Hydro did with their nuclear shutdown system [WL03].
For systems at a lower level of criticality, we can relax the requirements somewhat and
employ less severe, but still meaningful, forms of evidence and confidence measures. From
this stance we can progressively tighten the certification scheme as appropriate methods
become available, while still maintaining an approach that can essentially be applied to
any system containing software.

3. We lack metrics for software dependability. How can metrics be discovered and developed,
and how can we incorporate them when they exist?

Shao’s idea, that is to view the dependability claim as a kind of metric, seems entirely to
miss the point of a metric as it does not present something that is measurable. However,
we do strongly agree that metrics are scarce and that, even when they do exist, they do not
provide particularly good information (e.g., lines of code as a measurement of complexity).
Nevertheless, this will not necessarily be the case forever, and until more mathematical
metrics become available we can still make use of engineering judgement, best practices
and other qualitative forms of evidence. This problem just reflects the nature of software
engineering: as a young and relatively underdeveloped branch of engineering, it is what
Vincenti calls radical engineering [Vin90], but as time passes it will become normal, just
as other engineering disciplines have. As this process takes place, our framework provides
a setting to support certification through the transition. This is the best we can do at
present, but we believe that it is the only responsible, professional approach that engineers
can adopt.

Acknowledgements: The authors would like to acknowledge various members of McSCert
for valuable discussions and helpful pointers relating to the certification framework; in partic-
ular, weekly discussions with Gord Uszkay and Valentin Cassano about tools and techniques
for expressing and managing confidence have been an invaluable source of insight. We would
also like to thank Paul Joannou, Zarrin Langari, Ali Taleghani for their helpful comments on an
earlier version of this paper, and the members of the Software Certification Consortium for their
feedback on a version of the framework that was presented at their May 2011 meeting.

Proc. AVoCS 2011 14 / 15



ECEASST

Bibliography

[DFHJ05] E. Denney, B. Fischer, D. Hutter, M. Jones. Software certificate management (Soft-
CeMent’05). In Proc. of the 20th IEEE/ACM international Conference on Automated
software engineering. ASE ’05, pp. 463–463. ACM, New York, NY, USA, 2005.

[Eur01] Eurocontrol. The EUR RVSM Pre-Implementation Safety Case, Ver. 2.0 (RVSM 691).
Aug. 2001. http://www.eur-rvsm.com/safety.htm#precase.

[FL07] J. Fitzgerald, P. Larsen. Balancing insight and effort: the industrial uptake of Formal
methods. In Formal methods and hybrid real-time systems. Volume 4700, pp. 237–
254. 2007.

[HHL+09] J. Hatcliff, M. Heimdahl, M. Lawford, T. Maibaum, A. Wassyng, F. Wurden. A
Software Certification Consortium and its Top 9 Hurdles. Electron. Notes Theor.
Comput. Sci. 238:11–17, September 2009.

[Kel99] T. P. Kelly. Arguing safety – a systematic approach to managing safety cases. PhD
thesis, Department of Computer Science, University of York, 1999.

[KW11] J. Knight, K. Wasson. Safety Assurance Cases for FDA 510(k) Submissions.
Waltham, MA, USA, June 2011. Unpublished course materials.

[MW08] T. Maibaum, A. Wassyng. A Product-Focused Approach to Software Certification.
Computer 41:91–93, 2008.

[Sha10] Z. Shao. Certified software. Commun. ACM 53:56–66, December 2010.

[Tur49] A. M. Turing. Checking a Large Routine. In Anonymous (ed.), Report on a Con-
ference on High Speed Automatic Computation, June 1949. Pp. 67–69. University
Mathematical Laboratory, Cambridge University, Cambridge, UK, 1949.

[UK 00] UK Office of Rail Regulation. The Railways (Safety Case) Regulations 2000. Oct.
2000. http://www.legislation.gov.uk/uksi/2000/2688/contents/made.

[UK 07] UK Ministry of Defence. Safety Management Requirements for Defence Systems.
2007. Def Stan 00-56, Issue 4.

[Vin90] W. G. Vincenti. What engineers know and how they know it: Analytical studies from
aeronautical history. Johns Hopkins University Press, Baltimore, 1990.

[WL03] A. Wassyng, M. Lawford. Lessons Learned from a Successful Implementation of
Formal Methods in an Industrial Project. In Araki et al. (eds.), FME 2003: Interna-
tional Symposium of Formal Methods Europe Proceedings. Lecture Notes in Com-
puter Science 2805, pp. 133–153. Springer-Verlag, Aug. 2003.

[WML10] A. Wassyng, T. Maibaum, M. Lawford. On Software Certification: We Need
Product-Focused Approaches. In Choppy and Sokolsky (eds.), Monterey Workshop
2008. LNCS 6028, pp. 250–274. Springer, 2010.

15 / 15 Volume 46 (2011)


	Introduction
	Software, engineering, and certification

	Software Certification
	What should software certification really certify?

	A Certification Framework
	Evidence
	Confidence
	Determination
	Certification

	Applying the Framework
	Incorporating verification
	Using assurance cases

	Conclusion

