
Electronic Communications of the EASST
Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

From System Requirements to Software Requirements in the
Four-Variable Model

Lucian M. Patcas, Mark Lawford and Tom Maibaum

15 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

From System Requirements to Software Requirements in the
Four-Variable Model

Lucian M. Patcas1, Mark Lawford2 and Tom Maibaum3

1patcaslm@mcmaster.ca, 2lawford@mcmaster.ca, 3maibaum@mcmaster.ca
Department of Computing and Software, McMaster University, Canada

Abstract: The four-variable model of software-controlled embedded systems origi-
nally proposed by Parnas and Madey has been used successfully in the development
of safety-critical applications in various industries. The model does not explicitly
specify the software requirements, but rather bounds them by specifying the system
requirements and the input and output hardware interfaces of the system. The soft-
ware engineers are left with the problem of how to construct software that satisfies
the system requirements and hardware interfacing constraints. After formalizing the
properties of acceptable system and software implementations using the demonic
calculus of relations, we provide (i) a necessary and sufficient condition for the
existence of an acceptable software implementation and (ii) a mathematical charac-
terization of the software requirements in terms of their weakest specification.

Keywords: safety-critical, requirements, four-variable model, specification and re-
finement, demonic calculus of relations, verified system development

1 Introduction

Many safety-critical systems monitor and control physical processes. Such systems typically are
embedded systems that have sensors, actuators, and a controller. Based on the measured values
of the physical quantities of interest obtained from the sensors, the controller commands the ac-
tuators with the purpose of maintaining certain properties in the physical process. The controller
usually has a software implementation that runs on a digital computer. The four-variable model
proposed by Parnas and Madey [PM95] (Figure 1) helps to clarify the behaviour of, and the
boundaries between, the physical process, sensors, actuators, and control software. The model
was used as early as 1978 as part of the Software Cost Reduction (SCR) program of the Naval
Research Laboratory for specifying the flight software of the U.S. Navy’s A-7 aircraft [VS90].
The ideas from SCR were later integrated in the Consortium Requirements Engineering (CoRE)
methodology, which was used for specifying the avionics system of the C-130J aircraft in the
1980s [FFK+94]. Another significant example of a successful use of the four-variable model is
the redesign of the software in the shutdown system of the Darlington nuclear power plant in On-
tario, Canada in the 1990s [LMFM00, WL03, WL06]. More recently, in 2009, the four-variable
model was used extensively in the Requirements Engineering Handbook [LM09], put together
at the request of the Federal Aviation Administration in the United States.

In the four-variable model (Figure 1), REQ models the system requirements. At the system
requirements level, a system is seen as a black-box that relates physical quantities measured by

1 / 15 Volume 66 (2013)

mailto:patcaslm@mcmaster.ca
mailto:lawford@mcmaster.ca
mailto:maibaum@mcmaster.ca

From System Requirements to Software Requirements in the Four-Variable Model

M C

I O

NAT

REQ

IN

SOF

OUT

Figure 1: The four-variable model.

the system, called monitored variables, to physical quantities controlled by the system, called
controlled variables. For example, monitored variables might be the pressure and temperature
inside a nuclear reactor while controlled variables might be visual and audible alarms, as well
as the trip signal that initiates a reactor shutdown; whenever the temperature or pressure reach
abnormal values, the alarms go off and the shutdown procedure is initiated. The sets of the
possible values of the monitored and controlled variables are denoted by M and C, respectively.
If tolerances are allowed on the system requirements, then REQ will be a relation, as opposed to a
function, because there will be values in M for which more than one value in C will be acceptable.
The environmental constraints on the system are described by the relation NAT (from “nature”),
which restricts the possible values of the monitored and controlled variables. An environmental
constraint might be the maximum rate of climb of an aircraft in the case of an avionics system,
for instance. As an extreme example, if everything was possibile in the physical environment,
then NAT would be the universal relation between M and C.

The possible system designs are modelled by a sequential composition of IN, SOF, and OUT.
Here, IN models the input hardware interface (sensors and analog-to-digital converters) and
relates values of monitored variables to values of input variables in the software. The input vari-
ables model the information about the environment that is available to the software. For example,
IN might model a pressure sensor that converts temperature values to analog voltages; these volt-
ages are then converted via an A/D converter to integer values stored in a register accesible to the
software. The output hardware interface (digital-to-analog converters and actuators) is modelled
by OUT, which relates values of the output variables of the software to values of controlled vari-
ables. An output variable might be, for instance, a boolean variable set by the software with the
understanding that the value true indicates that a reactor shutdown should occur and the value
false indicates the opposite. The sets of the possible values of the input and output variables
are denoted by I and O, respectively. To account for the inaccuracies introduced by the hardware
interfaces, IN and OUT are in general relations and not functions. For example, assume that
IN models an A/D converter that converts analog voltages in the range 0–5V with an accuracy
of ±0.5V; then, for an actual monitored voltage of 2.5V, the value of the corresponding input
variable in the software can be any of the digital representations that correspond to 2V, 2.5V, and
3V, hence IN is a relation and not a function. Relating values of input variables to values of out-
put variables is SOF, which models the control software. If we want to capture all the possible
implementations of the control software, then SOF will typically have to be a relation.

The relations NAT and REQ are described by domain experts. The system designers allo-
cate the system requirements between hardware and software, and describe IN and OUT. The
software engineers must determine SOF and verify whether it meets the constraints imposed by
NAT, REQ, IN, and OUT. Considering that changes in the specifications of the system require-
ments and hardware interfaces arise often in the early stages of system development, the task

Proc. AVoCS 2013 2 / 15

ECEASST

of determining SOF is repetitive and, thus, even more demanding. An important question for
software engineers to ask themselves before investing resources to develop and verify a detailed
implementation is whether an acceptable software implementation exists at all given the system
requirements and hardware interfaces as currently specified. A positive answer to this question
would allow the software engineers to proceed with a software design having the confidence that
their efforts are not destined to fail from the start. In the case of a negative answer, the next step
would be to determine what needs to be changed in REQ, IN, or OUT in order for a software
implementation to be possible.

Another question to consider is what are the software requirements? The four-variable model
does not explicitly specify the software requirements, but rather bounds them by specifying the
system requirements and the input and output hardware interfaces of the system. Extracting the
software requirements from these specifications is “often an exercise in frustration” [MT01] and
an automated method would be a significant advantage. Moreover, a mathematical characteri-
zation of the software requirements would offer a sound starting point for the software design
process.

1.1 Related work

Methods for asserting the existence of a software implementation in the four-variable model have
not received much attention in the literature. Of the few examples, Lawford et al. [LMFM00]
give, without proof, a necessary condition for the existence of SOF in a functional variant of
the four-variable model. In the context of real-time systems, Hu et al. [HLW09] address in a
functional four-variable model the ability of a software implementation to meet continuous-time
requirements, such as the detection of physical events that have been enabled for a predefined
amount of time; necessary and sufficient existence conditions for SOF are given for different as-
sumptions made about the access of the software to the time of the environment. In this paper we
address the need for existence conditions of a software implementation in the general, relational
case of the four-variable model. The relational case is more realistic as it can model hardware
inaccuracies and tolerances on requirements.

Techniques for deriving the software requirements from the specifications of the system re-
quirements and input/output hardware interfaces in the four-variable model are mentioned in
[BH00, HT00, MT01, WL06]. These techniques are variations of the same idea of manually de-
composing SOF into three subrelations that model the input device drivers, output device drivers,
and, respectively, the system functionality required by REQ; the latter subrelation of SOF closely
resembles REQ and is regarded as the software requirements. In this paper, we do not decom-
pose SOF and present a method for “calculating” the weakest (i.e, least restrictive) specification
of SOF that still satisfies the constraints imposed by NAT, REQ, IN, and OUT. We regard this
weakest specification of SOF as the software requirements specification.

Gunter et al. [GGJZ00] pointed out that the system and software acceptability conditions given
in Parnas and Madey [PM95] are too weak and allow undesirable system and software specifi-
cations, in particular specifications that are inconsistent with the physical environment. We fix
the acceptability conditions by giving a new semantics for the four-variable model based on the
demonic calculus of relations [DMN97, Kah03]. In Section 2 we introduce the demonic calcu-
lus of relations and prove necessary and sufficient conditions for the existence of demonic left

3 / 15 Volume 66 (2013)

From System Requirements to Software Requirements in the Four-Variable Model

and right factors which will later be used to prove a necessary and sufficient condition for the
existence of an acceptable software implementation. In Section 3 we formalize in the demonic
calculus of relations the properties of acceptable system and software implementations, giving a
stronger definition for the angelic acceptability notion proposed by Parnas and Madey [PM95];
this stronger definition explicitly rejects system behaviours that are not physically meaningful.
A necessary and sufficient condition for the existence of an acceptable software implementation
is given in Section 4, along with a mathematical characterization of the software requirements in
terms of their weakest specification.

2 Relations

A relation R from a set A to a set B is a subset of the cartesian product A×B. In other words,
R is a subset of the set of all ordered pairs (a,b), where a ∈ A and b ∈ B. As customary in
higher-order logic, a relation can also be viewed as a binary predicate, that is, as a function of
type A→ B→ bool. This allows us to use currying and write Rab to denote (a,b) ∈ R, and
Ra = {b ∈ B | Rab} to denote the image set of a under the relation R.

Some elementary operations involving a relation R⊆ A×B are:

• domain of R: dom(R) = {a ∈ A | ∃b ∈ B. Rab}

• range of R: ran(R) = {b ∈ B | ∃a ∈ A. Rab}

• converse of R: R`= {(b,a) ∈ B×A | Rab}

• complement of R: R = {(a,b) ∈ A×B | ¬Rab}

For any two sets A and B, the relation CA,B = {(a,b) ∈ A×B | true} is the universal relation
between A and B, while DA,B = {(a,b) ∈ A×B | false} is the empty relation between A and B.

2.1 Angelic operators

The intersection of two relations P ⊆ A×B and Q ⊆ A×B is the relation P∩Q = {(a,b) ∈
A×B | Pab ∧ Qab}. Their union is P∪Q = {(a,b) ∈ A×B | Pab ∨ Qab}. The relation P
is contained in the relation Q, written P ⊆ Q, if and only if ∀a ∈ A. ∀b ∈ B. Pab =⇒ Qab.
Relational containment (or inclusion) is a partial order.

The composition of two relations P⊆ A×B and Q⊆ B×C is the relation:

P ., Q = {(a,c) ∈ A×C | ∃b ∈ B. Pab ∧ Qbc}

The precedence of the relational operators introduced so far is as follows: the unary operators
` and are evaluated first; the binary operator ., is evaluated next; and the binary operators ∩

and ∪ are evaluated last.
The following subrelations of a relation P ⊆ A×B are obtained by restricting the domain or

range of P to the domain or range of another relation:

• the subrelation of P obtained by restricting the domain of P to the domain of a relation
R⊆ A×C is P

∣∣
dom(R) = P ∩ R .,CC,B = {(a,b) ∈ A×B | Rab ∧ a ∈ dom(R)}

Proc. AVoCS 2013 4 / 15

ECEASST

• the subrelation of P obtained by restricting the domain of P to the range of a relation
R⊆C×A is: P

∣∣
ran(R) = P ∩ R` .,CC,B = {(a,b) ∈ A×B | Rab ∧ a ∈ ran(R)}

• the subrelation of P obtained by restricting the range of P to the domain of a relation
Q⊆ B×C is P

∣∣dom(Q)
= P ∩ CA,C

., Q`= {(a,b) ∈ A×B | Rab ∧ b ∈ dom(Q)}

The relational composition and inclusion operations induce two residuation operations: the
left and right residuals [SS93, Fra95, BKS97, Kah03]. Assuming two relations R ⊆ A×C and
Q ⊆ B×C, the left residual of R by Q, denoted R/Q, is the largest solution of the inequality
X ., Q⊆ R, where X ⊆ A×B is the unknown:

X ., Q⊆ R ⇐⇒ X ⊆ R/Q

The value of the left residual of R by Q is:

R/Q = R ., Q`= {(a,b) ∈ A×B | ∀c ∈C. Qbc =⇒ Rac}= {(a,b) ∈ A×B | Qb⊆ Ra}

Given two relations R⊆ A×C and P⊆ A×B, the right residual of R by P, denoted P\R, is the
largest solution of the inequality P ., X ⊆ R, where X ⊆ B×C is the unknown:

P ., X ⊆ R ⇐⇒ X ⊆ P\R

The value of the right residual of R by P is:

P\R = P` ., R = {(b,c) ∈ B×C | ∀a ∈ A. Pab =⇒ Rac}=
{
(b,c) ∈ B×C | P`b⊆ R`c

}
The precedence of / and \ is the same as the precedence of the relational composition. The
residuation operations are loosely analogous to division of natural numbers and the values of the
residuals are a form of quotient. The left residual R/Q can be understood as what remains on the
left of R after R is “divided” by Q on the right. Dually, the right residual P\R is what remains
on the right of R after “dividing” R by P on the left. Hoare and He [HH86] were among the first
to advocate the importance of the relational residuals to software development. They called the
left residual R/Q the weakest prespecification of program Q to achieve specification R; the right
residual P\R was called the weakest postspecification of program P to achieve specification R.

The relational operators introduced so far have been used in the literature to formalize so called
angelic semantics. In such semantics, specifications that allow bad behaviours are acceptable as
long as good behaviours are also possible. In contrast, in a demonic semantics a specification
is rejected if bad behaviours are possible. When developing safety-critical systems it is always
wise to plan for the worst, therefore the demonic approach is more suitable.

2.2 Demonic operators

We now present the demonic relational operators that will be used in the paper and prove neces-
sary and sufficient conditions for the existence of demonic left and right factors. These conditions
will be used in Section 4 to prove a necessary and sufficient existence condition for an accept-
able software implementation in the four-variable model. Overviews of the demonic calculus of
relations can be found in [DMN97, Kah03].

5 / 15 Volume 66 (2013)

From System Requirements to Software Requirements in the Four-Variable Model

A relation P ⊆ A× B is a demonic refinement of a relation R ⊆ A× B, written P E R, if
and only if P

∣∣
dom(R) ⊆ R and dom(R) ⊆ dom(P). The demonic refinement is a partial order.

Consider the relations R = {(a1,b1),(a1,b2),(a2,b2)}, P = {(a1,b1),(a2,b2),(a3,b2),(a3,b3)},
Q = {(a1,b1),(a2,b1),(a3,b3)}, and S = {(a2,b2)}. Here, P refines R, Q does not refine R
because (a2,b1) /∈ R, and S does not refine R because dom(R)* dom(P).

The demonic composition of relations P⊆ A×B and Q⊆ B×C is defined as:

P2Q = P ., Q ∩ P ., Q .,CC,C = {(a,c) ∈ A×C | (a,c) ∈ P ., Q ∧ Pa⊆ dom(Q)}

Demonic composition is the same as the angelic composition when P is univalent (i.e., a total
or partial function) or when Q is a total relation. As an example, consider the following rela-
tions: P = {(a1,b1),(a1,b2)} and Q = {(b1,c1)}; then P ., Q = {(a1,c1)}, whereas P2Q =DA,C.
Specifications P ., Q where dead ends such as (a1,b2) are possible essentially allow potential im-
plementations to get stuck and not terminate for some inputs as long as they produce expected
results for some other inputs; such specifications are not suitable for safety-critical systems.

As was the case with angelic composition and inclusion, demonic composition and demonic
refinement induce two residuation operations. The demonic left residual of a relation R⊆ A×C
by a relation Q⊆ B×C, denoted RIQ, is defined as the largest solution with respect to E of the
inequation X 2Q E R, where X ⊆ A×B is the unknown:

X 2Q E R ⇐⇒ X E RIQ

A solution X, also called demonic left factor of R through Q, does not always exist. As such, the
demonic left residual RIQ is not always defined. For example, if Q =DB,C and R 6=DA,C, then
X 2Q =DA,C for any X ⊆ A×B, in which case X 2Q is not a demonic refinement of R and RIQ
is undefined. If the demonic left residual is defined, then its value is:

RIQ = R/Q ∩ CA,C
., Q`

= (R/Q)
∣∣dom(Q)

We now state and prove a necessary and sufficient condition for the existence of a demonic
left factor and, therefore, for the definedness of the demonic left residual.

Lemma 1 Given two relations R ⊆ A×C and Q ⊆ B×C, there exists a demonic left factor
X ⊆ A×B such that X 2Q E R if and only if ∀a ∈ dom(R). ∃b ∈ dom(Q). Qb⊆ Ra.

Proof. If direction: (∃X . X 2Q E R) =⇒∀a ∈ dom(R). ∃b ∈ dom(Q). Qb⊆ Ra

∃X . X 2Q E R

=⇒〈by definition, if X 2Q E R admits a solution, then RIQ also is a solution〉
(RIQ) 2Q E R

=⇒〈by definition of E〉
dom(R)⊆ dom((RIQ) 2Q)

=⇒dom(R)⊆ dom(RIQ)

=⇒∀a ∈ dom(R). ∃b ∈ B. (a,b) ∈ RIQ

=⇒〈by value of RIQ〉
∀a ∈ dom(R). ∃b ∈ dom(Q). Qb⊆ Ra

Proc. AVoCS 2013 6 / 15

ECEASST

Only if direction: (∀a ∈ dom(R). ∃b ∈ dom(Q). Qb⊆ Ra) =⇒∃X . X 2Q E R

∀a ∈ dom(R). ∃b ∈ dom(Q). Qb⊆ Ra

⇐⇒ 〈by value of R/Q & value of RIQ〉
∀a ∈ dom(R). ∃b ∈ dom(Q). (a,b) ∈ RIQ

⇐⇒ ∀a ∈ dom(R). ∃b ∈ B. (a,b) ∈ RIQ ∧ b ∈ dom(Q)

⇐⇒ 〈by definition of 2〉
∀a ∈ dom(R). ∃c ∈C. ((RIQ) 2Q) ac

=⇒dom(R)⊆ dom((RIQ) 2Q) (1)

((RIQ) 2Q)
∣∣
dom(R) ⊆ R

⇐⇒ ∀a ∈ dom(R). ((RIQ) 2Q) a⊆ Ra

⇐⇒ 〈by unfolding ⊆〉
∀a ∈ dom(R). ∀c ∈C. ((RIQ) 2Q) ac =⇒ Rac

⇐⇒ 〈by definition of 2 and .,〉
∀a ∈ dom(R). ∀c ∈C. (∃b ∈ dom(Q). ((RIQ)ab ∧ Qbc)) =⇒ Rac

⇐⇒ 〈by value of RIQ〉
∀a ∈ dom(R). ∀c ∈C. (∃b ∈ dom(Q). ((Qbc) =⇒ Rac) ∧ Qbc) =⇒ Rac

⇐⇒ 〈by modus ponens〉
∀a ∈ dom(R). ∀c ∈C. Rac =⇒ Rac

⇐⇒ true (2)

∀a ∈ dom(R). ∃b ∈ dom(Q). Qb⊆ Ra

=⇒〈by (1) & (2) & definition of E〉
(RIQ) 2Q E R

=⇒∃X . X 2Q E R

Several conditions for the definedness of the demonic left residual can be found in the litera-
ture, such as, if brought to our notation: dom(R) ⊆ dom

(
(R/Q)

∣∣dom(Q)
)

in [DBS+95, Fra95];
and, dom(R)⊆ dom((R/Q) ., Q) in [DMN97, Kah03]. It can be shown that these conditions are
equivalent to our condition in Lemma 1.

The demonic right residual of a relation R⊆ A×C by a relation P⊆ A×B, denoted PJR, is
defined as the largest solution with respect to E of the inequation P2X E R, where X ⊆ B×C is
the unknown:

P2X E R ⇐⇒ X E PJR

A solution X to this inequation, called a demonic right factor of R through P, does not always
exists. Therefore, the demonic right residual PJR is not always defined. If PJR is defined, then

7 / 15 Volume 66 (2013)

From System Requirements to Software Requirements in the Four-Variable Model

a1

a2

c1

c2

b1

b2

R

R/Q Q

a1

a2

c1

c2

b1

b2

R

RIQ Q

a1

a2

c1

c2

b1

b2

R

P P\R

a1

a2

c1

c2

b1

b2

R

P PJR

Figure 2: Examples of angelic and demonic residuals.

its value is:

PJR = (P ∩ R .,CC,B)\R ∩ (P ∩ R .,CC,B)
` .,CA,C =

(
P
∣∣
dom(R)

∖
R
)∣∣∣

ran

(
P
∣∣∣
dom(R)

)

We now give a necessary and sufficient condition for the existence of a demonic right factor and,
therefore, for the definedness of the demonic right residual.

Lemma 2 Given two relations R ⊆ A×C and P ⊆ A×B, there exists a demonic right factor

X ⊆ B×C such that P2X E R if and only if ∀b ∈ ran
(

P
∣∣
dom(R)

)
. ∃c ∈C.

(
P
∣∣
dom(R)

)`

b ⊆ R`c
and dom(R)⊆ dom(P).

Proof. Similar to the proof of Lemma 1.

The definedness conditions for the demonic right residual presented in the literature [Fra95,
DBS+95, Kah03] can all be brought to the following common form in our notation: dom(R)⊆
dom(P) and CB,C ⊆

(
P
∣∣
dom(R)

∖
R
)

.,CC,C. These conditions are stated only as sufficient, but
it can be shown that they are equivalent to our condition in Lemma 2. The advantage of our
conditions for the definedness of demonic left and right residuals when used by engineers is
that the formulations in first-order logic give a better insight into their meaning compared to the
abstract relation algebraic formulations found in the literature.

Examples of angelic and demonic residuals are depicted in Figure 2. Here, if seen as speci-
fications, the angelic residual R/Q allows the dead end (a1,b2) where an implementation could
get stuck, whereas the demonic residual RIQ does not allow any dead ends. Moreover, both de-
monic residuals in the figure are less restrictive than their angelic counterparts without breaking
refinement; for example, P\R, but not PJR, asks its implementations to produce an output for
b2, which is not something of interest for R.

Two relations P ⊆ A×B and Q ⊆ A×B are compatible if and only if dom(P)∩ dom(Q) ⊆
dom(P∩Q). The demonic refinement partial order induces a complete join-semilattice [DMN97,
Kah03]. In this paper we will be using the meet operation of this semilattice, also called the de-
monic intersection. The demonic intersection of two relations P⊆A×B and Q⊆A×B is defined
if P and Q are compatible. If the demonic intersection of P and Q is defined, its value is:

PGQ = (P∩Q) ∪
(
P ∩ Q .,CB,B

)
∪
(
P .,CB,B ∩ Q

)
= (P∩Q) ∪ P

∣∣
dom(Q)

∪ Q
∣∣
dom(R)

For example, let P = {(a1,b1),(a2,b1),(a2,b3)} and Q = {(a2,b2),(a2,b3),(a3,b3)}; in this
case, PGQ = {(a2,b3),(a1,b1),(a3,b3)}.

Proc. AVoCS 2013 8 / 15

ECEASST

dom(NAT)

dom(REQ)

m1

m2

c1

c2

c3

NAT
REQ
SY S

Figure 3: Problems with acceptability conditions in [PM95].

3 System and software acceptability

What conditions must a software implementation satisfy to be acceptable? A first intuition is that
an acceptable software implementation must be part of an acceptable system implementation. In
this section we formalize the properties of acceptable system and software implementations. The
starting point is system requirements that are consistent with the physical laws of the environ-
ment.

In Parnas and Madey [PM95], the system requirements REQ are feasible with respect to NAT
if and only if the following conditions are both satisfied:

dom(NAT)⊆ dom(REQ) (3)

dom(NAT ∩REQ) = dom(NAT)∩dom(REQ) (4)

These conditions do not imply computability, nor that an implementation of the system require-
ments is even practical. The intention of the authors was for the feasibility conditions to allow
only required behaviours (as described by REQ) that are allowed by the natural environment (as
described by NAT). Condition (3) means that the system requirements should specify behaviour
for all monitored values that can arise in the environment. It can be assumed that the inputs that
are outside the domain of NAT will never occur. Condition (4) says that for each input in the
common subset of their domains, NAT and REQ should agree on at least one output. Together,
conditions (3) and (4) postulate that, for every input possible in the environment, the system re-
quirements should ask the system to produce at least one output that is physically meaningful. If
(3) and (4) are not satisfied, then there will be no realizable system implementation. For the rest
of the paper, REQ will be assumed to be feasible unless otherwise stated. Another assumption is
that the system requirements are consistent [HJL96].

Parnas and Madey [PM95] define acceptability of software using the following condition:

NAT ∩ (IN ., SOF ., OUT)⊆ REQ (5)

A system implementation SY S = IN ., SOF ., OUT is then acceptable if and only if it satisfies:

NAT ∩ SY S⊆ REQ (6)

These acceptability conditions are, however, not strong enough. Let us consider the relations
NAT, REQ, and SYS in Figure 3, where m1,m2 are values of monitored variables in the set M and
c1,c2,c3 are values of controlled variables in the set C. These relations satisfy the conditions (3),
(4), and (6). Therefore, according to [PM95], the system requirements REQ are feasible with
respect to NAT and the system implementation SYS is acceptable although:

9 / 15 Volume 66 (2013)

From System Requirements to Software Requirements in the Four-Variable Model

• (m2,c3) ∈ NAT , (m2,c3) ∈ REQ, and (m2,c3) /∈ SY S. A system implementation SYS that
does not deal with all the inputs in dom(NAT) is deemed acceptable. It is mentioned
elsewhere in [PM95] that dom(NAT)⊆ dom(IN); this, however, does still not ensure that
dom(NAT)⊆ dom(IN ., SOF ., OUT).

• (m1,c2) ∈ SY S and (m1,c2) /∈ NAT . A system specification SYS that asks an implementa-
tion to produce outputs not physically possible is deemed acceptable. From an engineering
perspective, such systems are not realizable and it is important to reject early specifications
that allow them. A similar problem with the acceptability condition in [PM95] was pointed
out in Gunter et al. [GGJZ00].

In the remainder of the section, the conditions (5) and (6) will be strengthened using the
demonic calculus of relations, introduced in Subsection 2.2. Condition (4) of the system require-
ments feasibility is in fact equivalent to the compatibility condition (Subsection 2.2) of NAT
and REQ because dom(NAT ∩ REQ) ⊆ dom(NAT)∩ dom(REQ) is a tautology. Therefore, if
REQ is feasible with respect to NAT, then NAT GREQ is defined. In Figure 3, if we implement
NAT GREQ = {(m1,c1),(m2,c3)} instead of REQ, then (m1,c2) will not be allowed to be part
of SYS and (m2,c3) will be required to belong to SYS. That is, NAT GREQ captures only that
part of the system requirements that is physically meaningful.

We need to clarify at this point what it means for an implementation to satisfy a specification.
As a satisfaction concept, we choose the demonic refinement of relations, also known as “total
correctness” in the relation algebra literature and introduced in Subsection 2.2. The interpre-
tation of the demonic refinement is twofold. First, if a specification is defined for some input,
then any implementation must produce a result allowed by the specification. Second, if the spec-
ification is not defined for some input, then producing arbitrary results or producing no result
whatsoever are both allowed for that input. We now redefine the acceptability notion of Parnas
and Madey [PM95] in the demonic calculus of relations.

Definition 1 A system implementation SYS is acceptable if and only if SY S E NAT GREQ.

For an acceptable system implementation SYS, the demonic refinement, demonic intersec-
tion, and feasibility of system requirements ensure that dom(NAT) ⊆ dom(NAT GREQ) ⊆
dom(REQ) ⊆ dom(SY S). Consequently, an acceptable system implementation will sense all
the inputs that are possible in the environment. For these inputs, the system is asked to produce
only outputs allowed by the physical environment. The inputs outside the domain of NAT, but in
the domain of REQ, can be assumed to never happen under normal circumstances; these inputs
can be used for specifying fault-tolerant behaviour for abnormal circumstances. Allowing arbi-
trary behaviour outside the domain of REQ should present no danger as it is assumed that, for a
final product, hazard analyses have been conducted and all the inputs that could lead to hazardous
system behaviour have been added to the domain of REQ as additional safety requirements.

In Parnas and Madey [PM95], a system implementation is given as SY S = IN ., SOF ., OUT . As
seen in Subsection 2.2, the angelic composition allows dead ends between the composed rela-
tions. We argue that this may allow undesirable system behaviours. For example, let us consider
a relation IN that models an 8-bit resolution A/D converter such that a monitored analog voltage
m = 0V is mapped to a digital value i = 0, m = 2.49V is mapped to i = 127, and m = 4.99V

Proc. AVoCS 2013 10 / 15

ECEASST

A D

B C

R

P

X

Q

RIQ

PJR

Figure 4: Existence of a demonic mid factor.

is mapped to i = 255 (i.e., i = bm ∗ 28/5c). The requirements ask the system to produce at the
output the double of the input. Because the relation NAT says that the monitored voltages will
be in the range 0–2.49V, it is decided that 8-bit unsigned integers will be used to represent the
values of the output variable o = 2 ∗ i set by the software. If the converter has an accuracy of
±0.03V, the following situation can occur: a monitored voltage of m = 2.49V can be mapped
to any of the software inputs between i = 125 (m = 2.46V) and i = 129 (m = 2.52V); in the
cases when the software input i is greater than or equal to 128, the corresponding software out-
put o = 2∗ i will be greater than 255 and will not fit in the 8-bit variable. In practice this means
an overflow that can cause a fatal runtime error, in which case the system will not produce an
expected result. At the specification level, this situation manifests itself as a dead end between
SOF and OUT. Angelic composition allows such system behaviours because, even if the im-
plementation fails to produce expected results when i ≥ 128, expected results will be produced
when 125 ≤ i ≤ 127. Demonic composition will discard the behaviours that correspond to the
system input m = 2.49V altogether since some of them (i≥ 128) are prone to failure. Therefore,
we redefine the description of a system implementation to be SY S = IN2SOF 2OUT .

Definition 2 A software implementation SOF is acceptable if and only if IN2SOF 2OUT E

NAT GREQ.

4 Existence of an acceptable software implementation

In the previous section we formalized what it means for a software implementation to be accept-
able, but does such a software implementation exist at all? The mathematical question we ask
is, given relations NAT, REQ, IN, and OUT in the four-variable model, does a relation SOF exist
such that IN2SOF 2OUT E NAT GREQ?

To reduce notational verbosity, we switch momentarily to using R to denote NAT GREQ, P
for IN, Q for OUT, and X for SOF (Figure 4). We are interested in necessary and sufficient
conditions for the existence of a demonic factor X such that P2X 2Q E R. Demonic composition
is an associative operation [BW93]: P2 (X 2Q) = (P2X) 2Q. Associativity of 2 indicates that
both diagonals AC and BD are necessary for X to exist. This suggests that the existence of the
diagonals might also be a sufficient condition. As it turns out, this is not the case. By applying
Lemma 2 in4A,B,D, the necessary and sufficient condition for diagonal BD to exist is:

dom(R)⊆ dom(P) ∧ ∀b ∈ ran
(

P
∣∣
dom(R)

)
. ∃d ∈ D.

(
P
∣∣
dom(R)

)`

b⊆ R`d (7)

By definition, the largest relation, with respect to E, for the diagonal BD is the demonic right
residual PJR. The necessary and sufficient condition for the existence of diagonal AC is obtained
by applying Lemma 1 in4A,C,D:

∀a ∈ dom(R). ∃c ∈ dom(Q). Qc⊆ Ra (8)

11 / 15 Volume 66 (2013)

From System Requirements to Software Requirements in the Four-Variable Model

a1

a2

b1

c1

c2

c3

d1

d2

d3

R

P

X

Q

Figure 5: Diagonals are not sufficient for a demonic mid factor.

The largest relation, with respect to E, for the diagonal AC is the demonic left residual RIQ.
While conditions (7) and (8) are both necessary for X, Figure 5 provides a counterexample to
the sufficiency of their conjunction. Condition (7) is satisfied because dom(R) ⊆ dom(P) and(

P
∣∣
dom(R)

)`

b1 = {a1,a2} ⊆ R`d2 = {a1,a2}. Condition (8) is also satisfied because Qc1 =

{d1} ⊆ Ra1 = {d1,d2} and Qc3 = {d3} ⊆ Ra2 = {d2,d3}. However, if (b1,c1) ∈ X , then a2 can
be connected to d1 via P2X 2Q although (a2,d1) /∈ R; similarly, if (b1,c3) ∈ X , then a1 can reach
d3 via P2X 2Q although (a1,d3) /∈ R. Consequently, there is no relation X such that P2X 2QE R,
although both (7) and (8) are satisfied. It is only when (c2,d2)∈Q that there is an X = {(b1,c2)}
such that P2X 2QE R. It can be seen in Figure 5 that d2 enjoys a special property: the amount of
“confusion” at the input of R to produce d2 is at least the same as the amount of “confusion” at

the input of P to produce b1, that is,
(

P
∣∣
dom(R)

)`

b1 = {a1,a2} ⊆ R`d2 = {a1,a2}. This suggests
that Q reaching points similar to d2 must be part of a necessary and sufficient condition for X to
exist.

Lemma 3 Given three relations R ⊆ A×D, P ⊆ A×B, and Q ⊆ C×D, there exists a de-
monic factor X ⊆ B×C such that P2X 2Q E R if and only if dom(R) ⊆ dom(P) and ∀b ∈

ran
(

P
∣∣
dom(R)

)
. ∃c ∈ dom(Q). Qc⊆

{
d ∈ D |

(
P
∣∣
dom(R)

)`

b⊆ R`d
}

.

Proof. The geometrical interpretation (Figure 5) of the associativity of 2 is that it does not matter
if we use the diagonal BD or the diagonal AC to arrive to the conditions for the existence of X. As
such, it suffices to use the diagonal BD and show that the conditions in Lemma 3 are necessary
and sufficient for X such that P2 (X 2Q) E R.

∃X . P2 (X 2Q) E R

⇐⇒ 〈by definition of J & Lemma 2 applied in 4A,B,D〉
(∃X . X 2Q E PJR) ∧ (7)

⇐⇒ 〈by Lemma 1 applied in 4B,C,D〉
∀b ∈ dom(PJR). ∃c ∈ dom(Q). Qc⊆ (PJR)b ∧ (7)

⇐⇒
〈
dom(PJR) = ran

(
P
∣∣
dom(R)

)
& (PJR)b =

{
d ∈ D |

(
P
∣∣
dom(R)

)`

b⊆ R`d
}〉

dom(R)⊆ dom(P)

∧ ∀b ∈ ran
(

P
∣∣
dom(R)

)
. ∃c ∈ dom(Q). Qc⊆

{
d ∈ D |

(
P
∣∣
dom(R)

)`

b⊆ R`d
}

Proc. AVoCS 2013 12 / 15

ECEASST

Lemma 4 Given relations R⊆ A×D, P⊆ A×B, X ⊆ B×C, and Q⊆C×D, if P2X 2Q E R,
then X E PJRIQ.

Proof. For any X such that P2 (X 2Q) E R we have that P2 (X 2Q) E R ⇐⇒ X 2Q E PJR ⇐⇒
X E (PJR)IQ by using the definitions of J and I, respectively. Considering that the demonic
composition is associative, it is also the case that any X that satisfies (P2X) 2Q E R is also a
demonic refinement of the residual PJ (RIQ) and that (PJR)IQ = PJ (RIQ). Therefore,
we drop the parentheses and say that any solution of the inequality P2X 2Q E R, if it exists, is a
demonic refinement of the residual PJRIQ. In other words, this residual is the largest solution,
with respect to E, of P2X 2Q E R.

At this point we are ready to present the main results of the paper. The following theorem states
a necessary and sufficient condition for the existence of an acceptable software implementation
in the four-variable model (Figure 1).

Theorem 1 There exists an acceptable software implementation SOF if and only if for any
software input i ∈ ran

(
IN
∣∣
dom(NATGREQ)

)
there exists a software output o ∈ dom(OUT) such

that OUT o ⊆
{

c ∈C |
(

IN
∣∣
dom(NATGREQ)

)`

i⊆ (NAT GREQ)
`

c
}

, and dom(NAT GREQ) ⊆

dom(IN).

Proof. Direct consequence of Lemma 3.

Following from Definition 2 and Lemma 4, we have that any acceptable software implemen-
tation, if it exists, is a demonic refinement of the residual INJ(NAT GREQ)IOUT . As a result,
this residual is the least restrictive software specification, or the weakest software specification,
as it leaves open most software design options. The weakest software specification describes
all the possible acceptable software implementations and, in this sense, it describes the software
requirements. An actual software implementation is a functional (i.e., deterministic) demonic
refinement of the software requirements.

5 Conclusions

A method for assessing the existence of an acceptable software implementation early in the
development of a safety-critical system may save time and resources. We have addressed this
need and proved a necessary and sufficient condition for the existence of an acceptable software
implementation in a general, relational variant of the four-variable model in which inaccuracies
of the sensing and actuating hardware as well as tolerances can be modelled. To be useful in
practice, the existence check for acceptable software needs to be supported by tools. Satisfiability
Modulo Theories (SMT) solving may be a fruitful direction for a completely automated check,
although a point of concern is the existential quantifier that falls within the scope of the universal
quantifier in our existence condition. When SMT solving does not work, verifying whether the
existence condition is satisfied or not will still be possible in an interactive proof assistant.

13 / 15 Volume 66 (2013)

From System Requirements to Software Requirements in the Four-Variable Model

In this paper we also have formalized the acceptability conditions for system and software
implementations using the demonic calculus of relations and fixed the angelic conditions of Par-
nas and Madey [PM95]. In the process, we provided a mathematical characterization of the
software requirements in terms of their weakest specification. The main advantage for having a
relation algebraic characterization for the software requirements is the high potential for mecha-
nization. Given the finite relations NAT, REQ, IN, and OUT, it is possible to calculate the residual
IN J (NAT GREQ)IOUT by turning the relational calculus into matrix operations on the adja-
cency matrices of the graphs associated with the relations [SS93]. If this proves unfeasible for
very large relations, or in the case of infinite relations, reasoning about relational specifications
will still be possible in an interactive proof assistant.

For increased confidence in our results, we formalized and verified the mathematical develop-
ment presented in this paper with the proof assistant Coq.

Acknowledgements: The authors would like to thank Dave Parnas for clarifications about the
four-variable model. Thanks also go to Wolfram Kahl who has always found time to answer our
questions about relation algebra.

Bibliography

[BH00] R. Bharadwaj, C. Heitmeyer. Developing High Assurance Avionics Systems with
the SCR Requirements Method. In Proceedings of the 19th Digital Avionics Systems
Conference. October 2000.

[BKS97] C. Brink, W. Kahl, G. Schmidt (eds.). Relational Methods in Computer Science.
Advances in Computing. Springer-Verlag, 1997.

[BW93] R. C. Backhouse, J. van der Woude. Demonic Operators and Monotype Factors.
Mathematical Structures in Computer Science 3(4):417–433, December 1993.

[DBS+95] J. Desharnais, N. Belkhiter, S. B. M. Sghaier, F. Tchier, A. Jaoua, A. Mili, N. Za-
guia. Embedding a Demonic Semilattice in a Relation Algebra. Theoretical Com-
puter Science 149(2):333–360, 1995.

[DMN97] J. Desharnais, A. Mili, T. Nguyen. Refinement and Demonic Semantics. In [BKS97],
chapter 11, pp. 166–183, 1997.

[FFK+94] S. Faulk, J. Finneran, J. Kirby, S. Shash, J. Sutton. Experience Applying the CoRE
Method to the Lockhead C-130J Software Requirements. In Ninth Annual Confer-
ence on Computer Assurance. Gaithersburg, Maryland, June 1994.

[Fra95] M. Frappier. A Relational Basis for Program Construction by Parts. PhD thesis,
Computer Science Department, University of Ottawa, 1995.

[GGJZ00] C. A. Gunter, E. L. Gunter, M. Jackson, P. Zave. A Reference Model fo Require-
ments and Specifications. IEEE Software 17(3):37–43, May/June 2000.

Proc. AVoCS 2013 14 / 15

ECEASST

[HH86] C. A. R. Hoare, J. He. The Weakest Prespecification. Fundamenta Informaticae
9(1):(Part I) 51–84, (Part II) 217–252, 1986.

[HJL96] C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw. Automated Consistency Checking
of Requirements Specifications. ACM Transactions on Software Engineering and
Methodology 5(3):230–261, 1996.

[HLW09] X. Hu, M. Lawford, A. Wassyng. Formal Verification of the Implementability of
Timing Requirements. In Formal Methods for Industrial Critical Systems. Lecture
Notes in Computer Science 5596, pp. 119–134. Springer, 2009.

[HT00] M. Heimdahl, J. Thompson. Specification Based Prototyping of Control Systems. In
Proceedings of the 19th IEEE Digital Avionics Systems Conference. October 2000.

[Kah03] W. Kahl. Refinement and Development of Programs from Relational Specifications.
Electronic Notes in Theoretical Computer Science (ENTCS) 44(3):51–93, 2003.

[LM09] D. L. Lempia, S. P. Miller. Requirements Engineering Management Handbook.
Technical report DOT/FAA/AR-08/32, U.S. Department of Transportation, Federal
Aviation Administration, June 2009.

[LMFM00] M. Lawford, J. McDougall, P. Froebel, G. Moum. Practical Application of Func-
tional and Relational Methods for the Specification and Verification of Safety Crit-
ical Software. In Proceedings of Algebraic Methodology and Software Technology,
AMAST. Lecture Notes in Computer Science 1816, pp. 73–88. Springer, 2000.

[MT01] S. P. Miller, A. C. Tribble. Extending the Four-Variable Model to Bridge the System-
Software Gap. In Proceedings of the 20th IEEE Digital Avionics Systems Confer-
ence. October 2001.

[PM95] D. L. Parnas, J. Madey. Functional Documents for Computer Systems. Science of
Computer Programming 25(1):41–61, 1995.

[SS93] G. Schmidt, T. Ströhlein. Relations and Graphs: Discrete Mathematics for Com-
puter Scientists. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1993.

[VS90] A. Van Schouwen. The A-7 REquirements Model: Re-examination for Real-Time
Systems and an Application to Monitoring Systems. Technical report 90-276,
Queens University, Ontario, Canada, 1990.

[WL03] A. Wassyng, M. Lawford. Lessons Learned from a Successful Implementation of
Formal Methods in an Industrial Project. In Araki et al. (eds.), FME 2003. Lecture
Notes in Computer Science 2805, pp. 133–153. Springer, 2003.

[WL06] A. Wassyng, M. Lawford. Software Tools for Safety-Critical Software Develop-
ment. International Journal on Software Tools for Technology Transfer (STTT) 8(4–
5):337–354, August 2006.

15 / 15 Volume 66 (2013)

	Introduction
	Related work

	Relations
	Angelic operators
	Demonic operators

	System and software acceptability
	Existence of an acceptable software implementation
	Conclusions

