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ABSTRACT 
In many Discrete-Event Systems (DES) both state and 
event information are of importance to the systems de- 
signer. As afirst step towards obtaining hierarchical mod- 
els of systems, the behavior of Discrete-Event Systems 
with unobservable transitions and state output maps is 
considered. Observers for deterministic DES are gener- 
alized to nondeterministic DES and characterized using 
the join semilattice of compatible partitions of a tmnsi- 
tion system. This characterization points to eficient al- 
gorithms for computing both strong and weak state-event 
observers as solutions to the Relational Coarsest Partition 
problem (RCP). The strong and weak observation equiva- 
lences of Milner are shown to  be special cases of our ob- 
servers under the trivial (constant) state output map. 

1. Introduction 
Research on discrete-event systems (DES) has led to re- 
newed appreciation of control architecture - decentralized 
and hierarchical decomposition - for the effective modeling 
of large systems. In theoretical treatment, such architec- 
tural features are brought in through standard algebraic 
constructs, namely unions, products and quotient struc- 
tures of the state sets involved. Inasmuch as architecture 
amounts to decomposition of information transfer and de- 
cision making, the systemic notions of observation and 
observer are fundamental. These find their algebraic set- 
ting in lattices of equivalence relations (partitions), and 
the associated sublattices of congruences with respect to 
the dynamic flow. Thus in approaching any new class of 
state transition structures, a first item of business is to 
clarify the algebraic structure of observers (congruences) 
along with their computational complexity. Because, in 
general, equivalence is undecidable, these issues tend to 
be both nontrivial and of practical interest. 

In this paper we generalize previous observers - well 
known (under various guises) in either the control or pro- 
cess algebra literature - to a unified construct that we 
call a state-event observer. In this treatment both state 
changes and output events (or event signals) are assigned 
equal status, thus dowing a flexible modelling approach 
to DES in which both state- and event-based control are 
equally natural. 

Event- 
based models include process-algebraic theory such as those 
from [I], as well as control-theoretic approaches such as 
[2], [3]. States are really only viewed as a way of keeping 
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track of what sequences of events have been executed and 
what future events are possible. Quotient structure is in- 
duced by projection of languages. On the other hand in 
[4],[5], state structure is preeminent, and behavior treated 
as sequences of states or groups of states. For instance 
state charts [5],[6] offer a visual representation (nested 
boxes and arrows) of state set decomposition via nested 
products and disjoint unions, in principle to arbitrary 
depth. Of course the transition structure and control must 
admit compatible decomposition for the method to be 
computationally attractive, and to admit quotient struc- 
tures induced by suitable state-transition homomorphisms. 

In many applications both state occupancy and event 
sequencing are important, and so we need quotients with 
respect to both. One instance is Timed Transition Mod- 
els (TTMs) [7], which express behavior such as: “Do a 
only when 9 = 2 for 3 or more ‘ticks’ of the clock.” In 
[SI the authors adapted to TTMs the event-based obser- 
vation equivalence of [l] by projecting TTM states (the 
state assignments of [7]) to their factors defined by se- 
lected subsets of data variables. Observable events are 
just those TTM state changes that affect the variables in 
question, and the event labels themselves are “projected 
out”. The class of projections for which a quotient can 
be defined was severely restricted; but we shall show how 
this situation can be improved on. 

In this paper we introduce so-called strong and weak 
state-event observers for Labeled Transition Systems (LTS) 
(the underlying model of many DES formalisms includ- 
ing TTMs); state output maps and event projections play 
symmetric roles. Our observers (congruences) induce con- 
sistent high-level abstractions (quotients) so that, just as 
in [2], control designed at the abstract level can be con- 
sistently implemented at the detailed (‘real-world’) level. 
The development of strong observers and their quotient 
systems parallels the results on indistinguishability of LTS 
in [9]. On the basis of [10],[11],[12] we axe able to appeal 
to efficient polynomial-time algorithms for computing our 
observers on finite-state LTS. 

2. Preliminaries 
In this section Labeled Transition Systems (LTS) wi l l  be 
used as our model of a Discrete Event System (DES). The 
lattice of congruences of a deterministic transition system 
and its role in characterizing the (strong) state observers 
of [4] are reviewed. 
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2.1 Labeled Transition Systems 
LTS can be used to compare different notions of equiva- 
lence proposed for concurrent systems, including TTMs. 

Definition 2.1 A Labeled Transition System i s  a 4- 
tuple Q = (Q, C, R E ,  q o )  where Q is an at most countable 
set of states, C is an at most countable set of elementary 
actions or  events, RE = (4 : CY E C} is a set of binary 
relations on Q,  and qo E Q is  the initial state. 

In the above definition if CY E C and q, q‘ E Q, then qzq’ 
means that the LTS can move from state q to q’ by execut- 
ing elementary action CY. Any transition relation 3 E RE 
can be viewed as a function crQ : Q -+ P(Q), where P(Q) 
is the power set of Q. The function aQ maps q to the 
set of states reachable from q via a single CY transition in 
the LTS Q. When the LTS to which we are referring is 
obvious from the context, we will simply write a(q).  For 
simplicity we assume Q # 0 and IQ1 is finite. 

2.2 State Observers for Deterministic LTS 
In [4] the author considers LTS of the form e = (Q, {CY}, 
{-%},Po), where 5, the lone transition relation, can be 
represented as a function cr : Q + Q. In this case the 
LTS is viewed as a discrete time dynamical system, given 
by z(0) = go and z ( t  + 1) = a ( z ( t ) ) ,  where it is the 
sequence of states generated by the LTS that is of interest. 
An output map with no special structure, PQ : Q -.* R, is 
given. Then two states q ,  q’ E Q produce the same output 
observation precisely when PQ(q) = PQ(q‘). 

Denote the set of all equivalence relations on Q by 
Eq(Q). Any state output map PQ : Q -+ R induces an 
equivalence relation ker(PQ) E Eq(Q), the equivalence 
kernel of PQ, given by 

( q 1 , q z )  E ker(PQ) if and only if PQ(q1) = PQ(q2) 

Similarly, any 8 E Eq(Q) defines a canonical output map 
8 : Q -+ Q/S, which projects each q E Q onto its 6-cell 
(equivalence class). Eq(Q) becomes a complete lattice 
under the operations of relational intersection A and union 
of relational products V. 

When each 0 E Eq(Q) is associated with the par- 
tition of Q corresponding to  the cells of 8, the lattice 
of equivalence relations is isomorphic to the poset lat- 
tice of partitions of Q with the partial order 81 5 82 iff 
each cell of 81 is a subset of a cell of 62. Thus we can 
talk interchangeably about equivalence relations and par- 
titions. When talking about partitions 81 A 82 E Eq(Q) 
(e1 V 8,) is the coarsest (finest) partition finer (coarser) 
than both 8 1  and 8 2 .  We will denote the trivial partitions 
{ tq)  : q E Q) = inf(Eq(Q)) and {QI = sup(Eq(Q)) by A 
and V respectively. 

Given a deterministic LTS Q as defined above, 8 E 
Eq(Q) is a congruence of Q iff ( q ,  q’) E 8 implies (a(q), 
a(q’)) E 8. We let C o n ( e )  denote the set of all congru- 
ences of Q. As noted in [4], Con(Q) forms a complete 
sublattice of Eq(Q). Thus Con(Q) is closed under A and 
V,  and given any T Con(Q), sup(F) exists as an ele- 
ment of Con(Q). 

Definition 2.2 Given a deterministic LTS Q as defined 
above and a state output map PQ : Q -+ R, the strong 
state observer, w(Q, PQ), is defined to be 

When C$ and PQ are clear from the context we will simply 
write w for w(C$, PQ). The existence and uniqueness of w 
are an immediate result of Con(Q) being a complete sub- 
lattice of Eq(Q). Here w is the coarsest congruence that 
is finer than the equivalence kernel of PQ. For (q ,  q ’ )  E w ,  
w 5 ker(PQ) implies PQ(q) = &(q ’ )  while w E c o n ( Q )  
so ( a ( q ) , m ( q ’ ) )  E w and hence PQ(CY(q)) = PQ((Y(4‘)). 
Thus if (q ,  q’) E U, then q and q’ produce the same cur- 
rent state output and sequence of future state outputs. 

From an informational standpoint, w represents the 
minimum information you need about the current state of 
the system to be able to predict the future state outputs. 

3. Strong State-Event Observers 
We now wish to generalize the observers for deterministic 
LTS with a single transition function to observers for gen- 
eral LTS with multiple nondeterministic transition rela- 
tions. In this case it is not only the state output sequences 
that are important, but also the connecting events (rela- 
tions). This is illustrated by the following three sequences 
and their images under a state output map PQ : Q -+ R. 

r a  
q31-+q32-+q33 J r 1 L 2 z r 2  

Later T will be used to denote unobservable events but 
for now we assume that all r transitions are observable. 
In this case the first output sequence differs from the 
other two in the second state output while the second and 
third differ in the ordering of their connecting relations or 
“events”. Thus no two of these sequences of states and 
connecting events produce identical output sequences. 

Congruences are defined only for transition functions 
but we are now dealing with nondeterministic transition 
relations so we must find a class of partitions that plays 
the role of congruences for nondeterministic relations. 

Definition 3.1 (cf.[l2] Given a LTS = (Q, C, RE,  qo),, 
a partition 8 E Eq(Q) is a compatible partition for Q zf 
for all a E C, whenever q,q’ are in the same partition 
block (cell) C,, then for any block C, of 6, 

4 7 )  n c, # 0 i i 74q’ )  n c, # 0 

The set of all compatible partitions for the LTS Q will be 
denoted by CP(Q) .  

From the above definition we see that for 8 E CP(Q)  if 
(q ,  q’) E 8 and q z q 1  then there exists q; such that q‘zq; 
and ( q 1 , q ; )  E 8. The reader familiar with Milner’s ob- 
servation equivalence will note that compatible partitions 
are special cases of bisimulation relations and have been 
used for the efficient computation of (event) observation 
equivalence of LTS [IO], [la]. We will have more to say 
about this later. First we will see if CP(Q)  has any spe- 
cial algebraic structure. 

In the case of congruences, Con(Q) forms a complete 
sublattice of Eq(Q) so perhaps we can expect something 
similar for CP(Q) .  Consider Figure 1. It is easy to ver- 
ify that 6 1 ,  82 and 8 1  V 192 are compatible partitions of 
the given LTS but 8 1  A 8 2  is not. Thus C P ( Q )  is not 
closed under the A operation of Eq(Q). The following 

w(Q, PQ) = sup{8 E Con(Q) : 8 5 ker(PQ)} 
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when there are only event outputs and no state outputs, 
our strong state-event observers reduce to Milner’s strong 
observation equivalence. 

An O(m1ogn) algorithm, where m is the size of RE 
(the number of related pairs) and n = IQI, for comput- 
ing - for finite state LTS, based upon Paige and Tarjan’s 
solution to the (mono)-RCP (RCP with only one relation 
present) [ll], can be found in [12]. In this case, 00 is of 
course V. This algorithm is easily adapted to computing 
w. without any change in complexity (assuming ker(Pg) 
is provided) by allowing the initial partition for the RCP 
to be ker(Pg) which, in general, is not V. This close con- 
nection with - leads us to write q -pq q’ when(q, q’)  E w. 
and say that q is strong state-event observation equivalent 

What differentiates our work from that of [lo] and 
[12], is the use, as suggested in [9], of a nontrivial initial 
partition in the RCP, to consider both event and state 
outputs. The consideration of both state and event out- 
puts takes on even greater significance when we consider 
weak state-event observers in the next section. With lit- 
tle additional effort we can adapt [lo] and [12] to provide 
an efficient algorithm for computing weak state-event ob- 
servers. 

As a generalization of congruences, we might expect 
that compatible partitions can be used to  construct quc- 
tient systems of nondeterministic LTS. 

Definition 3.3 Given a LTS Q := ( 9 ,  C, R E ,  qo),  for B E 
CP(Q) ,  we define the quotient system of Q by 0, &/e, 
as follows: 

to q’. 

QP := (QP, E, Rci0, g o / @ )  

Here p o l 0  denotes the cell of the partition 0 containing qo 
and Q/0 denotes the set of all cells of 0.  For a E C, the 
transition relations of RE/0 are defined as aQle(q/O) = 
aQ(q)/e = {ql/e E Q/e : q1 E aQ(q)}. 

The remainder of this section is dedicated to prov- 
ing that the quotient system generated by the compatible 
partition W. is the “unique” minimal state LTS that has a 
state output map that makes it strongly state-event (ob- 
servationally) equivalent to the original system. To do 
this we first have to have a definition of when two LTS, 
with associated state output maps, are state-event equiv- 
alent. 

As was the case with observation equivalence in [12], 
strong state-event observation equivalence can be extended 
to a relation between two LTS having disjoint state 
sets and state output maps. This is done by forming 
the union of the transition systems and the union of the 
original systems’ state output maps. The two LTS are 
then strongly state-event equivalent iff their initial states 
are strongly state-event observationally equivalent in the 
union system. More formally, 

Definition 3.4 Given two disjoint LTS 61 = (91, C, R i ,  
q1o) and Q 2  = (Q2, C, R:, q z o )  with state output maps 
PQ, : QI -+ R and PQ, : Q z  -+ R,  we define the union of 
8 1  and 8 2  to be 

Qi UQ2 :=(Qi uQz,C,RkUR; ,q io)  

while the union of the state output functions, PQ, U PQ, : 
Q1 U Qz -+ R, is given by (PQ, U PQ,)~Q, = PQ,. Then 
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Lemma claims that C P ( Q )  is closed under the V opera- 
tor of Eq(Q) so although CP(Q) is not a complete sublat- 
tice of Eq(Q), it does retain the complete join semilattice 
property of Con(8)  that was used in defining state ob- 
servers in the previous section. We were led to expect a 
join semilattice structure for defining observers on systems 
with nondeterministic transition relations from Wong’s in- 
vestigation of the algebraic properties of hierarchy in [3]. 

Lemma 3.1 For a given LTS = ( 9 ,  C, R E ,  qo) ,  the set 
of compatible partitions for Q, CP(Q), forms a complete 
sub-semilattice (with respect to join) of Eq(Q). 

An immediate result of Lemma 3.1 is that for any 7 
CP(Q) ,  there is a unique supremal element w := sup(F) 
and w E C P ( Q ) .  We are now in a position to character- 
ize a strong state-event observer for any given LTS and 
output map. 

Definition 3.2 Given a LTS 8 = (Q, C, R E ,  q o )  and a 
state output map PQ : Q -+ R (with no special structure), 
the strong state-event observer, w.(Q, PQ) is defined to be 

w s ( Q ,  PQ) = sup{e E CP(Q) : 0 5 ker(PQ)} 

When Q and PQ are clear from the context we will simply 
write w. for wS(Q,Pg). Similar to the case of the state 
observers of Section 2, us is the coarsest compatible par- 
tition of Q that is finer than the equivalence kernel of PQ. 
Thus for (q ,  q ’ )  E ws we have PQ(q) = PQ(q’) so q and q’ 
produce the same current state output. Now suppose that 
95‘41, thereby producing event output a and state output 
PS(q1). Since w s  E CP(Q)  there exists qi E a(q’) such 
that ( q l , q : )  E us. Hence q ’ s q ;  and pQ(q1) = PQ(q;) 
so q’ can generate identical state and event outputs to q. 
As was the case with state observers, w 3  represents the 
minimum information one needs about the current state 
to be able to predict all possible future state and event 
outputs. 

The Relational Coarsest Partition problem (RCP) (as 
stated in [lo]) can be phrased as “Given a LTS Q = 
(Q, C, R E ,  qo)  and 00, an initial partition of Q, find the 
coarsest compatible partition of Q that is finer than 00 
(ie. find sup{@ E CP(Q)  : 0 5 eo}). Thus w s  is the solu- 
tion to the RCP with 00 := ker(PQ). In the special case 
when 00 = ker(PQ) = V (no state information is provided 
by the state output map), the solution of the RCP is Mil- 
ner’s strong observation equivalence - [lo]. Therefore 



Ql under state output map PQ, is strongly state-event 
equivalent to Qz under state output map PQ,, written 
(Q1,PQl) -*e (QZ,PQz)t *ff(91O,qZO) E Ws(QIU$Z,PQ1u 
p Q a ) .  

In the definition of Ql U QZ we have made the arbitrary 
choice of qlo as the initial state. Either initial state will 
do for proving properties of quotient systems. 

The notion of a homomorphism of a LTS will, of course, 
play a central role in obtaining our results about quotient 
systems. The nondeterministic transition relations lead us 
to extend the notion of homomorphism in much the same 
way that we extended congruences of deterministic LTS 
to compatible partitions of nondeterministic LTS. A LTS 
homomorphism requires that any a move in the low level 
system can be matched by an a move in the high level sys- 
tem and vice versa. I t  also requires that the initial state 
of the low level LTS be mapped to the initial state of the 
high level LTS. In the definition of a LTS homomorphism 
we use the fact that any function h : Q1 + Qz induces a 
function at the power set level, h. : ’P(Q1) -+ ’P(Qz). For 
Q E Q l r  h*(Q) := { h ( q )  : q E QI. 

Definition 3.5 Given two LTS 61 = ( Q I ,  C ,  R i ,  q l o )  
and e2 = (Q2,C, R:,q20), a mapping h : QI -+ Qz is 
a LTS homomorphism from QI to Qz if 

(i) h(q10) = qzo 

( i i )  For a11 a E C,qI E ~1 h.(a‘Ql(ql))  = a‘Q’(h(q1)) 

In this case we will write h : Q1 -+ Qz. Henceforth ho- 
momorphism will be understood to mean LTS homomor- 
phism. 

When state output maps PQ, : Q1 -.+ R and PQ, : 
Qz + R are associated with 61 and respectively, we 
say that h : 61 -+ Q2 i s  an output compatible homomor- 
phism o r  OC homomorphism iffor all q1 E Q I ,  P ~ , ( q i )  = 
PQa o h ( q l )  We wiii use the notation h : ( Q I , P g , )  -+ 

(Qz, PQ,) to  emphasize the role of the state output maps. 

I f e l  is an output compatible homomorphic image of 
Ql, any event and associated state output change in QI 
can be matched in Qz. This situation leads us to ex- 
pect that homomorphisms and compatible partitions are 
closely related. 

Any compatible partition defines a homomorphism. 
For an LTS Q := (Q, C ,  R E ,  qo) ,  any O E CP(Q) defines 
a (natural) homomorphism O : -+ Q / O .  Thus for state 
output map PQ : Q + R, if O E { e  E CP(Q)  : O 5 
ker(pQ)} then O : (e, PQ) -+ ( Q / O ,  PQJQ) is an OC ho- 
momorphism and P Q , ~  : Q / O  -+ R is the unique state 
output map such that PQ = P Q / ~  o O .  

Similarly, there is a compatible partition associated 
with every homomorphism. It can be shown that if h : 
81 --* Qz is a homomorphism then ker(h) E CP(Q).  We 
can now talk about output compatible partitions - those 
partitions of a LTS that correspond to the kernel of an 
OC homomorphism of the LTS Q for a given state output 
map PQ. 

We are now ready to give the main result of this sec- 
tion, which states that two LTS, with their respective 
state output maps, are strongly state-event equivalent iff 
they share an output compatible homomorphic image. 

Theorem 3.1 For two disjoint LTS and QZ as in 
Definition 3.5, with state output maps PQ, : Q1 + R and 

P Q ~  : Qz - R, cue have (61, PQ,) -se ( Q z ,  PQ,) i f f  there 
ezists Q LTS e3 with state output map PQ, : Q3 -+ R for 
which there are OC homomorphisms hl : (Ql ,Pg,)  -.) 
(Q3rpQ3) andhz : (%,pQa) -+ (Q31pQ3). 

Employing a method similar to that used in [ 9 ] ,  as a 
corollary to this theorem, we obtain the result that when 
Q is reachable, Q/us is the unique (up to isomorphism) 
minimal state LTS for which there exists a state output 
map P Q / ~ ,  such that (6, PQ) -se ( Q / w S ,  P Q / ~ . ) .  It can 
then be shown that two reachable LTS with state output 
maps are strongly state-event equivalent iff their strong 
state-event observer quotient systems are isomorphic. 

4. Weak State-Event Observers 
Often in Discrete Event Systems it is the case that sys- 
tems are event- rather than time-driven. In this case what 
is important is the sequence of changes in the outputs, ig- 
noring intermediate states and events that do not gener- 
ate any new outputs. Before applying this point of view 
in our state event setting, we will see how it is applied 
in the event setting of Milner’s weak observation equiva- 
lence. Again we will see that (event) observation equiv- 
alence becomes the special case of our setting in which 
ker(Pg) = v. 

Consider a LTS Q := (Q,C,Rc,qo) .  In the style of 
[12], we assume there is a “silent event” r E C that r e p  
resents unobservable actions. We then define the set of 
observable actions to be CO := C - (7). This leads to 
some new relations on Q. Letting E represent the empty 
string (over C), we say that q moves unobservably (from 
an event perspective) to q l ,  written &q’, iff there exist 
qo ,  91,. . . , qn E Q, n 2 0, such that 

By convention, for any q E Q, q j q .  For a E C, we 
can then say that q moves to q1 while producing event a, 
written q $ q l ,  iff there exist q I , q 2  E Q such that 

In the weakly observable setting the actions q 2 q ’  and 
qsq’ are indistinguishable since both produce the single 
event output a. For a given Q, these double arrow rela- 
tions can be used to define a new transition system, 

Q’ := (Q ,  E, R‘E, p.0) 

where Rf: is defined as follows. For all a E CO, a“’(q) = 
(91 E Q : qsq~ in 9) and rQ’(q) = (q1 E Q : q s q i  in Q}. 

In [lo], two states are shown to be weakly observation 
equivalent in Q in the sense of [I], written q FZ q’, iff the 
states are strongly observation equivalent ( q  N q l )  in Q‘. 
Thus we have E:= sup(CP(Q’)). In this case M represents 
the minimum information you need about Q to know what 
choices of future observable events are possible. 

We now generalize weak observation equivalence to 
our state-event setting. Given a LTS Q and a state out- 
put map PQ : Q + R,  we assume that the special event 
r represents unobservable events. When a r transition 
occurs, it does not produce an output event. though i t  
may cause a change in the state output. For instance. 
if q&’ and pQ(q) = Pg(q’) then there is no noticeable 
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change in the system output. If, on the other hand, qzq’ 
and PQ(q) # PQ(q’) then although no event is seen to 
take place, a change in state output takes place when r 
occurs. This leads us to define, for a given LTS and 
state output map PQ, an unobservable move from q to q‘, 
written q jp, q’ iff there exist q o , q 1 , .  . . ,qn  E Q, n 2 0, 
such that 

r c  r I 
Q = qo--*q1+. . . +qn-l+qn = B 

I 

and for d i = 0,1,. . . , T A  PQ(q2) = pQ(q) = PQ(q’) 
Thus the relation j p ,  is the transitive closure of 

the r relation within each cell of ker(P). By convention 
q j p ,  q always holds. While the j p ,  relation captures 
a relation which is indistinguishable from the case when 
qzq’ and PQ(q) = Pg(q’), we now wish to define a re- 
lation which captures both this case and the case when 
qLq’ and PQ(q) # PQ(q’). We say that q moves to q’ 
without an event output, written qAp,q’, iff q = q’, or 
there exist ql ,  qz E Q such that 

q *P, q l % Z  *PO 8’ 

By definition q&p,q. The relation ZP, is the transitive 
closure of I, subject to the restriction that at  most one 
boundary of the partition ker(PQ) is crossed. If q j p , q ’ ,  
then no output events are generated and there is at most 
one change in the state output. 

We now define a relation similar to s p a  except that 
it produces exactly one event output. For a E CO, we 
say that q moves to q’ producing event output a, written 
qsp,  q’ iff there exist q1 ,  qz E Q such that 

q *P, q1%2 *PQ 9‘ 

Thus if q 3 p Q  q‘, then q moves within a cell of ker(&) via 
unobservable r transitions, then performs an a transition 
which could possibly (but not necessarily) take us to a 
new cell of ker(Pq) and then the system again moves un- 
observably via r transitions within the current cell. We 
emphasize that if a boundary of ker(PQ) is crossed when 
q$p,q’, then it is only crossed by the a transition. 

There are four different types of one step moves that 
a LTS Q with output map PQ can make and each of these 
moves can be matched by a double arrow relation defined 
above. In the following let q and q1 be elements of Q such 
that PQ(q) = PQ(q’). Then the system can: 

1. Make an unobservable transition within a cell of 
ker(PQ) ( q A q 1  and PQ(q) = pQ(q1)). State q’ can make 
the move q’&p,qi with pQ(q:) = PQ(q1) .  

2. Make a r transition that moves from one cell of 
ker(PQ) to another ( q L q 1  and pQ(q) # p Q ( q 1 ) ) .  State q’ 

can make the move q’=$p,q; with PQ(q;)  = pg(q1). 
3. Makz an observable transition a within a cell of 

ker(Pg) (q+q1 and pQ(q) = PQ(q1) ) .  State q’ can make 
the move qlspQq:  with PQ(q;) = PQ(q1) .  

4. Make an observable transition a that moves from 
one cell ofker(PQ) to another (qzq1 and pQ(q) # PQ(q1)). 
State q’ can make the move q’$jpQq: with PQ(q;)  = 
p Q ( q l ) .  

Consider the state event sequences (1) of Section 3 
from the point of view that only output (observable) events 
and changes in the state output are important. The first 
two sequences are indistinguishable when viewed from 

state and event outputs. In both sequences the event a 
and the state output change from 71 to 72 occur simulta- 
neously. Hence q1l$pQq13 and q z 1 S p Q q 2 3  and in both 
cases at the output it appears as r1-%-2. In the case of the 
third string, the state output changes with the unobserv- 
able transition 7 and then the event a occurs. In terms 
of our newly defined relations 431 Ap, q 3 2 3 p Q  433 but not 
q 3 1 3 p Q q 3 3  and so at the outputs the third sequence a p  
pears as rl -WZ +rZ. 

From a control point of view it is important that an 
observer be able to distinguish the first two sequences 
from the third. Assume that 72 is a bad state output 
that we wish to  avoid and that a is a controllable event 
that can be disabled as in [13]. Disabling a prevents state 
output r2 from occurring in the first two sequences of (1) 
but not in the third sequence! 

With the above examples in mind, we are ready to 
define weak state-event observers. 

T U  

Definition 4.1 Given o LTS e = (Q, E, R E ,  qo) and a 
state output map PQ : Q + R, the weak state-event ob- 
server, ww(Q, PQ) is defined to be 

ww(Q,  PQ) = sup{@ E cP(Q’p,) : @ 5 k e r ( P ~ ) ]  

Here 
Q ’ P ~  := (Q,C,RL,qo) 

where R‘, is defined as follows. For all a E CO, qzq‘ i; 
Qp, iff qsp,q’ in (e, PQ) and q 2 q ’  in QkQ iff q&p,q 
in (e, PQ). 

By Lemma 3.1 ww always exists and is unique. Note 
that in Q‘p,  the transition relations are dependent upon 
PQ so ww is not just Milner’s observation equivalence with 
a different initial partition (as was the case for strong 
state-event observers). It is easy to see that in the case 
when ker(PQ) = V then ww is in fact z, Milner’s weak ob- 
servation equivalence, since Q’p, becomes Q‘. As was the 
case for strong state-event equivalence, when (q ,  q’) E ww 
for a given Q and PQ, we will write q %pQ q‘, read “ q  
is weak state-event observation equivalent to q’” .  The 
O(n3) algorithm (n = IQI) for computing Milner’s weak 
observation equivalence of finite state LTS given in [12] 
can be easily adapted to provide an O(n3) algorithm for 
w w .  After computing Q’P,, the O(m1ogn) RCP algo- 
rithm of [ll] can be employed to compute ww giving an 
overd  complexity of O(n3) .  

Similar to the case of the state observers of Section 2 
and the strong state-event observers of Section 3, ww is the 
coarsest compatible partition of Q’pQ that is finer than 
the equivalence kernel of PQ. Although the double arrow 
relations used to construct e‘pQ may or may not cross a 
boundary of the partition of ker(PQ), the use of ker(Pg) 
as the initial partition detects when a change in state 
output occurs. Thus for ( q , q l )  E ww we have PQ(q) = 
pQ(q’) so q and q’ produce the same current state output. 
Now suppose that q z q 1  in Q, thereby producing event 
output a and state output P Q ( q 1 ) .  Then q$pQql in e 
so qzq1 in Q’P,, and since ww E CP(Q’p,) there exists 

q; E aQ’PQ(q‘) such that (q1 ,q ; )  E w w .  Hence q’zq; in 
Q‘pQ and PQ(q1) = pQ(q:). But then in Q, q’$p,q:. 
Thus q’ can generate state and event outputs that are 
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indistinguishable from those produced from q .  As was 
the case with strong state-event observers, ww represents 
the minimum information one needs about the current 
state to be able to predict all possible future changes in 
state and future event outputs. 

Since the weak state-event observer for a LTS Q with 
state output PQ is just the strong stateevent observer for 
the pair (elpQ, PQ) ,  we can use the results of the previous 
section to derive similar results about what we will term 
weak quotient systems. In defining weak quotient systems 
we use the intuition that in the weakly observable setting 
the actions g z q ’  and &pQq’ are indistinguishable. 

Definition 4.2 Given an LTS e := (Q,  C, R E ,  PO) with 
state output map PQ : Q + R ,  for0 E e€‘($;,), 8 / 1 6  := 

QkQ/B i s  the weak quotient system of e by 0. 

Again we can extend weak state-event observation 
equivalence to a relation eSe between LTS by forming 
the union of disjoint LTS (see Definition 3.4). 

We can now obtain the main result of this section. 

Theorem 4.1 For any reachable LTS and state output 
map (Q,  PQ), the weak quotient system Q / / w w  is a min- 
imal state LTS for  which there exists a state output map 
~ ‘ Q J ~ ~  such that (e, PQ) %se (Q//ww, PQJ~,) .  

The proof follows from Theorem 3.1, Lemma 4.1 and the 
idempotence of the operator. 

In general Q / / w w  is one of many possible minimal 
state LTS that can be equivalent to (e, PQ) but that differ 
in the definition of their transition relations. Uniqueness 
of a minimal state equivalent LTS is lost in the weak state- 
event observation equivalence setting because of the use 
of the many-to-one Lo operator in Definition 4.1. 

5. Example 
In this section we present a small example. The weak 
state-event observer theory will be applied to the Timed 
Transition model (TTM) M of Figure 2. 

M 

93 a,P 

a := true,  [ z  : z $2 1],0,1) 
P := I. = 0, [Y : Y $3 1],1,oo) 
0 := (y = z = 0) 

Figure 2: Example TTM M 

A TTM is a guarded transition system with lower and 
upper time bounds on the transitions that relate to the 
number of occurrences of the special transition tick. For 
M there are three transitions, a, p and t ick,  and two pro- 
gram variables, y and z .  The initial condition 0 specifies 
that M starts with both y and z set to 0. Now consider 
the transition a := ( t rue ,  [z  : z $2 1],0,1). The guard 
or “enablement condition” of Q is true,  hence the transi- 
tion is always enabled. When the transition a occurs, it 
has the effect z becomes z $2 1 (here $,, denotes addition 

mod n) .  The lower and upper time bounds for a are 0 and 
1 respectively. For cr to  occur, its guard condition must 
evaluate to true continuously for at least 0 tick transi- 
tions and if its guard remains true after one t ick,  it will 
be forced to occur before the next tick event. Since a’s 
guard transition always evaluates to true,  the above time 
bounds force at  least one, to at most an arbitrarily large 
finite number of a’s to occur between successive ticks of 
the ‘‘clock”. In the case of p := ( z  = 0, [y : y $3 1],1, oo), 
the value of z must be 0 for at least one tick before p can 
occur. The upper time bound of 03 indicates that even if 
/3 is continuously enabled for arbitrarily many occurrences 
of t ick,  it is never forced to occur. If /3 does occur then y 
changes to y $3 1. 

The LTS representing the “trajectories” of M is shown 
in Figure 3. The reader is referred to [7] for complete 
details of the semantics of TTMs used to obtain the LTS. 
Beside each state of the LTS in Figure 3, we write the 

Figure 3: LTS generated by TTM M 

ordered pair ( y ,  z )  to give the current value of the program 
variables y and z. The initial state of the LTS ( q o )  is the 
state with the entering arrow. 

Suppose we are interested in the timed behavior of M 
under the state output map, 

a ,  y = 2  
:= { b, otherwise 

The partition ker(pq) induced on M’s LTS is shown in 
Figure 4. In this case the event tick remains observable 
while a and P are replaced in the LTS with unobservable r 
transitions since it is only their effect on the state output 
that is of interest. Once the relations =$pQ and t3kpQ 

are determined, we can compute the weak state observer 
w w ,  the refinement of ker(PQ) shown as dotted lines in 
Figure 4. 

To understand how ww is obtained from ker(Pg), con- 
sider the individual states of the LTS. States 9 and 14 are 
the only two states that are the sources of sequences of un- 
observable r transitions that change the state output (eg. 
9 i p Q 1 0  and 10 E P;’(a)). Hence 9 and 14 are sectioned 
off from their respective cells of ker(PQ). When the rela- 
tion t$pQ is considered, further refinements of ker(PQ) 
result. State 4 can reach state 9 via silent r transitions 
within a cell of ker(PQ) and a tick (eg. 4’SkpQ9) while 
also being able to access states 1 , 2 , 3  and 15, states that 
cannot reach state 9 via the t%kpQ relation. As a result 
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Figure 5:  Weak Quotient system generated by ww 

4 is split off from the other states of ker(Pg). The rest 
of the refinement of ker(PQ) proceeds in a similar fash- 
ion. It is left to the reader to verify that the partition 
ww shown in Figure 4 is indeed a compatible partition for 
the relations and t$kpQ as defined in the previous 
section. 

Figure 5 presents the weak quotient system with re- 
spect to the weak state-event observer ww of the LTS for 
M under state output map PQ. 

6. Conclusion 
The general state-event setting of LTS with state output 
maps and unobservable transitions is considered as a way 
of hiding complexity and providing hierarchy in the sense 
of quotient systems. This setting leads to the development 
of state-event observers that are applicable to a wide va- 
riety of problems since LTS are the underlying model of 
many discrete event formalisms. 

work for observers, and thereby hierarchy, in state and 
event based settings, enabling us to define observers in 
DES settings where both states and events are important 
(eg. Ostroff’s TTMs). This unification of state and event 
methods is evidenced by the fact that the state observers 

State-event observers of LTS represent a unifying frame- 

of [4] and event based observation equivalences of Milner 
[l] are both special cases of state-event observers. The 
unification of methodologies is obtained through the al- 
gebraic characterization of strong and weak state-event 
observers using the upper semilattice of compatible par- 
titions of a LTS. The algebraic characterization then en- 
ables appeal to efficient algorithms for computing state- 
event observers based upon the Relational Coarsest Par- 
tition problem. 
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