
Multiple Model Synchronization
with Multiary Delta Lenses

Zinovy Diskin1(B) , Harald König2 , and Mark Lawford1

1 McMaster University, Hamilton, Canada
{diskinz,lawford}@mcmaster.ca

2 University of Applied Sciences FHDW Hannover, Hannover, Germany
harald.koenig@fhdw.de

Abstract. Multiple (more than 2) model synchronization is ubiquitous
and important for MDE, but its theoretical underpinning gained much
less attention than the binary case. Specifically, the latter was extensively
studied by the bx community in the framework of algebraic models for
update propagation called lenses. Now we make a step to restore the bal-
ance and propose a notion of multiary delta lens. Besides multiarity, our
lenses feature reflective updates, when consistency restoration requires
some amendment of the update that violated consistency. We emphasize
the importance of various ways of lens composition for practical appli-
cations of the framework, and prove several composition results.

1 Introduction

Modelling normally results in a set of inter-related models presenting different
views of the system. If one of the models changes and their joint consistency
is violated, the related models should also be changed to restore consistency.
This task is obviously of paramount importance for MDE, but its theoretical
underpinning is inherently difficult and reliable practical solutions are rare. There
are working solutions for file synchronization in systems like Git, but they are
not applicable in the UML/EMF world of diagrammatic models. For the latter,
much work has been done for the binary case (synchronizing two models) by the
bidirectional transformation community (bx) [15], specifically, in the framework
of so called delta lenses [3], but the multiary case (the number of models to be
synchronized is n ≥ 2) gained much less attention—cf. the energetic call to the
community in a recent Stevens’ paper [16].

The context underlying bx is model transformation, in which one model in
the pair is considered as a transform of the other even though updates are prop-
agated in both directions (so called round-tripping). Once we go beyond n = 2,
we at once switch to a more general context of models inter-relations beyond
model-to-model transformations. Such situations have been studied in the con-
text of multiview system consistency, but rarely in the context of an accurate
formal basis for update propagation. The present paper can be seen as an adap-
tation of the (delta) lens-based update propagation framework for the multiview
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 21–37, 2018.
https://doi.org/10.1007/978-3-319-89363-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_2&domain=pdf
http://orcid.org/0000-0001-8025-4630
http://orcid.org/0000-0001-6304-6311
http://orcid.org/0000-0003-3161-2176

22 Z. Diskin et al.

consistency problem. We will call it multi-directional update propagation or mx
following the bx-pattern. Our contributions to mx are as follows.

We show with a simple example (Sect. 2) an important special feature of mx:
consistency restoration may require not only update propagation to other mod-
els but the very update created inconsistency should itself be amended (even
for the case of a two-view system!); thus, update propagation should, in general,
be reflective. Moreover, if even consistency can be restored without a reflective
amendment, there are cases when such reflection is still reasonable. It means
that Hippocraticness [15]—a major requirement for the classical bx, may have
less weight in the mx world. In Sect. 3, we provide a formal definition of multi-
ary (symmetric) lenses with reflection, and define (Sect. 4) several operations of
such lens composition producing complex lenses from simple ones. Specifically,
we show how n-ary lenses can be composed from n-tuples of asymmetric binary
lenses (Theorems 1 and 2), thus giving a partial solution to the challenging issue
of building mx synchronization via bx discussed by Stevens in [16]. We consider
lens composition results important for practical application of the framework. If
the tool builder has implemented a library of elementary synchronization mod-
ules based on lenses and, hence, ensuring basic laws for change propagation, then
a complex module assembled from elementary lenses will automatically be a lens
and thus also enjoys the basic laws.

2 Example

We will consider a simple example motivating our framework. Many formal con-
structs below will be illustrated with the example (or its fragments) and referred
to as Running example.

Fig. 1. Multi-metamodel in UML

2.1 A Multimodel to Play With

Suppose two data sources, whose schemas (we say metamodels) are shown in
Fig. 1 as class diagrams M1 and M2 that record employment. The first source is
interested in employment of people living in downtown, the second one is focused
on software companies and their recently graduated employees. In general, pop-
ulation of classes Person and Company in the two sources can be different – they
can even be disjoint, but if a recently graduated downtowner works for a software
company, her appearance in both databases is very likely. Now suppose there is

Multiple Model Synchronization with Multiary Delta Lenses 23

an agency investigating traffic problems, which maintains its own data on com-
muting between addresses (see schema M3) computable by an obvious relational
join over M1 and M2. In addition, the agency supervises consistency of the two
sources and requires that if they both know a person p and a company c, then
they must agree on the employment record (p, c): it is either stored by both or
by neither of the sources. For this synchronization, it is assumed that persons
and companies are globally identified by their names. Thus, a triple of data sets
(we will say models) A1, A2, A3, instantiating the respective metamodels, can
be either consistent (if the constraints described above are satisfied) or inconsis-
tent (if they aren’t). In the latter case, we normally want to change some or all
models to restore consistency. We will call a collection of models to be kept in
sync a multimodel.

To talk about constraints for multimodels, we need an accurate notation.
If A is a model instantiating metamodel M and X is a class in M, we write
XA for the set of objects instantiating X in A. Similarly, if r : X1 ↔ X2 is
an association in M, we write rA for the corresponding binary relation over
XA

1 × XA
2 . For example, Fig. 2 presents a simple model A1 instantiating M1 with

PersonA1 = {p1, p
′
1}, CompanyA1 = {c1}, empl-erA1 = {(p1, c1)}, and similarly

for attributes, e.g.,

livesA1 = {(p1, a1), (p′
1, a1)} ⊂ PersonA1 ×Addr

(livesA1 and also nameA1 are assumed to be functions and Addr is the (model-
independent) set of all possible addresses). The triple (A1, A2, A3) is a (state of a)
multimodel over the multimetamodel (M1,M2,M3), and we say it is consistent if
the two constraints specified below are satisfied. Constraint (C1) specifies mutual
consistency of models A1 and A2 in the sense described above; constraint (C2)
specifies consistency between the agency’s view of data and the two data sources:

(C1) if p ∈ PersonA1 ∩ PersonA2 and c ∈ CompanyA1 ∩ CompanyA2

then (p, c) ∈ empl-erA1 iff (c, p) ∈ empl-eeA2

(C2)
(
livesA1

)−1

�

(
empl-erA1 ∪ (empl-eeA2)−1

)
� locatedA2 ⊆ CommuteA3

where −1 refers to the inverse relations and � denotes relational join (composi-
tion); using subsetting rather than equality in (C2) assumes that there are other
data sources the agency can use. Note that constraint (C1) inter-relates two
component models of the multimodel, while (C2) involves all three components
and forces synchronization to be 3-ary.

It is easy to see that multimodel A1,2,3 in Fig. 2 is “two-times” inconsis-
tent: (C1) is violated as both A1 and A2 know Mary and IBM, and (IBM,
Mary)∈ empl-eeA2 but (Mary, IBM) /∈ empl-erA1 ; (C2) is violated as A1 and A2

show a commuting pair (a1, a15) not recorded in A3. We will discuss consis-
tency restoration in the next subsection, but first we need to discuss an impor-
tant part of the multimodel – traceability or correspondence mappings – held
implicit so far.

24 Z. Diskin et al.

Fig. 2. A(n inconsistent) multimodel A† over the multi-metamodel in Fig. 1

Indeed, classes PersonA1 and PersonA2 are interrelated by a correspon-
dence relation linking persons with the same name, and similarly for Company.
These correspondence links (we will write corr-links) may be implicit as they can
always be restored. More important is to maintain corr-links between CommuteA3

and empl-erA1 ∪empl-eeA2 . Indeed, class Commute together with its two attributes
can be seen as a relation, and this relation can be instantiated by a multirelation
as people living at the same address can work for companies located at the same
address. If some of such Commute-objects is deleted, and this delete is to be prop-
agated to models A1,2, we need corr-links to know which employment links are to
be deleted. Hence, it makes sense to establish such links when objects are added to
CommuteA3 , and use them later for deletion propagation.

Importantly, for given models A1,2,3, there may be several different correspon-
dence mappings: the same Commute-object can correspond to different commute-
links over A1 and A2. In fact, multiplicity of possible corr-specifications is a
general story that can only be avoided if absolutely reliable keys are available,
e.g., if we suppose that persons and companies can always be uniquely identified
by names, then corrs between these classes are unique. But if keys (e.g., per-
son names) are not absolutely reliable, we need a separate procedure of model
matching or alignment that has to establish whether objects p′

1 ∈ PersonA1 and
p′
2 ∈ PersonA2 both named Mary represent the same real world object. Con-

straints we declared above implicitly involve corr-links, e.g., formula for (C1)
is a syntactic sugar for the following formal statement: if there are corr-links
p = (p1, p2) and c = (c1, c2) with pi ∈PersonAi , ci ∈ CompanyAi (i = 1, 2) then
the following holds: (p1, c1) ∈ empl-erA1 iff (c2, p2) ∈ empl-eeA2 . A precise formal
account of this discussion can be found in [10].

Thus, a multimodel is actually a tuple A = (A1, A2, A3, R) where R is a col-
lection of correspondence relations over sets involved. This R is implicit in Fig. 2
since in this very special case it can be restored. Consistency of a multimodel is
a property of the entire 4-tuple A rather than its 3-tuple carrier (A1, A2, A3).

2.2 Synchronization via Update Propagation

There are several ways to restore consistency of the multimodel in Fig. 2 w.r.t. con-
straint (C1). We may delete Mary from A1, or delete its employment with IBM
from A2, or even delete IBM from A2. We can also change Mary’s employment

Multiple Model Synchronization with Multiary Delta Lenses 25

from IBM to Google, which will restore (C1) as A1 does not know Google. Simi-
larly, we can delete John’s record from A1 and then Mary’s employment with IBM
in A2 would not violate (C1). As the number of constraints and the elements they
involve increase, the number of consistency restoration variants grows fast.

The range of possibilities can be essentially decreased if we take into account the
history of creating inconsistency and consider not only an inconsistent state A† but
update u: A → A† that created it (assuming that A is consistent). For example,
suppose that initially model A1 contained record (Mary, IBM) (and A3 contained
(a1, a15)-commute), and the inconsistency appears after Mary’s employment with
IBM was deleted in A1. Then it’s reasonable to restore consistency by deleting this
employment record in A2 too; we say that deletion was propagated from A1 to A2

(where we assume that initially A3 contained the commute (a1, a15)). If the incon-
sistency appears after adding (IBM, Mary)-employment to A2, then it’s reasonable
to restore consistency by adding such a record to A1. Although propagating dele-
tions/additions to deletions/additions is typical, there are non-monotonic cases
too. Let us assume that Mary and John are spouses (they live at the same address),
and that IBM follows an exotic policy prohibiting spouses to work together. Then
we can interpret addition of (IBM, Mary)-record to A2 as swapping of the family
member working for IBM, and then (John, IBM) is to be deleted from A1.

Now let’s consider how updates to and from model A3 may be propagated.
As mentioned above, traceability/correspondence links play a crucial role here.
If additions to A1 or A2 or both create a new commute, the latter has to be
added to A3 (together with its corr-links) due to constraint (C2). In contrast, if
a new commute is added to A3, we change nothing in A1,2 as (C2) only requires
inclusion. If a commute is deleted from A3, and it is traced to a correspond-
ing employment in empl-erA1 ∪ empl-eeA2 , then this employment is deleted. (Of
course, there are other ways to remove a commute derivable over A1 and A2.)
Finally, if a commute-generating employment in empl-erA1 ∪empl-eeA2 is deleted,
the respective commute in A3 is deleted too. Clearly, many of the propagation
policies above although formally correct, may contradict the real world changes
and hence should be corrected, but this is a common problem of a majority of
automatic synchronization approaches, which have to make guesses in order to
resolve non-determinism inherent in consistency restoration.

2.3 Reflective Update Propagation

An important feature of update propagation scenarios above is that consistency
could be restored without changing the model whose update caused inconsis-
tency. However, this is not always desirable. Suppose again that violation of
constraint (C1) in multimodel in Fig. 2 was caused by adding a new person
Mary to A1, e.g., as a result of Mary’s moving to downtown. Now both models
know both Mary and IBM, and thus either employment record (Mary, IBM) is to
be added to A1, or record (IBM, Mary) is to be removed from A2. Either of the
variants is possible, but in our context, adding (Mary, IBM) to A1 seems more
likely and less specific than deletion (IBM, Mary) from A2. Indeed, if Mary has
just moved to downtown, the data source A1 simply may not have completed

26 Z. Diskin et al.

her record yet. Deletion (IBM, Mary) from A2 seems to be a different event
unless there are strong causal dependencies between moving to downtown and
working for IBM. Thus, an update policy that would keep A2 unchanged but
amend addition of Mary to A1 with further automatic adding her employment
for IBM (as per model A2) seems reasonable. This means that updates can be
reflectively propagated (we also say self-propagated).

Of course, self-propagation does not necessarily mean non-propagation to
other directions. Consider the following case: model A1 initially only contains
(John, IBM) record and is consistent with A2 shown in Fig. 2. Then record (Mary,
Google) was added to A1, which thus became inconsistent with A2. To restore
consistency, (Mary, Google) is to be added to A2 (the update is propagated
from A1 to A2) and (Mary, IBM) is to be added to A1 as discussed above (i.e.,
addition of (Mary, Google) is amended or self-propagated).

Fig. 3. Update propagation pattern

A general schema of update propa-
gation including reflection is shown in
Fig. 3. We begin with a consistent multi-
model (A1...An, R)1 one of which mem-
bers is updated ui: Ai → A′

i. The
propagation operation, based on a priori
defined propagation policies as sketched
above, produces:

(a) updates on all other models u′
j : Aj →

A′′
j , 1 ≤ j �= i ≤ n;

(b) a reflective update u′
i: A′

i → A′′
i ;

(c) a new correspondence specification
R′′ such that the updated multimodel
(A′′

1 ...A′′
n, R′′) is consistent.

To distinguish given data from those produced by the operation, the former
are shown with framed nodes and solid lines in Fig. 3 while the latter are non-
framed and dashed. Below we introduce an algebraic model encompassing several
operations and algebraic laws formally modelling situations considered so far.

3 Multidirectional Update Propagation and Delta Lenses

A delta-based mathematical model for bx is well-known under the name of delta
lenses; below we will say just lens. There are two main variants: asymmetric
lenses, when one model is a view of the other and hence does not have any private
information, and symmetric lenses, when both sides have their private data not
visible on the other side [2,3,6]. In this section we will develop a framework for
generalizing the idea for any n ≥ 2 and including reflective updates.

1 Here we first abbreviate (A1, . . . , An) by (A1...An), and then write (A1...An, R) for
((A1...An), R). We will apply this style in other similar cases, and write, e.g., i ∈ 1...n
for i ∈ {1, ..., n} (this will also be written as i ≤ n).

Multiple Model Synchronization with Multiary Delta Lenses 27

3.1 Background: Graphs and Categories

We reproduce well-known definitions to fix our notation. A (directed multi-)graph
G consists of a set G• of nodes and a set G� of arrows equipped with two
functions s, t: G� → G• that give arrow a its source s(a) and target t(a) nodes.
We write a: N → N ′ if s(a) = N and t(a) = N ′, and a: N → _ or a: _ → N ′

if only one of this conditions is given. Correspondingly, expressions G�(N,N ′),
G�(N,_), G�(_, N ′) denote sets of, resp., all arrows from N to N ′, all arrows
from N , and all arrows into N ′.

A (small) category is a graph, whose arrows are associatively composable
and every node has a special identity loop, which is the unit of the composition.
In more detail, given two consecutive arrows a1: _ → N and a2: N → _, we
denote the composed arrow by a1; a2. The identity loop of node N is denoted
by idN , and equations a1; idN = a1 and idN ; a2 = a2 are to hold. A functor is
a mapping of nodes and arrows from one category to another, which respects
sources and targets. Having a tuple of categories (A1...An), their product is a
category A1 ×...×An whose objects are tuples (A1...An) ∈ A•

1 ×...×A•
n, and

arrows from (A1...An) to (A′
1...A

′
n) are tuples of arrows (u1...un) with ui: Ai →

A′
i for all i ∈ 1...n.

3.2 Model Spaces and Correspondences

Basically, a model space is a category, whose nodes are called model states or just
models, and arrows are (directed) deltas or updates. For an arrow u: A → A′,
we treat A as the state of the model before update u, A′ as the state after the
update, and u as an update specification. Structurally, it is a specification of
correspondences between A and A′. Operationally, it is an edit sequence (edit
log) that changed A to A′. The formalism does not prescribe what updates are,
but assumes that they form a category, i.e., there may be different updates from
state A to state A′; updates are composable; and idle updates idA: A → A (doing
nothing) are the units of the composition.

In addition, we require every model space A to be endowed with a family
(K��

A)A∈A• of binary relations K��
A ⊂ A�(_, A)×A�(A,_) indexed by objects

of A, and specifying non-conflicting or compatible consecutive updates. Intu-
itively, an update u into A is compatible with update u′ from A, if u′ does
not revert/undo anything done by u, e.g., it does not delete/create objects cre-
ated/deleted by u, or re-modify attributes modified by u (see [14] for a detailed
discussion). Formally, we only require (u, idA)∈K��

A and (idA, u′)∈K��
A for all

A ∈ A•, u∈A�(_, A) and u′∈A�(A,_).

Definition 1 (Model spaces). A model space is a pair A = (|A|,K��
A) with

|A| a category (the carrier) of models and updates and K��
A a family as specified

above. A model space functor from A to B is a functor F : |A| → |B|, such
that (u, u′)∈K��

A implies (F (u), F (u′))∈K��
B . We will denote model spaces and

their carriers by the same symbol and often omit explicit mentioning of K��. �

28 Z. Diskin et al.

In the sequel, we will work with families of model spaces indexed by a finite
set I, whose elements can be seen as space names. To simplify notation, we
will assume that I = {1, . . . , n} although ordering will not play any role in our
framework. Given a tuple of model spaces A1, . . . ,An, we will refer to objects
and arrows of the product category A1 × · · · ×An as model tuples and update
tuples or, sometimes, as discrete multimodels/multiupdates.

Definition 2 (Multispace/Multimodels). Let n ≥ 2 be a natural number.

(i) An n-ary multimodel space or just an n-ary multispace A is given by a
family of model spaces ∂A = (A1, . . . ,An) called the boundary of A, and a
set A� of elements called corrs along with a family of functions (∂i: A� →
A•

i)i≤n providing every corr R with its boundary ∂R = (∂1R . . . ∂nR), i.e.,
a tuple of models taken from the multispace boundary one model per space.
Intuitively, a corr is understood as a consistent correspondence specifica-
tion interrelating models from its boundary (and for this paper, all corrs are
assumed consistent).
Given a model tuple (A1...An), we write A�(A1...An) for the set of all corrs
R with ∂R = (A1...An); we call models Ai feet of R. Respectively, spaces Ai

are feet of A and we write ∂iA for Ai.
(ii) An (aligned consistent) multimodel over a multispace A is a model tuple

(A1...An) along with a corr R ∈ A�(A1...An) relating the models. A
multimodel update u: (A1...An, R) → (A′

1...A
′
n, R′) is a tuple of updates

(u1: A1 → A′
1, . . . , un: An → A′

n). �
Note that any corr R uniquely defines a multimodel via the corr’s boundary

function ∂. We will also need to identify the set of all corrs for some fixed A ∈ A•
i

for a given i: A�
i (A,_) def=

{ ∣∣∣ R ∈ A�
}

∂iR = A.
The Running example of Sect. 2 gives rise to a 3-ary multimodel space. For

i ≤ 3, space Ai consists of all models instantiating metamodel Mi in Fig. 1
and their updates. To get a consistent multimodel (A1A2A3, R) from that one
shown in Fig. 2, we can add to A1 an empl-er-link connecting Mary to IBM,
add to A3 a commute with from = a1 and to = a15, and form a corr-set R =
{(p′

1, p
′
2), (c1, c

′
2)} (all other corr-links are derivable from this data).

3.3 Update Propagation and Multiary (Delta) Lenses

Update policies described in Sect. 2 can be extended to cover propagation of all
updates ui, i ∈ 1...3 according to the pattern in Fig. 3. This is a non-trivial task,
but after it is accomplished, we have the following synchronization structure.

Definition 3 (Symmetric lenses). An n-ary symmetric lens is a pair � =
(A, ppg) with A an n-ary multispace called the carrier of �, and (ppgi)i≤n an
n-tuple of operations of the following arities. Operation ppgi takes a corr R (in
fact, a multimodel) with boundary ∂R = (A1...An), and an update ui: Ai → A′

i

as its input, and returns

Multiple Model Synchronization with Multiary Delta Lenses 29

(a) an (n − 1)-tuple of updates u′
j : Aj → A′′

j with 1 ≤ j �= i ≤ n;
(b) a reflective update u′

i: A′
i → A′′

i also called an amendment of ui,
(c) a new consistent corr R′′ ∈ A�(A′′

1 ...A′′
n).

In fact, operations ppgi complete a local update ui to an entire multimodel update
with components (u′

j)j �=i and ui;u′
i (see Fig. 3). �

Notation. If the first argument R of operation ppgi is fixed, the corresponding
family of unary operations (whose only argument is ui) will be denoted by ppgR

i .
By taking the jth component of the multi-element result, we obtain single-valued
unary operations ppgR

ij producing, resp. updates u′
j = ppgR

ij(ui): A′
j → A′′

j . Note
that A′

j = Aj for all j �= i (see clause (a) of the definition) while ppgR
ii is the

reflective update (b). We also have operation ppgR
i� returning a new consistent

corr R′′ = ppgR
i�(ui) according to (c).

Definition 4 (Closed updates). Given a lens � = (A, ppg) and a corr R ∈
A�(A1...An), we call an update ui: Ai → A′

i R-closed, if ppgR
ii(ui) = idA′

i
. An

update is �-closed if it is R-closed for all R. Lens � is called non-reflective at foot
Ai, if all updates in A�

i are �-closed. �
For the Running example, update propagation policies described in Sect. 2

give rise to a lens non-reflective at space A3.

Definition 5 (Well-behavedness). A lens � = (A, ppg) is called well-behaved
(wb) if the following laws hold for all i ≤ n, Ai ∈ A•

i , R ∈ A�
i (Ai,_) and

ui: Ai → A′
i, cf. Fig. 3.

(Stability)i ∀j ∈ {1...n} : ppgR
ij(idAi

) = idAj
and ppgR

i�(idAi
) = R

(Reflect1)i (ui, u
′
i) ∈ K��

A′
i

(Reflect2)i ∀j �= i : ppgR
ij(ui;u′

i) = ppgR
ij(ui)

(Reflect3)i ppgR
ii(ui;u′

i) = idA′′
i

where u′
i = ppgR

ii(ui) as in Definition 3. �
Stability says that lenses do nothing voluntarily. Reflect1 says that amendment

works towards “completion” rather than “undoing”, and Reflect2-3 are idempo-
tency conditions to ensure the completion indeed done.

Definition 6 (Invertibility). A wb lens is called (weakly) invertible, if it
satisfies the following law for any i, update ui: Ai → A′

i and R ∈ A�
i (Ai,_):

(Invert)i for all j �= i: ppgR
ij(ppg

R
ji(ppg

R
ij(ui))) = ppgR

ij(ui) �
This law deals with “round-tripping”: operation ppgR

ji applied to update uj =
ppgR

ij(ui) results in update ûi equivalent to ui in the sense that ppgR
ij(ûi) =

ppgR
ij(ui) (see [3] for a motivating discussion).

Example 1 (Identity Lens �(nA)). Let A be an arbitrary model space. It gener-
ates an n-ary lens �(nA) as follows: The carrier A has n identical model spaces:
Ai = A for all i ∈ {1, .., n}, it has A� = A•, and boundary functions are
identities. All updates are propagated to themselves (hence the name of �(nA)).
Obviously, �(nA) is a wb, invertible lens non-reflective at all its feet. �

30 Z. Diskin et al.

4 Compositionality of Update Propagation: Playing Lego
with Lenses

We study how lenses can be composed. Parallel constructions are easy to manage
and excluded from the paper to save space (they can be found in the long ver-
sion [1, Sect. 4.1]). More challenging are sequential constructs, in which different
lenses share some of their feet, and updates propagated by one lens are taken
and propagated further by one or several other lenses. In Sect. 4.1, we consider
a rich example of such—star composition of lenses. In Sect. 4.2, we study how
(symmetric) lenses can be assembled from asymmetric ones.

Since we now work with several lenses, we need a notation for lens’ compo-
nents. Given a lens � = (A, ppg), we write �� def= A� for its set of corrs. Feet
are written ∂�

i (i-th boundary space) and ∂�
i R for the i-th boundary of a corr

R ∈ ��. Propagation operations of the lens � are denoted by �.ppgR
ij , �.ppgR

i�.

4.1 Star Composition

Fig. 4. Running example via lenses

Running Example Continued. Dia-
gram in Fig. 4 presents a refinement of
our example, which explicitly includes
relational storage models B1,2 for the
two data sources. We assume that object
models A1,2 are simple projective views
of databases B1,2: data in Ai are copied
from Bi without any transformation,
while additional tables and attributes
that Bi-data may have are excluded
from the view Ai; the traceability map-
pings Ri : Ai ↔ Bi are thus embeddings.
We further assume that synchronization of bases Bi and their views Ai is real-
ized by simple constant-complement lenses bi, i = 1, 2 (see, e.g., [9]). Finally,
let k be a lens synchronizing models A1, A2, A3 as described in Sect. 2, and
R ∈ k �(A1, A2, A3) be a corr for some A3 not shown in the figure.

Consider the following update propagation scenario. Suppose that at some
moment we have consistency (R1, R,R2) of all five models, and then B1 is
updated with u1: B1 → B′

1 that, say, adds to B1 a record of Mary working for
Google as discussed in Sect. 2. Consistency is restored with a four-step propaga-
tion procedure shown by double-arrows labeled by x : y with x the step number
and y the lens doing the propagation. Step 1: lens b1 propagates update u1 to
v′
1 that adds (Mary, Google) to view A1 with no amendment to u1 as v′

1 is just
a projection of u1, thus, B′

1 = B′′
1 . Note also the updated traceability mapping

R′
1 : B′

1 ↔ A′
1. Step 2: lens k propagates v′

1 to v′′
2 that adds (Google, Mary)

to A2, and amends v′
1 with v′′

1 that adds (Mary, IBM) to A′
1; a new consistent

corr R′′ is also computed. Step 3: lens b2 propagates v′′
2 to u′′′

2 that adds Mary’s
employment by Google to B2 with, perhaps, some other specific relational stor-
age changes not visible in A2. We assume no amendment to v′′

2 as otherwise

Multiple Model Synchronization with Multiary Delta Lenses 31

access to relational storage would amend application data, and thus we have
a consistent corr R′′′

2 as shown. Step 4: lens b1 maps update v′′
1 (see above

in Step 2) backward to u′′′
1 that adds (Mary, IBM) to B′

1 so that B′′′
1 includes

both (Mary, Google) and (Mary, IBM) and a respective consistent corr R′′′
1 is

provided. There is no amendment for v′′
1 by the same reason as in Step 3.

Thus, all five models in the bottom line of Fig. 4 (A′′
3 is not shown) are

mutually consistent and all show that Mary is employed by IBM and Google.
Synchronization is restored, and we can consider the entire scenario as propaga-
tion of u1 to u′′′

2 and its amendment with u′′′
1 so that finally we have a consis-

tent corr (R′′′
1 , R′′, R′′′

2) interrelating B′′′
1 , A′′

3 , B′′′
2 . Amendment u′′′

1 is compatible
with u1 as nothing is undone and condition (u1, u

′′′
1) ∈ K��

B′
1

holds; the other two
equations required by Reflect2-3 for the pair (u1, u

′′′
1) also hold. For our simple

projection views, these conditions will hold for other updates too, and we have
a well-behaved propagation from B1 to B2 (and trivially to A3). Similarly, we
have a wb propagation from B2 to B1 and A3. Propagation from A3 to B1,2 is
non-reflective and done in two steps: first lens k works, then lenses bi work as
described above (and updates produced by k are bi-closed). Thus, we have built
a wb ternary lens synchronizing spaces B1,B2 and A3 by joining lenses b1 and
b2 to the central lens k .

•
• ==

1
⇒ • ==

2
⇒ •

3 ⇒ •
4⇒

• 3
⇒4 ⇒

Discussion. Reflection is a crucial aspect of lens
composition. The inset figure describes the scenario
above as a transition system and shows that Steps
3 and 4 can go concurrently. It is the non-trivial
amendment created in Step 2 that causes the neces-
sity of Step 4, otherwise Step 3 would finish consis-
tency restoration (with Step 4 being an idle transition). On the other hand, if
update v′′

2 in Fig. 4 would not be closed for lens b2, we’d have yet another con-
current step complicating the scenario. Fortunately for our example with simple
projective views, Step 4 is simple and provides a non-conflicting amendment, but
the case of more complex views beyond the constant-complement class needs care
and investigation. Below we specify a simple situation of lens composition with
reflection a priori excluded, and leave more complex cases for future work.

Fig. 5. Star composition

Formal Definition. Suppose we have an n-
ary lens k = (A, ppg), and for every i ≤ n, a
binary lens bi = (Ai,Bi, bi.ppg), with the first
model space Ai being the ith model space of k
(see Fig. 5, where k is depicted in the center and
bi are shown as ellipses adjoint to k ’s feet). We
also assume the following Junction conditions:
For any i ≤ n, all updates propagated to Ai by
lens bi are k -closed, and all updates propagated
to Ai by lens k are bi-closed.

32 Z. Diskin et al.

Below we will write a corr Ri ∈ b�
i (Ai, Bi) as Ri : Ai ↔ Bi, and the sixtu-

ple of operations bi.ppg
Ri as the family

(
bi.ppg

Ri
xy | x ∈ {A,B}, y ∈ {A,B, �})

.
Likewise we write ∂bi

x with x ∈ {A,B} for the boundary functions of lenses bi.
The above configuration gives rise to the following n-ary lens �. The carrier is

the tuple of model spaces B1...Bn and corrs are tuples (R,R1...Rn) with R ∈ k �

and Ri ∈ b�
i , such that ∂k

i R = ∂bi
ARi for all i ∈ 1..n. Moreover, we define

∂�
i (R,R1...Rn)

def= ∂bi
BRi (see Fig. 5). Operations are defined as compositions of

consecutive lens’ executions as described below (we will use the dot notation for
operation application and write x.op for op(x), where x is an argument).

Given a model tuple (B1...Bn) ∈ B1 ×...×Bn, a corr (R,R1...Rn), and
update vi: Bi → B′

i in B�
i , we define, first for j �= i,

vi. �.ppg
(R,R1...Rn)
ij

def= vi.(bi.ppg
Ri

BA).(k .ppgR
ij).(bj .ppg

Rj

AB),

and vi. �.ppg
(R,R1...Rn)
ii

def= vi. bi.ppg
Ri

BB for j = i. Note that all internal
amendments to ui = vi.(bi.ppg

Ri

BA) produced by k , and to u′
j = ui.(k .ppgR

ij)
produced by bj , are identities due to the Junction conditions. This allows
us to set corrs properly and finish propagation with the three steps above:
vi. �.ppg

(R,R1...Rn)
i�

def= (R′, R′
1...R

′
n) where R′ = ui. k .ppgR

i�, R′
j = u′

j . bj .ppg
Rj

A�

for j �= i, and R′
i = vi. bi.ppg

Ri

B�. We thus have a lens � denoted by k �(b1, . . . , bn).
�

Theorem 1 (Star Composition). Given a star configuration of lenses as
above, if lens k fulfills Stability, all lenses bi are wb, and Junction conditions
hold, then the composed lens k �(b1, . . . , bn) defined above is wb, too.

Proof. Laws Stability and Reflect1 for the composed lens are straightforward.
Reflect2-3 also follow immediately, since the first step of the above propagation
procedure already enjoys idempotency by Reflect2-3 for bi. �

4.2 Assembling n-ary Lenses from Binary Lenses

This section shows how to assemble n-ary (symmetric) lenses from binary asym-
metric lenses modelling view computation [2]. As the latter is a typical bx,
the well-behavedness of asymmetric lenses has important distinctions from well-
behavedness of general (symmetric mx-tailored) lenses.

Definition 7 (Asymmetric Lens, cf. [2]). An asymmetric lens (a-lens) is a
tuple b� = (A,B, get, put) with A a model space called the (abstract) view, B
a model space called the base, get : A ← B a functor (read “get the view”), and
put a family of operations

(
putB | B ∈ B•)

(read “put the view update back”) of
the following arity. Provided with a view update v: get(B) → A′ at the input,
operation putB outputs a base update putBb (v) = u′: B → B′′ and a reflected
view update putBv (v) = v′: A′ → A′′ such that A′′ = get(B′′). A view update
v: get(B) → A′ is called closed if putBv (v) = idA′ . �

Multiple Model Synchronization with Multiary Delta Lenses 33

The following is a specialization of Definition 5.

Definition 8 (Well-behavedness). An a-lens is well-behaved (wb) if it sat-
isfies the following laws for all B ∈ B• and v: get(B) → A′

(Stability) putBb (idget(B)) = idB

(Reflect0) putBv (v) �= idA′ implies A′ �= get(X) for all X ∈ B•

(Reflect1) (v, v′) ∈ K��
A′

(Reflect2) putBb (v; put
B
v (v)) = putBb (v)

(PutGet) v; putBv (v) = get(putBb (v)) �
In contrast to the general lens case, a wb a-lens features Reflect0—a sort of
self-Hippocraticness important for bx. Another distinction is inclusion of a
strong invertibility law PutGet into the definition of well-behavedness: Put-
Get together with Reflect2 provide (weak) invertibility: putBb (get(put

B
b (v))) =

putBb (v). Reflect3 is omitted as it is implied by Reflect0 and PutGet.
Any a-lens b� = (A,B, get, put) gives rise to a binary symmetric lens b. Its

carrier consists of model spaces A and B. Furthermore b� = B• with boundary
mappings defined as follows: for R ∈ b� = B•, ∂b

AR = get(R) and ∂b
BR = R.

Thus, the set of corrs b�(A,B) is {B} if A = get(B), and is empty otherwise.
For a corr B, we need to define six operations b.ppgB

__. If v: A → A′ is a view
update, then ppgB

AB(v) = putBb (v) : B → B′′, ppgB
AA(v) = putBv (v) : A′ → A′′,

and ppgB
A�(v) = B′′. The condition A′′ = get(B′′) for b� means that B′′ is again

a consistent corr with the desired boundaries. For a base update u: B → B′ and
corr B, ppgB

BA(u) = get(u), ppgB
BB(u) = idB′ , and ppgB

B�(u) = B′. Functoriality
of get yields consistency of B′.

Lemma 1. Let b� be a wb a-lens and b the corresponding symmetric lens. Then
all base updates of b are closed, and b is wb and invertible.

Proof. Base updates are closed by the definition of ppgBB. Well-behavedness
follows from wb-ness of b�. Invertibility has to be proved in two directions:
ppgBA; ppgAB; ppgBA = ppgBA follows from (PutGet) and (Reflect0), the other
direction follows from (PutGet) and (Reflect2), see the remark after Definition 8. �

Theorem 2 (Lenses from Spans). An n-ary span of wb a-lenses b�
i =

(Ai,B, geti, puti), i = 1..n with common base B of all b�
i gives rise to a wb

(symmetric) lens denoted by Σn
i=1b

�
i .

Proof. An n-ary span of a-lenses b�
i (all of them interpreted as symmetric lenses

bi as explained above) is a construct equivalent to the star-composition of Def-
inition 4.1.3, in which lens k = �(nB) (cf. Example 1) and peripheral lenses are
lenses bi. The junction condition is satisfied as all base updates are bi-closed for
all i by Lemma 1, and also trivially closed for any identity lens. The theorem
thus follows from Theorem 1. Note that a corr in (Σn

i=1b
�
i)� is nothing but a

single model B ∈ B• with boundaries being the respective geti-images. �

34 Z. Diskin et al.

The theorem shows that combining a-lenses in this way yields an n-ary sym-
metric lens, whose properties can automatically be inferred from the binary
a-lenses.

Running example. Figure 6 shows a metamodel M+ obtained by merging the
three metamodels M1,2,3 from Fig. 1 without loss and duplication of information.
In addition, for persons and companies, the identifiers of model spaces, in which
a given person or company occurs, can be traced back via attribute “spaces”
(Commute-objects are known to appear in space A3 and hence do not need such
an attribute). As shown in [10], any consistent multimodel (A1...An, R) can be
merged into a comprehensive model A+ instantiating M+. Let B be the space
of such together with their comprehensive updates u+: A+ → A′+.

Fig. 6. Merged metamodel

For a given i ≤ 3, we can define the fol-
lowing a-lens b�

i = (Ai,B, geti, puti): geti takes
update u+ as above and outputs its restriction
to the model containing only objects recorded
in space Ai. Operation puti takes an update
vi: Ai → A′

i and first propagates it to all direc-
tions as discussed in Sect. 2, then merges these
propagated local updates into a comprehensive
B-update between comprehensive models. This yields a span of a-lenses that
implements the same synchronization behaviour as the symmetric lens discussed
in Sect. 2.

From lenses to spans. There is also a backward transformation of (symmetric)
lenses to spans of a-lenses. Let � = (A, ppg) be a wb lens. It gives rise to the
following span of wb a-lenses ��

i = (∂i(A),B, geti, puti) where space B is built
from consistent multimodels and their updates, and functors geti : B → Ai are
projection functors. Given B = (A1...An, R) and update ui: Ai → A′

i, let

putBib(ui)
def= (u′

1, .., u
′
i−1, (ui;u′

i), u
′
i+1, .., u

′
n): (A1...An, R) → (A′′

1 ...A′′
n, R′′)

where u′
j

def= ppgR
ij(ui) (all j) and R′′ = ppgR

i�(ui). Finally, putBiv(vi)
def=

ppgR
ii(ui). Validity of Stability, Reflect0-2, PutGet directly follows from the above

definitions.
An open question is whether the span-to-lens transformation in Theorem 2

and the lens-to-span transformation described above are mutually inverse. The
results for the binary case in [8] show that this is only the case modulo cer-
tain equivalence relations. These equivalences may be different for our reflective
multiary lenses, and we leave this important question for future research.

5 Related Work

For state-based lenses, the work closest in spirit is Stevens’ paper [16]. Her and
our goals are similar, but the technical realisations are different even besides
the state- vs. delta-based opposition. Stevens works with restorers, which take

Multiple Model Synchronization with Multiary Delta Lenses 35

a multimodel (in the state-based setting, just a tuple of models) presumably
inconsistent, and restores consistency by changing some models in the tuple while
keeping other models (from the authority set) unchanged. In contrast, lenses take
a consistent multimodel and updates, and return a consistent multimodel and
updates. Also, update amendments are not considered in [16] – models in the
authority set are intact.

Another distinction is how the multiary vs. binary issue is treated. Stevens
provides several results for decomposing an n-ary relation A� into binary rela-
tions A�

ij ⊆ Ai ×Aj between the components. For us, a relation is a span, i.e., a
set A� endowed with an n-tuple of projections ∂i: A� → Ai uniquely identify-
ing elements in A�. Thus, while Stevens considers “binarisation” of a relation R
over its boundary A1...An, we “binarise” it via the corresponding span (the UML
would call it reification). Our (de)composition results demonstrate advantages
of the span view. Discussion of several other works in the state-based world,
notably by Macedo et al. [12] can be found in [16].

Compositionality as a fundamental principle for building synchronization
tools was proposed by Pierce and his coauthors, and realized for several types of
binary lenses in [4,6,7]. In the delta-lens world, a fundamental theory of equiva-
lence of symmetric lenses and spans of a-lenses (for the binary case) is developed
by Johnson and Rosebrugh [8], but they do not consider reflective updates. The
PutGetPut law has been discussed (in a different context of state-based asym-
metric injective editing) in several early bx work from Tokyo, e.g., [13]. A notion
close to our update compatibility was proposed by Orejas et al in [14]. We are not
aware of multiary update propagation work in the delta-lens world. Considering
amendment and its laws in the delta lens setting is also new.

In [11], Königs and Schürr introduced multigraph grammars (MGGs) as
a multiary version of well-known triple graph grammar (TGG). Their multi-
domain-integration rules specify how all involved graphs evolve simultaneously.
The idea of an additional correspondence graph is close to our consistent corrs.
However, their scenarios are specialized towards (1) directed graphs, (2) MOF-
compliant artifacts like QVT, and (3) the global consistency view on a multi-
model rather than update propagation.

6 Conclusions and Future Work

We have considered multiple model synchronization via multi-directional update
propagation, and argued that reflective propagation to the model whose change
originated inconsistency is a reasonable feature of the scenario. We presented a
mathematical framework for such synchronization based on a multiary general-
isation of binary symmetric delta lenses introduced earlier in [3], and enriched
it with reflective propagation. Our lens composition results make the framework
interesting for practical applications, but so far it has an essential limitation:
we consider consistency violation caused by only one model change, and thus
consistency is restored by propagating only one update, while in practice we
often deal with several models changing concurrently. If these updates are in

36 Z. Diskin et al.

conflict, consistency restoration needs conflict resolution, and hence an essential
development of the framework.

There are also several open issues for the non-concurrent case considered in
the paper (and its future concurrent generalisation). First, our pool of lens com-
position constructs is far incomplete (because of both space limitations and the
necessity of further research). We need to enrich it with (i) sequential composi-
tion of (reflective) a-lenses so that a category of a-lenses could be built, and (ii)
a relational composition of symmetric lenses sharing several of their feet (similar
to relational join). It is also important to investigate composition with weaker
junction conditions than we considered. Another important issue is invertibility,
which nicely fits in some but not all of our results, which shows the necessity of
further investigation. It is a sign that we do not well understand the nature of
invertibility. We conjecture that while invertibility is essential for bx, its role for
mx may be less important. The (in)famous PutPut law is also awaiting its explo-
ration in the case of multiary reflective propagation. And the last but not the
least is the (in)famous PutPut law: how well our update propagation operations
are compatible with update composition is a very important issue to explore.
Finally, paper [5] shows how binary delta lenses can be implemented with TGG,
and we expect that MGG could play a similar role for multiary delta lenses.

References

1. Diskin, Z., König, H., Lawford, M.: Multiple model synchronization with multiary
delta lenses. Technical report. McMaster Centre for Software Certification,
McSCert-2017-10-01, McMaster University (2017). http://www.mcscert.ca/
projects/mcscert/wp-content/uploads/2017/10/Multiple-Model-Synchronization-
with-Multiary-Delta-Lenses-ZD.pdf

2. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations: the asymmetric case. J. Object Technol. 10(6), 1–25 (2011)

3. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: the symmetric case. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–
318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8_22

4. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combi-
nators for bi-directional tree transformations: a linguistic approach to the view
update problem. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, 12–14 January 2005, Long Beach, California, USA, pp. 233–246. ACM (2005).
https://doi.org/10.1145/1040305.1040325

5. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Cor-
rectness of model synchronization based on triple graph grammars. In: Whittle,
J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8_49

6. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Ball, T., Sagiv, M.
(eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, 26–28 January 2011, Austin, TX, USA,
pp. 371–384. ACM (2011). https://doi.org/10.1145/1926385.1926428

http://www.mcscert.ca/projects/mcscert/wp-content/uploads/2017/10/Multiple-Model-Synchronization-with-Multiary-Delta-Lenses-ZD.pdf
http://www.mcscert.ca/projects/mcscert/wp-content/uploads/2017/10/Multiple-Model-Synchronization-with-Multiary-Delta-Lenses-ZD.pdf
http://www.mcscert.ca/projects/mcscert/wp-content/uploads/2017/10/Multiple-Model-Synchronization-with-Multiary-Delta-Lenses-ZD.pdf
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1145/1040305.1040325
https://doi.org/10.1007/978-3-642-24485-8_49
https://doi.org/10.1145/1926385.1926428

Multiple Model Synchronization with Multiary Delta Lenses 37

7. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: Field, J., Hicks, M. (eds.)
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, 22–28 January 2012, Philadelphia, Pennsylvania,
USA, pp. 495–508. ACM (2012). https://doi.org/10.1145/2103656.2103715

8. Johnson, M., Rosebrugh, R.D.: Symmetric delta lenses and spans of asymmetric
delta lenses. J. Object Technol. 16(1), 2:1–2:32 (2017). https://doi.org/10.5381/
jot.2017.16.1.a2

9. Johnson, M., Rosebrugh, R.D., Wood, R.J.: Lenses, fibrations and universal trans-
lations. Math. Struct. Comput. Sci. 22(1), 25–42 (2012). https://doi.org/10.1017/
S0960129511000442

10. König, H., Diskin, Z.: Efficient consistency checking of interrelated models. In:
Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol. 10376, pp. 161–178.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61482-3_10

11. Königs, A., Schürr, A.: MDI: a rule-based multi-document and tool integration app-
roach. Softw. Syst. Model. 5(4), 349–368 (2006). https://doi.org/10.1007/s10270-
006-0016-x

12. Macedo, N., Cunha, A., Pacheco, H.: Towards a framework for multidirectional
model transformations. In: Proceedings of the Workshops of the EDBT/ICDT
2014 Joint Conference (EDBT/ICDT 2014), 28 March 2014, Athens, Greece, pp.
71–74 (2014). http://ceur-ws.org/Vol-1133/paper-11.pdf

13. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30477-7_2

14. Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Schölzel, H.: On propagation-
based concurrent model synchronization. ECEASST 57, 1–19 (2013). http://
journal.ub.tu-berlin.de/eceasst/article/view/871

15. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open
questions. Softw. Syst. Model. 9(1), 7–20 (2010)

16. Stevens, P.: Bidirectional transformations in the large. In: 20th ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems, MOD-
ELS 2017, 17–22 September 2017, Austin, TX, USA, pp. 1–11 (2017). https://doi.
org/10.1109/MODELS.2017.8

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2103656.2103715
https://doi.org/10.5381/jot.2017.16.1.a2
https://doi.org/10.5381/jot.2017.16.1.a2
https://doi.org/10.1017/S0960129511000442
https://doi.org/10.1017/S0960129511000442
https://doi.org/10.1007/978-3-319-61482-3_10
https://doi.org/10.1007/s10270-006-0016-x
https://doi.org/10.1007/s10270-006-0016-x
http://ceur-ws.org/Vol-1133/paper-11.pdf
https://doi.org/10.1007/978-3-540-30477-7_2
http://journal.ub.tu-berlin.de/eceasst/article/view/871
http://journal.ub.tu-berlin.de/eceasst/article/view/871
https://doi.org/10.1109/MODELS.2017.8
https://doi.org/10.1109/MODELS.2017.8
http://creativecommons.org/licenses/by/4.0/

	Multiple Model Synchronization with Multiary Delta Lenses
	1 Introduction
	2 Example
	2.1 A Multimodel to Play With
	2.2 Synchronization via Update Propagation
	2.3 Reflective Update Propagation

	3 Multidirectional Update Propagation and Delta Lenses
	3.1 Background: Graphs and Categories
	3.2 Model Spaces and Correspondences
	3.3 Update Propagation and Multiary (Delta) Lenses

	4 Compositionality of Update Propagation: Playing Lego with Lenses
	4.1 Star Composition
	4.2 Assembling n-ary Lenses from Binary Lenses

	5 Related Work
	6 Conclusions and Future Work
	References

