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Abstract. This paper describes an attempt to combine theorem providgreodel-checking to for-
mally verify real-time systems in a discrete time settingneTTimed Automata Modeling Environ-
ment (TAME) has been modified to provide a formal model for &ifransition Models (TTMs) in
the PVS proof checker. Strong and weak state-event obgamejuivalences are formalized in PVS
for state-event labeled transition systems (SELTS), thaetying semantic model of TTMs. The
state-event equivalences form the basis of truth valuespragy abstractions for a real-time tempo-
ral logic. When appropriate restrictions are placed up@ifthMs, their PVS models can be easily
translated into input for the SAL model-checker. A simplaltéme control system is specified and
verified using these theories. While these preliminary ltssndicate that the combination of PVS
and SAL could provide a useful environment to perform eglenee verification, model-checking
and compositional model reduction of real-time systems cilrrent implementation in the general
purpose SAL model-checker lags well behind state of theeafttime model-checkers.

Keywords: Real-time, equivalence verification, theorem proving, Pw®del-checking, model
reduction, SAL

1. Introduction

Timed Transition Models (TTMs) are a form of guarded transitsystems that can be used to con-
veniently model real-time systems in a discrete time sgtf#8, 26]. In particular one may model a
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system’s desired behavior or specification using one TTMthadactual implementation of the system
using another, more detailed TTM [13]. One can then verift the implementation is in some sense
equivalent to the specification. For an appropriately defiguivalence relation, one can “reduce before
use”, performing compositional model reduction where corent component subsystems are replaced
with smaller equivalent subsystems before they are congpfisg 13]. To be of practical use, such
equivalence verification techniques require some form aftraaized support. This paper describes how
the Timed Automata Modeling Environment (TAME) [2, 3] haghenodified to provide a formal model
for TTMs in the PVS automated proof assistant [28]. Strond aeak versions of state-event equiva-
lences are formalized in PVS for state-event labeled ttiamssystems (SELTS), the underlying semantic
model of TTMs, thus providing mechanized support for eqgenee verification of TTMs.

If, in addition to equivalence verification, one wishes todalecheck the specification and imple-
mentation, PVS does have limited model-checking facdlifer the branching time Computational Tree
Logic (CTL), though the model-checker is not considereddastate of the art and does not have a much
needed counter example generation and simulation cafediliFortunately the SAL 2 model-checker
[22] has a similar, though more restrictive, type system simdlar input syntax to PVS while providing
state of the art BDD and SAT-solver based model checkers iftedr Temporal Logic (LTL) [7]. By
restricting ourselves to finite state TTMs on types with atiens supported by SAL, the PVS specifica-
tions can be easily translated into input for SAL, providstgte of the art model checking capabilities
for our real-time setting.

As we will see in the example of section 5, to prove two TTMsweakly equivalent, we first specify
the two TTMs in PVS using the modeling environment, defindatimn between the states of these two
TTMs and prove that the relation is a weak state-event bisitiom relating the initial states of these two
TTMs. If we wish to model-check our system we can translagenttore abstract (specification) TTM
into SAL. Provided the model-checking formulas of interestisfy a form of stuttering invariance, the
model-checking results can be used to infer the resulthfomhplementation.

The remainder of this section discusses related work. @eeétigives a brief description of TTMs,
SELTS and a simple real-time state-event temporal logice finmalization of TTMs and SELTS in
PVS and SAL is described in section 3. Section 4 gives the itlefis of strong and weak state-event
equivalences, describes how the equivalences can be ugeddan compositional model reduction and
then outlines their formalization in PVS. The results of achemized verification of an industrial real-
time controller modeled using TTMs in PVS and SAL is given éet®n 5. As a basis for comparison
of the model-checking results, timed automata models ottmarollers are partially verified using the
UPPAAL real-time model-checker [11]. Finally section 6 suarizes the method’s benefits, limitations
and possible extensions.

1.1. Related Work

The recent survey article [31] provides an extensive oesvwf the various techniques and tools that
can be used for the formal specification and verification al-titne systems. It covers equivalence
verification, model checking and model reduction technggiirat have been applied to both continuous
and discrete time settings. While each of these topics haga bddressed previously, there is no single
tool suite that lets the user combined these methods in &lart formalism. This paper illustrates
some potential benefits of combining methods and outline th@amethods can be integrated using a
combination of theorem proving and model-checking.
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The Timed Automata Modeling Environment (TAME) [2, 3] is aesfal-purpose interface to PVS
designed to support developers of software systems in mgowvivariants. It supports the creation of
PVS descriptions of three different automata models: Lyviaandrager (LV) timed automata [18], I/O
automata [17], and the automata model that underlies SCé¥ispd¢ions [10]. It does not include support
for verifying different types of equivalences on pairs of@uata models, nor does it support automated
composition of automatons. The user must combine the idaitiautomaton descriptions to produce a
single TAME specification by extracting the common variahie produce a single TAME specification.

TAME does not support TTMs directly and its representatibtimoe as part of the state variables is
not suitable for TTMs. In TAME, the time variableowis explicitly changed in the LV timed automata
by a speciatime-passagactionv. The time requirement for oth@on-time-passagactions are checked
against thdirst andlast value of the corresponding action. TAME uses the real numbgrtended with
oo to represent time values. In our TTM model, we use the exi@mdgural numbers to represent
time values up to the resolution of a global clock tick. A dpktick action is needed to update the
clocks associated withon-tickactions. The actions also need to satisfy the state vanallarements
appearing in guard conditions, a common situation in cdrgtystems. The PVS theories underlying
TAME provide the basis for our formalization of TTMs in PVS.eWhake use of some of the basic
theories and follow a similar template based method to mhkethieories easier to use. As we have
used TAME as the initial basis for our TTM models in PVS, outtimoel currently also requires manual
composition of TTMs. Most significantly, we have add thesrikefining equivalences between pairs of
models, a feature previously absent in TAME.

In [27] Ostroff outlines a compositional method for proviRgal-Time Temporal Logic properties
of TTM modules. The work makes extensive use of the resul{d®f14] to provide model reduction
based upon state-event equivalences. He uses the DelagetbRErip (DRT) example of [13, 15] to
illustrate the proof methodology using a combination of StateTime tool [25] for modeling and the
STeP theorem prover and model-checker [19]. We examineiatioer of the same DRT example in
section 5. The main distinction between [27] and the curvemik is that here we provide a means of
rigorously verifying equivalence of TTMs to provide proWalzorrect abstractions which can then be
used for compositional model reduction as in [13, 14] or cosifional reasoning as done in [27].

Verifying the state-event equivalences described in thjgep for finite state TTMs reduces to solv-
ing the relational coarsest partition problem on the unyilegl transition structure [13], and hence can
be solved using model-checking techniques. While therst emodel-checking tools such as MOCHA
[1] and UPPAAL [11], these tools do not directly support thexification of user defined equivalence
relations and they do not directly support the semanticsTaf13. Our experience using an interactive
theorem prover such as PVS to verify systems like the examection 5 indicates that a combination
of theorem proving to decompose the problem and model-ahgdk discharge parts of the proof obli-
gation would be the most effective combination. Unfortehasoundness problems with PVS’ built-in
model-checker limited our ability to test this hypothesishe recently released SAL 2 model-checker
[22], with a type system similar, though more restrictivarttPVS, has provided an opportunity to use
model-checking techniques on TTM specification, though ¢hirrently requires a manual translation of
the PVS model to a SAL 2 model. In this paper SAL is used to yaemporal logic properties of TTMs
that have been reduced using equivalences verified in PV$iaenot yet tried exporting equivalence
proof subgoals from PVS to SAL, though this should be posditt a suitably restricted class of TTMs
to deal with SAL's type restrictions.
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2. Preliminaries

This section introduces the TTMs that will be used as higkllespresentations of systems that motivate
the state-event approach taken in this work. The SELTS ibesttater will be used as our underlying
semantic model.

2.1. Timed Transition Models

We use a modified version of the Timed Transition Models (TTBlaployed in [26]. To simplify the
problem of equivalence verification, the initial conditialimited to specifying a unique initial state
instead of (possibly) multiple initial states.

A Timed Transition Mode{TTM) M := (V,0,7), whereV is a set of variables® is an initial
condition, andZ is a finite set of transitions.

V always includes two special variables: the global timealadt and an activity variable which we will
usually denote by.. A TTM's activities typically corresponds to its modes,asis used to track the
system'’s current mode. Forc V the range space efis Range(v) (e.9. Range(t) = N where
N:={0,1,2,...}). We define the set aftate assignments o1 to beQ := x,,cpRange(v;). For
a state assignmente Q and a variable € V), we will denote the value af in state assignment
by ¢(v) whereq(v) € Range(v). This notation can be extended to expressions b\era natural
way.

7T is the transition set. A transition is a 4-tuple
Q= (eou hou loca ua)

wheree,, is the transition’s enablement condition (a boolean vakgatession in the variables of
V), hq is the operation function, and € N andu, € N U {co} are the lower and upper time
bounds respectively with, < u,. We say that is enabledwheng(e,) = true. The operation
functionh,, : @ — Qs a partial function, defined wherie,) = true, that maps the current state
assignment to the new state assignment when the transittanso7 always contains the special
transitiontick := (true, [t : t+1], —, —) which represents the passage of time on the global clock.
It is the only transition that affects the time variabland also has no lower or upper time bound.

O is a boolean valued expression in the variable¥ tiat identifies a unique initial state of the system.

TTM Semantics A trajectoryof a TTM is any infinite string of the TTM state assignmentsroarted
by transitions, of the forngy=2¢q; 2>¢>=3 . . .. The interpretation is that; goes tog;+1 via the transition
;. A state trajectory := o =¢1 S ¢33 . . . is alegal trajectory of a TTMM if it meets the following
four requirements:

1. Initialization: The initial state assignment satisfies the initial conditid.e. go(0) = true.
2. SuccessionYi, gi+1 = ha, (¢:) N gi(eq,) = true.

3. Ticking: There is an infinite number af; = tick. This eliminates the possibility of “clock
stoppers” in the trajectory where an infinite number of réafk transitions occur consecutively
without being interleaved with anyicks.
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4. Time Bounds: To determine if the trajectory satisfies the time bound requirementsidf we
associate with each namek transitiona, a counter variable,, with Range(c,) = N. We denote
the set of transition counters [y := {c, : « € 7 — {tick}}. From the trajectoryr we derive
thefull trajectory 5 := Jo 31—~ . .., where eaclf; € Q = Q x N¢ is obtained fromy by
extending each; as follows:

Forallc, € C, go(co) = 0andfori =0,1,2,...

Gi(ca) + 1, if gi(eq) N oy = tick
Git1(ca) = 0, if 7giy1(ea) Va; =a
gi(ca), otherwise
The trajectory satisfies the time bounds &1 iff the following conditions hold ir5 for all 7 € N:
(i) a; =tickiffforall « € T — {tick}, gi(eq) = true impliesg;(c,) < uq, and
(i) s =a,a €T — {tick} iff I, < Gi(ca) < uq.
Condition (i) means that upper time bounds on transitiopsagent hard time bounds by which time the
transitions are guaranteed to occur if they are not preesnete that any loop of transitions ina TTM

must have at least one transition with a non-zero upper tiou.
As a small example, consider the TTM shown in Fig. 1 together with its legal trajectories. The
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Figure 1. Example TTMV (left) and its legal trajectories (right).

full enablement conditions for the transitions should ateude conditions derived from the graph. For
instance, in the case of, the full enablement condition is, := v > 0A (z = a V2 = b). When
describing TTM transitions we will usually omit these aittiwariable conditions since they are obvious
from the transition diagram. Finally, the special tramsittick is declared to implicitly be i7" and
hence is omitted from the list d¥/’s transitions.

In writing out the operation functions of the transitionsidfwe employ Ostroff's assignment format
[23]. When a transition occurs, the new value of the activayiablex is obtained from the transition
diagram. The other variables that are affected by the tiansare listed in the formuv, : expry, vy :
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expra, ..., v, : expry] With the interpretation that variables to v,, are assigned the new values given
by the simultaneous evaluations of expressions- to expr, respectively. The operation function acts
as the identity on variables not listed in the assignmeneistant.

If we let the current state assignment be represented byupld-of the form(u, v, z,t), then a le-

gal trajectory ofA would begy % g1 % go"“F a3 ¢ ... i.e.(0,1,a,0)%F(0,1,a,1)%(1,1,b,1)F

(1,1,b, 2)l>(1, 1,e, 2)”—015 where fromg, onward the trajectory is continued by an infinite string#k:s.
Note that after the second occurrencef, - is forced to occur. Atick could not take place frons
sincey hasu, = 2 and, upon reachings, e, has been true for twticks already.

If the initial condition forM is changed t® := (v = 0 Av = —1 A x = a), then a legal trajectory

is (0, —-1,a,0)%(—1,—1,b, O)ti—>d“(—1, -1,b,1) ”%Ck(—l, —1,b, 2)”—05 where again this trajectory is con-

tinued by an infinite number afck transitions. This trajectory illustrates our interpregatof ug = oco.
We do not insist on “fairness”, allowing trajectories suchthe one above where is a possible next
transition for an infinitely long time, although it does natcor. Thus an upper time bound &f means
that a transition is possible but is not forced to occur ingaldrajectory.

To be useful for designing real systems, a formalism mustigeoa means of decomposing large
systems into smaller, more manageable subsystems. Comsygéams are then typically constructed
from interacting components running in parallel. In [24]t@@# defines a TTM parallel composition
operator that allows for shared variables and synchronsbaréd) transitions. We extend this TTM
parallel composition operator to handle nondeterminisgieration functions. In the following definition
we denote the state assignments over a set of varidbl®s Q) := x,cpRange(v). Ford C V the
natural state assignment projectidfy, : 9y — Qi maps a state assignment oV&to its corresponding
state assignment oveéf. In order to allow us to distinguish between a transition @sdabel, for7, a
given set of transitions (labeled 4-tuples), ¥§t7°) denote the set of transition labels. For the example
TTM of Figure 1,5%(7) = {a, 3,7, tick}.

In order to deal with the possibility of nondeterministiansition functions in TTM composition, to
model for example an input variable, we need skeéwise functional produdf h, : @; — P(R;) and
hs : Q2 — P(Rs) to be the function:

hi ® hy : Q1 x Q2 — P(R1) x P(Rg)

such tha(ql, q2) — fl(q1) X fg(QQ). Thus IfR; C R; andfi(qi) = R; fori=1,2 thenf1®f2(q1, QQ) =
R x Ry ={(r1,7m2) : 11 € Ry andry € RL} while f1 x fa(q1,q2) = (R}, Ry). We can extend the set
wise product operator to handle functions that range onehts instead of sets. For example with
as above, iffy : Q1 — Ry then definef; @ fa(q1,q2) = fi(q1) x {f2(q2)}

Definition 2.1. Given two TTMsM; := (V;,0,,7;),i = 1,2, theparallel composition of\/; and M,
is given by M || My := (V1 U Vs, ©1 A O, 71]|72), where the composite transition $&t| 75 is defined
as follows.

(i) If « := (e, h,l,u) € T, with operation functiom : Qy, — P(Qy,) anda ¢ X(73), then
a = (e,h,l,u) € T1||T2 whereh’ : Qp,uy, — P(Qy,uy,) is the extension of. given by
N o=h® idQ,,,,, - The reverse case when:= (e, h,l,u) € 7o ande ¢ X(73) is similarly
defined.
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(i) If « is a shared transition, i.ex € X(7;) N X(73), with « := (eq,h1,l1,u1) € 77 and
a = (e, ha,la,u2) € 7o and operation functions; : Qy. — P(Qy,),i = 1,2 thena :=
(e, ') € T1|| 72 where

e’ := ej A ey is the enablement condition.

h': Qy,uy, — P(Qyuy,) is the function such that/(¢) := {¢' € OQy,uy, : Py (¢) €
hi o Py, (q) and Py, (q") € ha o Py,(q)}

I := max(ly,ls) is the lower time bound.
u' := min(uy,us) is the upper time bound.

Condition (i) states that if the transitiom := (e, h, [, u) of M; is not a shared transition then the new
operation function in the composite system is givertbly) = {¢’ € Qy,uv, : Py, (¢') € ho Py, (¢) A
Py,\w,(¢') = Py,\v,(¢)}. The value of variables not in/;’s variable set (i.ev € Vy \ V1) are left
unchanged by a transition occurring onlyAry,. Condition (ii) requires that any new assignment to the
shared variables\f N 1) made by a shared transition must be possible assignmentsin both M,
and Ms.

2.2. State-Event Labeled Transition Systems

SELTS extend Labeled Transition Systems (LTS) by addingit® stutput map [13]. We further add an

event output map that is used in the definition of equivaleiteo SELTS. SELTS provides a convenient
way of illustrating the combination of state and event dyitaof TTMs. Rather than using an equivalent
purely state-based or event-based formalism, SELTS eattplretain the separation of state and event
information that provides the intuition for the equivalesalefinitions. As we will see, the equivalence
kernel of the state output map provides an initial stateitg@rtwhich is further refined using the event

dynamics to obtain state-event equivalences.

Definition 2.2. A State-Event Labeled Transition System (SELS &) 8-tupleQ := (Q,Q’", %, Y, Ry,
q0, S, pa) where@ and@’ are an at most countable set of states and state outputectiesty, > and
>/ are a finite set of elementary events (actions) and evenutsytpespectivelyRy, = {5: a € X}

is a set of binary relations ofy, qo € Q is the initial stateps : Q@ — Q' is the state output map, and
pa : ¥ — Y is the event output map.

In the above definitiony = ¢ (wherea € ¥ andq,¢’ € Q) means the SELTS can move from
stateq to ¢’ by executing elementary actian TTMs can be expanded to a corresponding SELTS so
that we can analyze it. The legal trajectories of the TTM frBigure 1 are reproduced on the left of
Figure 2. The top line of each state in the graph containsttite assignments of the system variables in
the format(u, v, ). The second line of each state contains the current valuesobf transition’s counter
variable in the formaic,, cg, c,]. The states of the graph are elements\6k set of extended state
assignment®), which include all state variable, activity variable andioter variable information. The
initial stateqq of the graph is indicated by an entering arrow. A TTM'’s legajectories are all infinite
sequences and as can be seen from Figure 1, every pathgstantimg, can be extended to an infinite
path. The transitions’ counter variables are only used tainkihe structure of the graph. They are not
part of the system'’s observed timed behavior. The countéahlas are hidden variables, the values of
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State Legend

u=0 u=1 1

o ‘ 1
v=1 v=1 |
tick, |
I
I
I
!
I
tick \ tick
77777777777777
l
- @ i tick tick
T
I q
I
I I
I I
I I
| | /

tick tick

Figure 2. Legal trajectories of TTNV/ (left) and SELTS for its timed behavior of andu, v (right)

which determine the Markovian dynamics of the structureusTifiwe were to treat the graph on the left
of Figure 2 as a SELTS fai/, the state output map would be the canonical projection feztended
state assignments to state assignmests Q@ — Q. Assuming all of the events were observable, then
pa = id, the identity map on transition labels.

Often a TTM’s activity variabler plays a role similar to the counter variables in that it isyonsed
to keep track of when transitions might possibly be enab%idailarly, not all transition labels may be
of significance. For instanck/ may be designed to shatieandtick transitions whiles and~ represent
transitions that are internal to/. If one’s real interest in the TTMV/ was the timed behavior of the
variablesu andv and the occurrence af transitions, then this could be represented by the SELTS on
the right of Figure 2 wheres(g) = (u,v) andpa() = pa(y) =

2.3. A Simple Real-Time State-Event Temporal Logic

In this section we introduce state-event temporal logiceasbstract method for reasoning about SELTS
behavior with particular attention being paid to a simplaldtame logic. In general when discussing
SELTS throughout this sectioAP, APy, AP, ... will represent sets of atomic propositions and the
SELTS state output map will map each state to the set of atproositions satisfied by the state (i.e.
ps: Q — P(AP)). We now give a brief summary of temporal logic and refer theder to [4, 20, 23]
for the full details. Following [23], the state-event sences defined above will play the role of the state
sequences in [20]. This will allow us to distinguish staterfalas and state-event formulas. RTTL, as
an example of a state-event temporal logic, is based upomdiBmueli temporal logic with additional
proof rules for dealing with real-timetdck event) properties. To allow us to express simple real-time
properties we add a bounded “until” operator.

Before defining the computations of a SELTS, we will introdisome notation to aid in our discus-
sion of generated and observed state-event sequencese\iiéeaested in sequences of both states and
events so for notational convenience we defihe:= ¥ U {—}, the event set extended with the “null”
event symbol-, andS := @ x ¥_. Fors = (¢,«) € S, in addition to the set of atomic propositions
found inps(q) we associate the atomic propositigr= «.. We refer ton as the (next) transition variable.
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The computations of the SELT@ will then be a subset of the union of the set of all finite, nompéy,
state-event sequencés’, and the set of all infinite state-event sequengés As a notational conve-
nience, we introduce the notatida|, which foro = sgsys2...s, € ST is defined aso| = n and for
o= 508182... € S¥, |o| = w.

Definition 2.3. Given a SELTS), the set otomputation®f Q, denotedM (Q), is the largest subset of
ST U S¥ such that for alb € M(Q),

S sosis = (q0,20)(q1, 1) ... (qn, —) € ST, or,
50871 - - - = (q0,a0)(q1,01)...€8¥
and

() Initialization: ¢q is the initial state ofQ.

(i) Succession) < i < |o| impliesa; € X andq,ﬂq,url in Q.

(ii) Diligence: o; = —iff i = |o| and for alla € ¥ andq € Q, ¢; 72 q.

Condition (iii) above states that the only finite sequencesf(Q) are those which terminate in a state
where no transitions are possible and hence the final “ewvarttie state-event sequence is denoted by
—. This diligence condition differs from that of [20] in thdtdre is no idling transition in our setting so
we allow finite sequences of states to be computations andfyrmd definition of temporal semantics
accordingly [4].

State-event formulaare arbitrary boolean combinations of atomic predicateg. séy that a state-
event formula is astate formulaif is does not include any transition predicates suchyjas «a. For
example,(y < 10 A x = atdelay) V t = 5 is both a state formula and a state-event formula while
n = «aVy = 3 is a state-event formula but not a state formula. Statetdeemulas (and hence state
formulas) do not contain any temporal operators. For a $bateula F; and a statg, we use the standard
inductive definition of satisfaction and write|= F; whenFy is true in state;. Similarly the definition
of satisfaction can be extended to any state-eventspais and any state-event formulg,..

In the following inductive definition of satisfaction of tgroral state-event formulas we will consider
an arbitrary (possibly finite) state-event sequeace: sgs; ... = (qo, a0)(q1, 1) . ... Hencefortho”
will be used to denote thee-shifted suffix ofo,

o =SSkt - = (Qhs k) Qs 1, Qht1) - - -

when it exists (i.e. whefr| > k). When talking about projections of computations we wilhdee the
prefix of o up to positionk by ¢ = (qo, a0)(q1, 1) . .. (qx, o). For eachn € ¥ we use the notation
#a(o,1) to denote the number of transitions that occur betweegn andg; in the state-event sequence
o. If |o| < ithen#a(o,4) is undefined.

Definition 2.4. For temporal formulad”, Fi, F, and state-event sequenegthe satisfaction relatior=
is defined as follows:

e If F € AP is an atomic predicate, then= Fiff so = F (i.e. F' € ps(qp))
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If F:=(n=a«),theno = Fiff pa(ag) =

cEFRVF2iff o= Fioro = Fy

o= F ANF2iff o = Fy ando = B

oE-Fiff o £ F

o = QF iff o' exists andr! = F

o = FUE, iff o = Fy or 3k > 0 such that® is definedg* = Fy andVi,0 < i < k, o’ = F.

o RU  F iff o = F or 3k > 0 such that* is definedo* = F, andVi,0 < i < k, o’ = F}
and! < #a(o, k) < u.

Given a SELTSQ and a temporal formuld’, we say thatF' is Q-valid, written Q = F, iff for all
oceM(Q),o=F.

The “next” operator() and “until” operatorl/ are typically used to define additional operators.
In particular the “eventually” (“future”) operatof F', which denotegtrue) F', and the “henceforth”
(“always”) operator]F', which is an abbreviation ofQ—F. As an example of a temporal formula,
considerF' := O O true. F' is satisfied only by those such thato| = w. Theu[‘iu] operator is
just the until operator subject to the restriction that fdoanuIaFlu[Cl‘"u]F% F, must become true after
the ith occurrence of events producing observations and before tiie + 1)th occurrence of amx
observation. In systems in which time is represented byrelis¢ick events thé/{[“c’f operator can be
used to specify that a system meets hard time bounds. Formpdaamny system satisfying the formula
(true)u[towzﬁ( = ) will produce a3 event before 3 time units have passed. We will 466" as an
abbreviation foufgc,ﬁ For example the above formula can be ertter(Me)u“C’f (n=p).

Fairness Typically when a given transition structure is used as thelehdor a system, a designer
specifies some fairness constraints which a computatiort satisfy if it is to be considered a “legal”
computation of the system. For example, all systems in RTa\letthe fairness constraint that thek
event must occur infinitely oftei {0 (n = tick)), that is the system must not stop the clock or permit
an infinite number of noméck transitions to occur between successive clacks. Given a specification
as a temporal formuld’, one then is not so much interested in verifying taktthe computations of
the transition structure satisfiy but rather in verifying that all théegal computations satisfy'. That

is Q = —Frair V F, where Fyq;, is the conjunction of all formulas that are to be satisfied ty t
system’s legal computations. In performing such a verificabne implicitly assumes that the set of
legal computations considered is non-empty @e.c M(Q),o = Fyqir).

3. Formalization of TTMs in PVS

PVS stands for “Prototype Verification System,” and as theeauggests, it is an environment for
specification and verification. The system consists of aiBpaion language, a parser, a type checker,
and an interactive theorem prover with a powerful collattad inference procedures that are applied
interactively under user guidance within a sequent catctdamework. The specification language is
based on higher-order logic with a richly expressive typsteay [28].
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3.1. PVS Theories for the Timed Transition Model

Following the lead of the TAME system, we introduce sevekéERheories and a pair of templates which
support the specification of TTMs directly in PVS. When condal with selected theories from TAME,

these theories can provide us with a modeling environmewhich the software developer can produce
specifications of TTMs in a straightforward way. It also po®s us with a validated formal specification
that, under appropriate restrictions, can be easily teaedlinto input for the SAL model-checker.

Datatype time: In a TTM, eachaction (transition) has an associated timer with valueNinThe
value of the timer is compared with thewer bound andupper _bound to decide theenabled time
condition for each action. Thepper_bound oo represents the case where there is no final deadline on
an action. So theime type in our model is the union type of natural numbers énd}, shown at the

top of Figure 3.

The datatypecime has two constructors. The first constructotntime, has a natural number pa-
rameterdur and the recognizefintime?, and the second constructanfinity, has no parameters
and the recognizeinftime?. We can then reuse the thearyme thy from TAME [9] which provides
the definitions of the standard arithmetic operators andipates for time values.

Theory states: Appearing in the middle of Figure 3, this theory providesansfard record structure
for the Timed Transition Model. The theory has four type pagters. They aractivity, nt_action,
internal _state andtime. Thent_action is the set of all actions excluding the actioick. The
states type defines the record type used to represent the systesn $ta first field isactivity which
specifies the activity label of the state. The second fietehisi c which represent all the non-time state
information. The third field i:ction_time which is a function fromnt_action to time. It associates
each non-tick action with a time value. Thus each actionss@ated with a timer.

Theory ttm: The theoryttm specifies the common time operations of TTMs. It appearsdrbtitom
section of Figure 3. The theory requires seven parametedefine a TTM. The first three have been
described above. The parametetsier bound andupper_bound are functions fronnt_action (non-
tick actions) totime which associate the time bounds with each action. The pdesierabled state

is instantiated by a predicate arttion and internal_state that is true only when the action is
enabled, based on the valueiefternal state. The parametegraph is instantiated by a predicate on
action andactivity that is true only when the action is enabled based orathevity label of the
state. These parameters are all defined in the TTM templagedtion 3.2 where they are instantiated
according to the specifics of the TTM being modeled.

3.2. PVS Templates for Timed Transition Models

We provide two templates that can be instantiated to signfiié process of specifying a TTM in PVS. In
the theoryactions, we defineaction as the type of all the possible actions in the TTM. The teneplat
for the theoryactions is shown in Figure 4 where it has been instantiated for the TiiMigure 1.
Here the lines append with the comment “%* user *” indicates TTM specific information supplied
by a user of the template. Nditk actions are distinguished with the&_action subtype.
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time: DATATYPE
BEGIN
fintime(dur: nat): fintime?
infinity: inftime?
END time

states [activity,nt_action,internal_state:TYPE,time:TYPE]: THEORY
BEGIN
states: TYPE = [# activity: activity,
basic:internal_state,
action_time: [nt_action -> time] #]
END states

ttm [activity,internal_state, nt_action: TYPE,
(IMPORTING time_thy, states[activity,nt_action,internal_state,time])
lower_bound,upper_bound: [nt_action->time],
enabled_state: [nt_action,internal_state -> bool],
graph: [nt_action, activity -> bool] ]: THEORY
BEGIN
s: VAR states
alpha: VAR nt_action

enabled_general (alpha,s) :bool =
enabled_state(alpha,s‘basic) & graph(alpha,s‘activity)

update_clocks(s): [nt_action->time] =
(LAMBDA (alpha):
IF enabled_general(alpha,s) THEN s‘action_time(alpha) + one
ELSE zero ENDIF)

reset_clocks(ac:nt_action,s): [nt_action->time] =
(LAMBDA (beta:nt_action):
IF (enabled_general(beta,s) & beta/=alpha) THEN s‘action_time(beta)
ELSE zero ENDIF)

enabled_time(alpha, s): bool =
s‘action_time(alpha) >= lower_bound(alpha) &
s‘action_time(alpha) <= upper_bound(alpha)

enabled_tick(s): bool =
FORALL alpha: enabled_general(alpha,s) =>
(s‘action_time(alpha) < upper_bound(alpha))
END ttm

Figure 3. Datatypeime andstates andttm theories
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actions : THEQORY

BEGIN

action:DATATYPE

BEGIN
tick:tick?
alpha:alpha? % * user
beta:beta? % * user
gamma:gamma? % * user *

END action

* %

nt_action:TYPE={action:action |action/=tick}

END actions

Figure 4. Instantiatedctions for M in Fig. 1

Appendix A contains thetm_decls template where a TTM’s main declarations are provided. Once
again it has been instantiated for the TTM in Figure 1 with ‘¢ user *” comment indicating user
supplied lines specific to this TTM. In the template we impbe fixed theorytime thy and the in-
stantiatechctions theory from Figure 4. Theime _thy contains the definition of all of the constants
of datatypetime (eg.twenty nine is the constant of datatypeime for the natural numbe29). Then
we defineactivity, the set of TTM activities. The interpretations of typeternal state, functions
lower bound andupper bound, enabled state andgraph have all been discussed above.

Once the values of each of these are filled in for the TTM in Ejghettm theory can be imported to
define the common operations. The functiarabled combines thenabled general, enabled time
andenabled_tick conditions to get the finalnabled condition for all actions. In the transition func-
tion trans, the definition oftick’s effect as well as the resetting of clocks according to thw state
variables assigned by other events is the same for all TTM difects of non-tick actions on state
variables are specified by the user to completetttuns function. Finally, the functiorstart specifies
valid initial states of the TTM. After defining these funcis®y we import the TAMEnachine theory
[2, 3] which allows us to specify and inductively prove realtity invariants and other properties of the
TTM.

3.3. Translation of TTMs to SAL Model-Checker

Theories defining state, transitions and initializationtltd system are rewritten into the module lan-
guage of SAL. We did not need thrchine theory from PVS that recursively defines the set of reach-
able states, since SAL is designed for the modular specificaif state machines. Thetate type
remains largely the same, although SAL offers the optionadinthg activ as a local variable, which
would be beneficial in case of the system containing more tmenmodule. In fact all filestm.sal,
time_thy.sal, states.sal are very similar to the corresponding PVS files. To provideeaample

of how “close” the SAL versions of the TTM files are to the PV&dil the SAL version of the instanti-
atedttm_decls.pvs template of Appendix A appears in Appendix B. In specifyiransition relations
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SAL’s guarded commands style is employed rather than itariamt style to more closely match the
TTM formalism and PVS model.

The most significant difference is thdate _clocks function inttm.sal. In the current version
of the PVS model, the counter values associated with anytioskmction @ction_time) is unbounded
if its upper bound isc. However, since we are using the SAL model-checkers forefisiate systems,
we wantaction_time to be a finite subrange of.

In the example of Fig. 1, although thietransition of M has an upper time bound o, the SELTS
M in Fig. 2 is finite state since preempts3, preventing an infinite number @fcks from causing:g
from becoming unbounded. Whatyjfalso had an upper time bound&f? How do we generate a finite
state representation of the timed behaviono?

The set of extended state assignments is reduced to prodinite atate set by redefining theange
of the counter variables as follows. Fbf := (V,©,7) anda := (e, h,l,u) € T

{neN:n<l}, fu=oc0

R ) =
angen (Ca) {{nGN:ngu}, u < 00

If a has afinite upper time bound,, then TTM semantics preveat from being incremented to a value
exceeding.,,. For transitions with lower time boungd and upper time bound,, = oo, we redefine the
the clock update effect afick to cease incrementing, once it reaches, since all values ot > [,
have the same effect of enabling the transition. We therfirezlthe set of extended state assignments to
use the reduced clock ranges.

Other differences between the PVS and SAL files are mainlytduke limited capabilities of the
current version of SAL. For exampletates.sal has more than one state type defined because the
current version of SAL does not allow parameters of contekig a function of more than one parameter.

4. State-Event Bisimulation and Equivalence

In this section, we first briefly justify our discrete timetggg and choice of equivalence, then give the
definitions of strong and weak state-event equivalencetiegevith their model reduction properties and
finally describe the theories and templates that formalizesiquivalences in PVS.

Discrete time models such as TTMs are sufficiently accuratmany instances, particularly when
dealing with digital control systems that sample their itgpun [15] the authors argue that discrete time
models such as TTMs allow for a straight forward applicatdnvell known process algebraic equiva-
lences such as observation (bisimulation) equivalenaa hlner's CCS [21]. State-event equivalences
of SELTS were introduced in [14] and used as the basis fovatgnce of TTMs in [13]. Here we use an
equivalent state-event bisimulation (a generalizatiofeg€nt) bisimulations [29, 21]) characterization
of the state-event equivalences rather than the homonsorpbased characterization of [14, 13].

4.1. Strong State-Event Equivalence and Model Reduction

In this section and the following, 1€); = (Q;, Q, %;, X, Ry, , ¢io, psi, pai), ¢ = 1,2 be SELTSs where
ps; 1 Q; — @ andpa; : X; — 2.

Definition 4.1. Arelation.S C Q)1 x Q2 is astrong state-event bisimulatidar Q; andQ iff (g1, ¢2) €
S implies
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(i) Va; € X1, whenever;; 2 ¢} then3g, € Qo, an € ¥y such thatlge 23 ¢4 and(q}, ¢}) € S and
ps1(q)) = psa(qs) andpai (a1) = paz(az)).

(i) Yoo € X9, wheneveryy 22 ¢4 then3g) € Q1,1 € ¥y such thatlq; = ¢} and(q},¢) € S
andps1(qy) = ps2(qs) andpai (a1) = pas(az)).

We say that the SELTS astrongly state-event equivalemtenotedQ; . Q», iff there exists a strong
state-event bisimulatiof for Q; andQ, such that(qio, g20) € S.

For finite state system®; and Q., it is possible to compute the largest state-event bisitimulaby
solving a version of the Relational Coarsest Partition [@ob Further, similar to the results of [8] for
the event only case, abstractions based upon strong s&é-@quivalence preserve truth values under
parallel composition [13, 14].

4.1.1. Strong State-Event Model Reduction

We are assuming that only partial state information is pteslivia the state output map and for the patrtial
event information provided by the event output map all eeenputs are observable. In this setting, one
of the main results of [13, 14], restated below, is that gjtpistate-event equivalent systems satisfy the
same temporal formulas.

Theorem 4.1. Given two SELTS as above, @, ~,. Q5 then for any temporal formulé’, we have

Qi EFIiff Q= F.

4.2. Weak State-Event Equivalence and Model Reduction

In some cases, strong equivalence is more discriminatiag te would like because it “observes”
unobservable transitions. Therefore we will introduce kvsiate-event equivalence.

Given SELTSQ; andQ-, as defined above, assume the special evespresents unobservable events
in their common event output s&t If an actiona € X; maps tor € X throughpa;, we considek to
be an unobservabte transition. In this case, whem happens, it does not produce an observable event
output, though it may produce an observable change in the staput. Fory, ¢’ € Q;, if pa;(a) = 7
then wheny = ¢’ andps;(q) = ps;(¢’), there is no change in the state output, buytsif(q) # psi(q'),
there is a change in state output even though no event ostpbserved!

The unobservable state invariant transitive closdm a given SELTSQ; is defined as the rela-

tion =, such that forg,q’ € Q;, ¢=s.¢ iff ¢ = ¢ or for somen > 0, Jq0,q1,...,9, € @Q; and
g, Qq,...,0,_1 € X; such that
) g=aq a5 g1 "5 g, = ¢, and

(i) psi(qj) = psi(q) = psi(¢'), for j =0,1,...,n,and
(i) pa;(aj) =7,forj=0,...,n—1.
Thus the unobservable state invariant transitive clossitha reflexive and transitive closure within

each cell of the equivalence kernel of the state output mépeainion of transition relations that produce
the silent event output.



90 M. Lawford, V. Pantelic, H. Zhang / Towards Integrated Veafion of Timed Transition Models

We useq :ﬁ>se q', where € Y;, to denoteg=-,.q1 LA G2=seq’, Whereq, ¢, q1,q2 € Q; for a
given SELTSQ;. It will be used in our definition ofveak state-event bisimulatiohe definition uses
event output maps in addition to the state output maps usgidalty in [13]. Formally,weak state-event
bisimulationis defined as follows.

Definition 4.2. ArelationS C Q1 x Q)2 is a weak state-event bisimulation @5 andQ iff (¢1,¢2) € S
implies

(i) Yai € ¥y, whenever;; = ¢ then

e (3¢ € Q2,0 € Xy Wheregs 22 . ¢, and (q},¢5) € S andpsi(q)) = psa2(gy) and
pai(a1) = paz(az)), OR

 (Jg; € Q2 wherega=>5.q5 and(q}, ¢5) € S andpsi(q;) = ps2(g5) andpai (a1) = 7)
(i) Yoy € ¥y, whenever, 23 ¢ then

e (3¢ € Q1,01 € X1 whereq o ¢y and (¢i,45) € S andpsi(q¢)) = psa(gh) and
pai(a1) = paz(az)), OR

e (3¢} € Q1 whereqi=.¢} and(¢}, ¢5) € S andpsi(q)) = ps2(qh) andpas(az) = 1)

The two SELTS are said to heeakly state-event equivaledienoted); ~,. Qo, iff there exists a weak
state-event bisimulation fdd; andQ. such that(¢i, g20) € S.

4.2.1. Weak State-Event Model Reduction

We now define a projection from computations to weakly obsgrgomputations that deletes a state-
event pair from a computation if the event output is an unoiadge 7 transition and the state output
remains unchanged in the next state (i.e. there is no wayd4ereé whether we remain in the current
state or take the transition to the next state). Since weatke-slvent equivalence suppresses system
information regarding sequences of unobservable eveatsithnot cause state changes, the equivalence
can only be used for model reduction with a restricted seewfporal formulas. This restricted class,
which we will call the class of State-Event Stuttering-Insat (SESI) formulas, is characterized as those
formulas that are satisfied by a computation iff the proj@ctemputation satisfies the formula.

In [20] the authors use a state-based projection operatdevelop a state-only version of weak
satisfaction. They define thheduced behavioof a computatiorr via a two step process that amounts
to first applyingps to each state in the sequence and then replacing unintedrspuences of identical
states with a single copy of the state. In our case we arenggealith sequences of state-event pairs
rather than just sequences of states. We cannot simply appltypa to each of the state-event pairs in
the sequence and then replace subsequences of unintdraipte-event output pairs by a single state-
event output pair since in this case important informatielating state changes and event observations
would be lost.
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Consider the three state-event sequences shown below wheris the event representing the pas-
sage of one second on the global clock.

(90, 7)(q0, 7)(qo, tick)(qo, a)(qu, tick) . ..
(90, 7)(qo, tick)(qo, tick)(qo, ) (q1, tick) . ..
(o0, tick)(qo, 7)(qo, tick)(qo, 7)(q0, @) (q1, tick) . ..

If we assume that the output maps and pa are the identity map on their respective domains, then
following [20] the first and second sequences would resuthésame reduced computation:

(qo, 7)(qo, tick)(qo, @)(qu, tick) . ..

while the third sequence is its own reduced computations Wauld lead us to believe that in the first
two cases the system delays for one second and then chaaggdrem g to ¢; via an« transition
when, in fact, the second and third computations do not miage ttransition until after 2 seconds.
While we want our projection operator to distinguish thetfaase from the other two, the second and
third computations differ only by unobservable transiidhat do not change the state output. Upon
rewriting the three sequences in terms of the notation ofkvetate-event observation equivalence, the
differences and similarities in observed behaviors becapparent:

T  tick «  tick tick « tick
QO—><]0—>QO —qo—q1— - .- 40 =7seq0=%eq1 —7se -
T  tick tick o« @ tick . tick tick tick
qo—qo —q0 —40—q1 — - .. q0 =seq0 :>seq0:>seq1 =se -
T tick T tick « @ tick tick tick « tick
qdo—q0 —qo—q0 —qo—q1 — - .- q0 =7seq0 =seq0=3eq1 —7se - - -

To an external observer the second and third computationddwaroduce the same observed state-
event sequenceyy, tick)(qo, tick)(qo, a)(q1, tick) . ... The projection defined below has the effect of
replacing all the state-event pairs making up an obsenaitiong; =, with a single state-event pair
q1—. The following weak state-event sequence projection dpepoduces a system’s weakly observed
computations.

Definition 4.3. Given a SELTSQ with state output mapa : @ — P(AP), ps : ¥ — ¥ ando =
(qo,a0)(q1,01) ..., 0 € M(Q), theweakly observed behaviaf o is denoted, with a slight abuse of
notation, by~ (o) which is defined inductively as follows:

~ (@) = ps(q)
- ((] %))q o ¢ Oﬁl)q ) ~ (QO@}(JI% e Qn)a if pa(an) =TA pS(Qn) = pS(Qn+1)
~ 0 1 e +1 = . .
o ~ (QO@Nha—l’ . qn)pa(j )ps(qn+1), otherwise

For C a set of computations, we defire(C) := {~ (0) : 0 € C}.

Example 4.1. In this example we consider the weak state-event obsengatienerated by an SELTS
with identity output mapgs := idg andpa := idsx;.

3
o1 = (q0,7)(q0,)(q0,7)(q1,7)(q1, B) (g2, @) ... = Go—>Go—>Go— G2 -
B8
~(01) = qooqo—q—ge— ... = (90, a)(q0,7)(q1, 8) (g2, @) . ..
g2 = (q(]?T)(quT)(qO»T)" —QO—“]O—’QO;

~(02) = qo=(q,—)
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In ~ (o) all the 7 transitions are eliminated except for thg™q; transition since this transition can
be inferred from the external observer's observation ohgesthange from, to ¢; without any observed
event. In this case we say thatis animplicitly observed transition The computatiorr, is initially
observed to be in stat@ and then produces no state change or event observations. isTigflected
in ~ (02) as(qo, —), the observed state output with no defined transition. Thusfnite state-event
sequence can result in a finite weakly observed sequence. iSThihy the effort was made earlier to
extend the definition of temporal operators to finite as welirdinite sequences, allowing us to define
weak satisfaction of temporal formulas below. We now coeisittose formulas with truth values that
are robust with respect to unobservabl&ansitions.

Definition 4.4. Given a state-event temporal formuleover the set of atomic predicatés’, we say that
F is State-Event Stuttering-InvariaEES]) if for all SELTSQ with state output mag’ : @ — P(AP),
for all computationsr € M(Q), the following equation holds:

oEFIiff ~(0c) EF 1)

Formulas composed solely of state predicates togetherthgtkr, A,u,w;,u operators (i.e. that do
not contain the next operat@r) or next transition variable) are SESI. Additionally, a formula of the
form OO (n = tick) is SESI sinced(n = tick) is SESI andJF = —~0—F. The following theorem
from [13, 14] allows us to model-check SESI formulas on aey& quotient system or other reduced
equivalent systems and infer the result for the originatesys

Theorem 4.2. Let F' be an SESI formula. 1f);,Q, are SELTS such tha®; ~;. Q2 thenQ; =
~(00n = tick) vV Fiff Qy = ~(00n = tick) V F.

Similar to the results for strong state-event equivaleabsiractions based upon weak state-event equiv-
alence preserve truth values of SESI formulas under pacallaposition [13, 14].

4.3. PVS Theories for State-Event Equivalences

A TTM can always be expanded to a (possibly infinite state) TS0 we do not need to give another
definition of equivalence for TTMs. We use the same definiisrfor SELTSs. Here we only briefly
outline how the equivalences are formulated in PVS. A detiadescription is provided in [32] and
complete files are available onlihe

The theorystatetrans provides a parameterized definition ofgifite invariant transitive closure
We use this definition in the theogesim, which gives one direction in the definitions of strong andiwe
state-event bisimulations. The thearybisim imports the theorgesim twice to give both directions
in the definition of the bisimulation. The predicaigeebisim? identifies weak state-event bisimula-
tions and is used to create tiieebisim predicate subtype of weak state-event bisimulations. I&imi
definitions are provided for strong state-event equivaenc

In a similar fashion to the TTM templates of section 3.2 theSR¥mplate for state-event bisimula-
tion provides a straightforward environment for specifystate-event bisimulation in PVS. The template
provides the option for the user to import reachability drestinvariants to help in verifying the bisimu-
lation relation. Then we define the event typevhich is the common event type for the two structures.

"http://sqrl.mcmaster.ca/~lawford/papers/FI05
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In our setting of weak equivalenceau in PVS (representing the event) is always included in this
set of events. The state typeate (also called the state output) is the common state type #otwtio
structures. We also need to instantiate the functigdts pS2, pAl, pA2. PredicateSs tau?, dd1 and
dd2 identify the unobservable events and the transition @tatiof the two structures. By importing the
theorysebisim with concrete parameters from our specification, we gehalldefinitions for state-event
bisimulation. The user supplies a relatiBh and its type is specified asebisim (Sebisim) if it is a
weak (strong) state-event bisimulation between the twagires. The user will be required to prove the
Type Correctness Condition automatically generated by B\®nfirm tha®RR is a weak (strong) state-
event bisimulation. Finally, the lemmeakequi (strongequi) must be proved to confirm that the two
initial states are related BR, so that we can say the two structures are weakly (stronggye-event
equivalent.

5. \Verification of a Real-time Controller

The Delayed Reactor Trip (DRT) system was first describedl8.[ It is a typical example from the
process control industry. Below we describe the system end@TM models of its specification and
implementation and refer the reader to [13, 15] for the det@i how these models were obtained and
validated. What is new in this work is the PVS models of theS#Tand the verification of their
equivalence using PV5.

When the reactor pressure and power exceed acceptablg Bafigs in a specified way, we want
the DRT control system to shut down the reactor. Otherwiseywant the control system to be reset to
its initial monitoring state. The desired action for the &gdd Reactor Trip system has the following

Reactor Pressure—— Reactor Trip

Trip Relay State

Reactor Power ——= System

Figure 5. Block Diagrams for the DRT

informal description: if the power exceeds the power thod$PT and the pressure exceeds the delayed
set point DSP, then wait for 3 seconds. If after 3 seconds tinepis still greater than PT, then open
the relay for 2 seconds. The old implementation of the DRTigi§mers, comparators and logic gates is
show in Figure 6.

AND
Pressure—>—|— AND
Timeri|
’7 Timer, Relay

Figure 6. Analog Implementation of the Delayed Reactor Bygtem

Power

2Complete files for this example are available for downloamifattp: //sqrl.mcmaster. ca/~lawford/papers/FI05.
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The hardware implementation is almost a direct translatidhe above informal specification: When
the reactor power and pressure exceed PT and DSP respgdiivetomparators cause Timerl to start.
Timerl times out after 3 seconds, sending a signal to ond ofihe second AND gate. The other input
of the second AND gate is reserved for the output of the powerparator. The output of the second
AND gate causes Timer2 to start if the power exceeds its tlotdsand Timerl has timed out. Once
Timer2 starts, it runs for 2 seconds while signaling theyrétaremain open.

The new DRT system is to be implemented on a microprocesstersywith a cycle time of 100ms.
The system samples the inputs and passes through a blochtoflomode every 0.1 seconds.

5.1. Formalizing the DRT Specification

By modeling the specification as a TTM (Figure 7), we can fatihe ambiguities in the informal
specification and ensure that the input/output actions emgptetely determined. In order to verify the
correctness of the microprocessor system, the DRT spdaifices put in a form that closely resembles
the microprocessor system. tizk of the global TTM clock is assumed to be 100 ms, the scan pefiod
the microprocessor. We assume proper filtering of the infguads and a sufficiently high sample rate.
Thus the enablement conditions of a transition must befigatifor at least one clockick before the
transition can occur. The transitiorig, «, p1, p2,~y) have lower and upper bounds of 1, exemplifying
this filtering assumption.

In the TTM, if the power and pressure exceed their corresipgnithresholds, then the transitignis
enabled. Aften: occurs, the system waits in activibyfor 29 ticks (2.9 seconds) before proceeding to
activity c. In activity c, the power level is checked again. If the power is still toghhihen the system
opens the relay via transitiam, otherwise the system resets via transitigrto go back to activitya and
monitor power and pressure again. After transitiothe system waits in activitd for 19 ticks (1.9
seconds) and then proceedst@t e, as an added safety feature [13], the system checks the fevetr
again. If the power still exceeds the threshold, the syseorms to activitya with the relay still open
via transitiony, otherwise the system resetsawia p, while closing the relay. We model the pressure
and the power as two separate simple TTMs (Figure 7).

With the help of the theories and template we defined in se@jdormalization of the TTM spec-
ification in PVS is very straightforward. We just follow thélW representation of the specification in
Figure 7 and input all the information into the template wWiwee discussed in section 3.2.

We define the internal state as a record tygeinternal state: TYPE = [# Relay:bool,
Power:bool, Pressure:bool #]. To validate the PVS formalization, we formulated an inaati
describing properties of the specification at all the rebtshatates. By proving the invariant, we confirm
that our ideas about the TTM’s behavior are correct. Latgimbluding the invariant in the definition of
weak equivalence, we narrow down the state space needed ®ydxérify weak equivalence [32].

5.2. Formalizing the DRT Implementation

For the microprocessor DRT implementation each time theaprocessor passes through the block
of code (originally represented by the pseudocode in [1f]performs one of the group of opera-
tions identified in the TTM model by a transition name. The TTdd the implementation is ob-
tained by replacing the “TTM for Specification” in Figure 7ttvithat shown in Figure 8, resulting in
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TTM for Specification

(07

O w29
b

P2, 7Y

TTM for Power TTM for Pressure

.

V :={xz, Relay, Power, Pressure}

pr

PsS

O :=(z =a A Relay = CLOSED A Power = LO A Pressure = LO)

T:={

w = (Power = HI A Pressure = HI,[],1,1)
wag := (True, [ ],29,29)

a = (Power = HI,[Relay : OPEN],1,1)

wig = (True,|],19,19)

p1 = (Power = LO,[],1,1)

p2 = (Power = LO,[Relay : CLOSED], 1,1)
v := (Power = HI,[],1,1)

wr = (Power = HI,[Power : LO],1,00)

ws = (Power = LO, [Power : HI],1,00)

pr = (Pressure = HI,[Pressure : LO], 1, 00)
ps = (Pressure = LO, [Pressure : HI],1,00) }

Figure 7. TTM for the DRT specificationSPEQ|POWERPRESSURE

95
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@ Selﬂoop@lau27a757 :
Y5 P15 P2)

V = {x, Relay, Power, Pressure, cy,ca}

=(zx = a A Relay = CLOSED A Power = LO A Pressure = LO
Cc1 = 0, Cy = 0)

N O

p1 = (euy, et e +1],1,1)
p2 = (c1 =0A1<cy <19,[ca:co+ 1, Relay : OPEN], 1,1)
a = (Power = HI Nep > 30,[c1 : 0,¢0 : 2+ 1, Relay : OPEN], 1,1)
p1 = (Power = LO A ¢ > 30,[c; : 0],1,1)
p2 = (Power = LOANc; =0Acg > 20,[ca : 0, Relay : CLOSED], 1,1)
v :=(Power = HI Nc; =0 Acg >20,[c2:0],1,1) }
Where
ey, := (Power = HI A\ Pressure = HI N ¢y = ¢ = 0)
V(1 < e <29)

Figure 8. TTM for DRT implementationPROG

PROG|POWERPRESSURESiInce it directly models a cyclic executive, all the traiosis for the mi-
croprocessor DRT implementation are modeled as selfloops.

As the microprocessor scans through the code each cyclenisD0it picks out one of the labeled
sections of code. The section picked is the one whose TTM htoalgsition enablement condition
is satisfied. The microprocessor then loops back to the begrand re-evaluates all the enablement
conditions in the next cycle. So each transition, exceptHose which simulate the power or pressure,
has a lower and upper time bound of 1.

Formalization and validation of the implementation in P¥Similar to that of the specification. This
time the internal state is given in the TTM template asternal state: TYPE=[# Relay:bool,
Power:bool, Pressure:bool, cl:nat, c2:nat #]. We use the two variables andcy to count
the time requirements afy9 andwig respectively in the specification. As can be seen in Figurees,
do not havew;g andwyg in the set of actions. Note that the actigns «, ue, p1, p2 and-~ all have
enablement conditions involving and/orcs.

As with the DRT specification, the verification of an invatidor the DRT implementation gives us
confidence that the TTM is doing what we want and narrows ddwenstate space needed by PVS to
verify weak equivalence.

5.3. Weak Equivalence Verification

With the help of the theories and template described in@eeti we can define weak equivalence be-
tween the specification and implementation in PVS. The fansps1 andps2 map their respective state
records to the system inputs and output: Power, Pressur®ealagy. In the event output functiops 1
and pa2, tick is mapped to itself to preserve timing information and aliestactions are mapped to
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unobservable events.

We need to prove the Type-correctness condition (TCC) aatioally produced by this definition
in PVS. By proving the TCC which requires the relatiBh to be a type ofisebisim, we conclude
that the relatiorRR is a weak state-event bisimulation between these two TTM9rBving the lemma
weakequi which implies that the two initial states are relatedA®y we conclude these two TTMs are
weakly equivalent.

The current equivalence proof takes slightly less than 4&utes of CPU time on a dual 2.4 GHz
Xeon machine with 4 GB of RAM running RedHat Linux 9.0. Coasting the actual proof took con-
siderably longer and required effort to decompose the pirof several lemmas to deal with memory
limitations. This represents an initial brute force efftrtcomplete the proof. With the further develop-
ment of custom bisimulation proof strategies it should bssjiae to reduce the time and effort required
for similar proofs to a more reasonable level. The integraf the new Integrated Canonical Solver
(ICS) [6] decision procedures in PVS and the planned caipaltil export from SAL (the Symbolic
Analysis Library) model-checking environment into PVS [fipy provide a means for more efficient
analysis of large TTM verification. The TTMs could be first dghed in SAL and then exported to PVS
for equivalence verification where the ICS decision proceslican be used.

5.4. Model Checking the DRT

In [12, 15] the DRT verification problem was deemed to be shlve effect, as soon gs-og was veri-
fied to be weakly state-event equivalentsg@e. While the equivalence verification process proved to be
useful (an error in the original pseudocode was found andlfing12]), the problem with such equiv-
alence verification techniques is that while the implemimtahas been verified, its correct operation
still depends upon the abstract specification model cdyreetpturing the desired system properties.
An equivalent implementation is only as good as its spetifina How can one verify that the original
specification was correct? Is there any guarantee that thieadence used in the verification process
preserves the relevant system properties?

For the DRT we will attempt to state some desired system ptiegeas SESI temporal logic formu-
las. By verifying the temporal logic specification formulas the DRT specification employinfgPEC
using model-checking, the satisfaction preserving prig®of weak state-event equivalence will guar-
antee that the property holds in any equivalent implememtatTo validate the results, each temporal
logic formula that is model-checked on the specificatiorl aldo be model-checked on the equivalent
implementation. Verification of the detailed implemerdas provides some empirical confirmation of
the correctness of Theorem 4.2, and also illustrates thepuatational benefits of using reduced models
for verification purposes.

5.4.1. Refining the Reactor Model

Before model-checking our DRT design we complete our motlghe reactor system interacting with
our controller model $PECor PROQ by adding the subsystem in Fig. 9 to model the reactor’s-shut
down relay state. We assume thHaErLAY"’s activity variablexrpr 4y represents the current state of
the reactor’s relay. Any change to the value of the varighiéay by SPEC (or PROG) causes an
“instantaneous” change iINgpr 4y (i.e. before the next clockick, provided Relay’s value remains at
the new value) so that aftey, or p. occursX gpray = Relay.
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RELAY
Po

o %

clossd~—_ " open

RELAY Trarféition Table
© := xppray = closed N\ Relay = CLOSED
Po (Relay = OPEN[],0,0)
pe = (Relay =CLOSED]],0,0)

Figure 9. RELAY - TTM model of the shutdown relay.

Although RELAY provides the possibility of non-Zeno behavior, an infinitember of succes-
sive nontick transitions, this would require non-Zeno behavior of theuinvariable Relay. In both
SPEC and PROG, all TTM transitions have lower time bounds 1 and so each can only perform a
finite number of transitions between successive clacks. Thus the composite system is guaranteed
to have an infinite number aficks in all computations and heneentrol||plant = OO(n = tick)
for CONTROLe {SPECPROG. Therefore we may drop the(J0(n = tick) disjunction that oc-
curs in Theorem 4.2 since it is false for all computationsC&NTROLWPLANT where PLANT =
POWERPRESSURERELAY

5.4.2. Model-Checking Details

In the following model-checking results we will say that alréme temporal logic formuld’ has been
model-checked or verified for a given timed system when, ¢, fae have verified an untimed temporal
logic formulaF’ on the untimed system that incorporates timer variablesaddéional TTM transitions

to “observe” the timed property. The construction 8f and the TTM transitions to be added to the
system before it is translated into SAL input can be difficAlften the untimed model-check will fail to
capture precisely the desired real-time behavior but mayyveomething close enough to the original
real-time behavior to suit the designer’s purposes. Bel@agsume that the untimed model-checks are
“close enough” when stating that a timed property has besdfiagby the untimed model-check. In the
absence of a powerful model-checking tool for RTTL, the fometd” model-checks will have to suffice
to illustrate our model reduction theory.

The TTMs of the plant and controller systems were transl&i@t PVS into SAL as described in
section 3.3. All of the model checking results below are f@ & beta version of SAL 2.4 running on
a dual 2.4 GHz Xeon machine with 4 GB of RAM running Linux kdrmersion 2.6.6. The model-
checking results are shown in Table 1 whetesc.time is the time (in seconds) from invoking the
checker to termination of the process, including compilthg symbolic transition relation, whereas
verif.time only includes the time to verify the particular formula aftee symbolic representation of
transition system has been constructed.



M. Lawford, V. Pantelic, H. Zhang/ Towards Integrated Vesfion of Timed Transition Models 99

5.4.3. Verification of System Response

This subsection demonstrates that specification modeldandilas do not always embody the prop-
erties one initially thinks they capture. The first propentg would like to check for our specification
module, and hence the implementation module, is correpbrese to stimulae from the plant. The infor-
mal DRT system requirements may be restated in a form mogestige of a Temporal Logic translation
as:

Henceforth, if Power and Pressure simultaneously exceed their threshold values for at
least 2ticks and 3Qicks later Power exceeds its threshold for anothet:2ks, then within
30 to 32ticks open the reactor relay for at least20ks.

In the rephrased informal specification we have added “at [R&cks” requirements to ensure that the
DRT has time to react to the changes to its input.
We call our temporal logic translation of this formula thes8m Response formuléag,,:

O[d<2(Power > PTA Pressure > DSP) A Ogg0-oPower > PT

— Q30,32 0<20TRELAY = Open]

The firstl] operator with the square braces around the rest of the farsays that the property contained
within holds in the initial state of the computation and tater points (all suffixes) of the computation.
For a formulal’, O30 39 F' is shorthand notation fatrue U3 30 F which translates directly as “eventu-
ally after at least 30 but no more than 82ks, F' is true”. {30 F" andl o F' are used to denot@s 3o F'
and—Q,;)~F'. We can paraphrasé, F' as “From now until Zicks have occurred;” holds”.

The SAL model checker does not explicitly support the simplg-time temporal logic described in
section 2.3. Thus in order to verify the real-time aspectggf, we will add the timer variabld’. to the
system to time how lon®R ELAY = open. We assume that initiallf;, = 0. The operation functions
of p, andp. becomelcd(T, 20)] and[stop(T;)] respectively. Hered(T,20) in the operation function
of p, has the effect of initializind/. to a value of 20 whenevergrr 4y changes frontlosed to open.

T, will then count down with eackick until it reaches a value of 0 or is halted at its current valize v
the stop(T,.) operation. Thus ifl,, = 0 andzrrray = open, the reactor relay has been open for 20
ticks. The addition of thd’. operations toRE LAY will allow the untimed system to “observe” the
OcooxrEpray = open part of Fr.s. The rest of the formula will be dealt with in the untimed gystby

an additional “property observer” TTMRE'S (see Figure 10) that will run in parallel with the rest of the
system.

When Power and Pressure simultaneously exceed their threshold values,thg,; transition of
RES starts the timeff,, counting down from 32. I{Power or Pressure drop below their threshold
values before twaicks of the the clock have occurred (i.e. befaig = 30) then 1 occurs, stopping
timerT,,. If T;, counts down to 30 theldl .o Power > PT A Pressure > DSP istrue. Transition),;
occurs to “observe” this fact. We then wait to check the powken0 < T, < 2 (30 to 32ticks after
Power and Pressure first exceeded their threshold values). If during that tifwever < PT, then the
Os00<2xrELAY Power > PT conjunct in the antecedent 6. is violated saRE'S resets via)op2,
stoppingT,,. On the other hand, iIRES is in activity c andT,, = 0, then{sg0.o Power > PT is true
and previously_o Power > PT A Pressure > DSP was true since..,,; occurred to bring us te
in the first place. Thus we will approximate the antecedentf by 7\, = 0 A zrps = ¢. Combining
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start

b
a O cont c
30 > T,
stopl
stop2
RES Transition Table
© := zpps=aA Power =LOA Pressure=LO AT, =0
VYstart = (Power > PT A Pressure > DSP,[cd(Ty,32)],0,0)
Ystopt = (Power < PT'V Pressure < DSP, [stop(T)],0,0)
Ystop2 = (Power < PT N0 < T, <2,[stop(Ty)],0,0)
wcont = (Tw [ ]7 07 O)

Figure 10. RES —TTM Observer forFr., used in creating untimed formulg,, . .

the above observations we have the untimed fornitjla, that we will model-check with SAL:
O(Tw =0A2grEs = ¢) = O(xrELAY = open AT, = 0)]

Now that we have the formul@’, . without timed operators we translate our system with the--add

tional counter variables and property observer TTM into SAput and model-check, . in place

of property Fr.s. The results of attempting to verifyingy, . with appears in Table 1. We conclude

SPEQ|PLANT[£ FRres andPROG|PLANT (£ Fres. The computational results are summarized in Ta-

ble 1. The counterexample computation generated by SAlatewehy our system specification model,

implementation model, and indeed the original hardwardemgentation, all fail to satisfy this property.
While Timer 1 is running $PECis in activity b or PROG has a non-zero value of), the system

is effectively ignoring its inputs. Consider the possibiput timing diagram in Figure 11Power and

Pressure
_ |

T T+2 T+10 T+ 20 T+30 T+ 32

1
Power |
I
I

Figure 11. Input sequence generating a counter examgto

Pressure simultaneously exceeding their threshold values at tirmeill cause Timer 1 to start but
at timeT + 30, Power = LO so theRelay = open “signal” is not sent and the system goes back
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to monitoring its inputs. However, while Timer 1 was runnired 1" + 2 Power and Pressure also
exceeded their threshold values and¢3@ks later at timeT" + 32 Power is exceeding its threshold.
Because Timer 1 was already running/at- 2 in response to the conditions at tirfig it is unable to
respond to the conditions @t + 10. The system therefore has no way of knowing that it shoulakche
the value ofPower at timeT + 32 and consequently open the relay.

While it is possible to design a relatively simple softwangplementation that does satisB.s
through the use of registers as bit arrays, for illustrafiugposes we will assume that we are trying
to design a software system that provides similar inpupioubehavior to the original system. In this
casel'r., is an inappropriate temporal logic specification. Chandheyantecedent af’z., to require
that the DRT controller be in its initial state (i.e. neithigner is running) whenPower and Pressure
exceed their threshold values, we can aklgg, to obtain a formula capturing the behavior of the original
system. We call this new property the Initialized Systemg®ase formulaF;g.s:

O©conTroL AN O<a(Power > PTA Pressure > DSP) A O300<oPower > PT

— Q0,32/0<20XRELAY = Open]

Here©conTroL := Osprc Or OconTroL := ©proc depending on whether we are model-checking
control SPECor control PROG

The untimed formuld,,, used in place of . can be used as the untimed formilg,, , to model-
check in place off;g.s provided we modify the property observer TTRIES. We add theO ..,,ir00
conjunct to the enablement condition0f;,,: to obtain the new property observer TTMES. Thus
the new enablement condition f@t,.: IS ©conTror N Power > PT A Pressure > DSP.

The results of model-checkingj ., with its observer system are also contained in Table 1. They
show that both the specification and implementation safigfy, .

The above pair of model checking results have helped us to @aleeper understanding of the
behavior of our system and, by the agreement of results ®usie ofSPECand PROGas the control,
have illustrated Theorem 4.2. We will have more to say abdweirésults regarding the space (number of
states) and time requirements in section 5.4.5.

5.4.4. \Verification of System Recovery

In the original hardware implementation a signal to openréetor relay is only sent during the 2
seconds that Timer 2 is running. As an added safety featusarimicroprocessor desigBPECwas set
up to continue sending th&r.;,, = open signal until Power was no longer exceeding its threshold.
Since the DRT is but one of many reactor control systems tipgran the actual reactor, a reasonable
requirement might be that the closed-loop system “recowes’timely fashion after th&elay = OPEN
signal has been sent for at leastt2€ks (2 seconds) anflower returns to normal operating levels. An
informal statement of this property might be:

Henceforth ifz g4y = open for the next 2Qticks and after the 20thick Power < PT
for at least 2icks, then before the 22ndck Xrpray = closed.

We translate this statement into the System Recovery faigl, .

D[(D<20XRELAY = open A\ <>20D<2P0wer = LO) — (<><22XRELAY = closed)]
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As we did for F'r.., we can use the addition of the tim&} to RELAY to check the subproperty
O<2o0XrELAy = open. Again the remainder of the formula will be handled by a propebserver
TTM. Figure 12 contain®R EC, the TTM property observer faF ge..

,lvz)start

T
@

O
stopy, ~~——__ " rumy,
77Z)8t0p

REC Transition Table
© = xzppc=stop AT, =0AxrELAYy = closed N Power = LO
Ustart = (xrErAy = open AT, =0 A Power < PT,[cd(Ty,2)],0,0)
Ystop = (TrELAY = closed VV Power > PT,[stop(T})],0,0)

Figure 12. REC — TTM Observer fotF'r.. used in creating untimed propetgy,. ...

The transitiomy .-+ 0Ccurs once the reactor relay has been open fati@® (rgpray = open A
T, = 0) and Power is LO (Power < PT). It starts timerl,, counting down from an initial value of
2. If Power becomes HI or the reactor relay closes, transitigp,, takes place, immediately stopping
the timerT,, and returningR EC' to activity stop. Thus if REC'is in activity run andT,, = 0 then the
reactor relay has been open for 20ks, and subsequentli?ower has been LO for more than 2 clock
ticks. This is a violation off’z... Therefore we can reduce model-checking the timed propésty to
model-checking the untimed safety propefiy, :

O-(Tyw = 0Axrpc = run)

ThusFy,.. says that it is never the case thgt = 0 when TTMREC is in activity run.

While it seems plausible that our curreé8® ECandPROGwill force the closed loop system to satisfy
Fre., model-checking proves the contrary (see Table 1). Theteoexamples generated by SAL show
that they transitions ofSPECandPROGare at the root of the closed-loop systems’ failures to neeet t
recovery specification.

Consider the TTMSPECIn Figure 7 Activity e is where the value oPower is reevaluated after
Relay = OPEN has been true for the required 206ks in activity d. If Power > PT thenSPEC
returns to activitya via transition, leaving Relay = OPEN. The system can now only “recover” by
returning to activitye when shortly afterPower returns to an acceptable level and then executipg a
transition that set®elay = CLOSED.

Removal of they transition will ensure thab'PEC remains at activitye until Power < PT. If
Power is less thanPT while SPEC' is in e, then before two clockicks ps occurs, settingRelay =
CLOSED, and thereby ensuring satisfactionfef... With the removal ofy, the only way thatSPEC
can enter when Relay = OPEN is viap,. We will also delete they from PROG. Call the revised
systems formed by the elimination of theirtransitionsS P EC,. and PROG,., respectively. While the
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new systems are smaller and perhaps agree more closelyhgittesigner’s intuition of how the system
should behave, changing the systems brings into quest@nedbuivalence and the satisfaction of the
Initialized Response formul&;z.s, While creating the possibility that the closed-loop sgsi®ill now
satisfy Firec.

From Table 1 we see th&PEG||PLANT = Fgr.. andPROG ||PLANT |= Fge.. Further model-
checks also confirm th&PEG ||PLANT = Fjr.s andPROG ||PLANT|= Frges. This mutual satisfac-
tion of Fr.. and Frr.s by SPECandPROGwas not merely accidental. It was forced by Theorem 4.2
becauseSPEG ~,. PROG. Given the simple structure of the systems and the one-¢oeorrespon-
dence between transitions iNSPECandPROG the PVS proof oSPEC~,., PROGcan be modified to
provide a proof ofSPEG ~,. PROG, though this has not yet been attempted in PVS.

5.4.5. Model-Checking Concurrent Controllers

So far we have typically seen a factor of 1.5-2 times improsenin both the total model-checking ex-
ecution time and states and a 2-3 times improvement in vatibic time, by using the abstraSPEC
model instead of the fuPROGmMmodel. If this were always the case it would be hard to jushfy addi-
tional complexity of the equivalence verification in PVS be tpossibility of using a®(n?) algorithm

for weak state-event equivalence model reduction comipataiMore significant gains from our model
reduction technique can be made when there are multipleattams running in parallel. Each controller
module is identical. Therefore, because of the compositioonsistency of weak state-event equivalence
for TTM modules, the model reduction computation or prooéechenly be performed once for a single
controller module. The reduction can be used for each chetnmodule added to the system providing
a multiplicative effect in the reduction of the state sizéhwit any additional computational or manual
effort. To illustrate the preceding concept, this sectigterds the basic DRT closed-loop system to the
case when we have a redundant controller.

Two copies of our revised DRT controllers are run in paraliéh the plant. The enablement condi-
tions of the plant'sRE LAY transitions are changed to accommodate the additionafattems and the
plant module’s interface is modified accordingly. We attétopverify F;r.s and Fr.. for compositions
of the reduced and unreduced revised DRT models. The rdsgis to demonstrate that the real ben-
efits of compositional model reduction are realized whentiplel reduced models are composed. The
TTMs SPEC, and PROG, can have their transitions and internal and output vargablédscripted by
integersi = 1,2 to avoid transition label and variable name conflicts. leifécing the plant with the
two controllers we assume that the plant will only changedtiage of the reactor relayrpr 4y when
both controllers are in agreement. To accomplish this weitpdde RELAY TTM of Figure 9. The
results of model-checking are shown in Table 1.

We see that for the systemantrol; ||controls||PLANT, the verification of propertyF;g.s for the
reducedcontrol; := SPEG, case required roughly an order of magnitude less time ancesjpeobtain
the same result as model-checking the detailed implementaintrol; := PROG, case.

The results of the model-check for the somewhat simplergngd z.. show a definite improvement
in the time and space required to decide the property usieagetiuced models. The answer is some-
what unexpected. While operating in the single control mment bothlSPEG andPROG. result in
closed loop systems that satisf.. but when run concurrently with another control, the closmapb
system fails to satisfy'r... The counterexamples generated by SAL show that contsotlan get out
of synchronization from theie states. IfPower < PT while Pressure > DSP then the following
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state-event sequence can occuBRPEG, ||[SPEG, ||[PLANT:

(LO, HI, e, €)™ (LO, HI, e, ) (LO, HI, a, )3 (HI, HI, 0, )" ..

The 4-tuples represent the value of the varialeswer, Pressure, xspgc,, , tspec,,). We see that
oncePower = LO for one tick, moduleéSPEG, reacts, but befor8PEG, can reactws occurs setting
Power = HI and disablingps,. The two systems are now out of synchronization and the tetua
deteriorates from there to a point where the reactor relagempened for more than 2@:ks will in
some cases hot close everPibwer < PT for up to 19ticks! At first one might think the failure of the
2 controller system to satisfifr.. is the result of the lower time bounds of 1 on the reactor items
wr, ws, pr andps but putting reactor outputs through a low pass filter to imseethe lower bounds up to
at least 19 would still fail to eliminate all possible coueeamples.

H Formula ‘ control ‘ result ‘ exec.time | verif.time states H
F res - System Response SPEC fail 508 308 75759
PROG fall 915 530 141147
SPEG fall 244 139 50490
PROG. fall 415 215 93490
F e - System Recovery SPEC fail 55 3 931
PROG fall 100 10 1656
SPEG pass 44 2 920
PROG. pass 80 6 1632
SPEG||SPEG, | fail 320 56 53846
PROG,||PROG, | fail 652 58 | 105076
FRes - Initialized System SPEC pass 100 13 3167
Response PROG pass 300 24 6102
SPEC pass 77 4 1095
PROG. pass 150 43 3748
SPEG,||SPEG, | pass 347 67 58927
PROG,||PROG, | pass 3117 2039 | 1088245

Table 1. Summary of SAL model-checking results of contRILANT

For all of the results in the above table, properties cheakerk specified in LTL logic and model-
checked using SAL's symbolic model-checker.
5.4.6. Model-checking with UPPAAL

UPPAAL is a toolbox for verification of real-time systems.sBms are modeled as networks of timed
automata extended with bounded integer variables, stetttdata types, and channel synchronization
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[5]. In contrast to TTMs discrete model of time, UPPAAL usesaatinuous time model. The query
language of UPPAAL is a subset of CTL (Computation Tree LpditPPAAL model checker employs
‘on-the-fly’ search technique and automatically generetemterexamples, that can be imported into the
simulator with graphical visualization [11].

We translated the DRT's TTMs into the UPPAAL timed automatd model-checked the response
and recovery properties. As one might have expected, tHdinea model-checking tool, UPPAAL
proved to be much more efficient than our direct implemeatatf TTMs in the general purpose SAL
model-checker. All the properties were checked in less thseconds (results are in the Table 2), except
for the Fres property, for which the verification took 100 seconds$&EG, ||[SPEG-, and 260 seconds
for PROG, ||PROG, system. The current version of UPPAAL does not offer thenmiation on the size
of the state space generated during verification so thisnmdton is missing from the table.

However, translation of the TTMs into the timed automata BRAAL turned out to be much more
time consuming compared to modeling in SAL. The similar axrfor PVS and SAL input files made
the task of translating the instantiated PVS templateshi®iTiT Ms into SAL input files straightforward.

H Formula control ‘ result ‘ exec.time H
F res - System Response SPEC fail 0.2
PROG fail 1
SPEG fail 0.3
PROG fail 0.3
F e - System Recovery SPEC fail 0.15
PROG fail 0.4
SPEG pass 0.5
PROG. pass 1
SPEG,||SPEG, | fail 2.3
PROG,||PROG, | fail 0.1
F1Res - Initialized System SPEC pass 2.5
Response PROG pass 6
SPEG pass 1.5
PROG. pass 4
SPEG,||SPEG: pass 100
PROG,||PROG, pass 260

Table 2. Summary of UPPAAL model-checking results of coirb ANT
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6. Conclusion

The paper gives the definitions of strong and weak stateteaurivalences for SELTSs and TTMs in
PVS. It also provides the beginnings of a unified modelingrenment for SELTSs and TTMs in PVS
and SAL which allows the user to specify and verify TTMs moasily. Further, it illustrates the use of
the TTM modeling environment and describes how the TTM andvatence theories have been used to
formalize and verify the correctness of an industrial tiale controller.

The model-checking results applied to the same illustiagecbrrectness of Theorem 4.2. Weakly
state-event equivalent systems did satisfy the same fasmuh all their computations in which time
advances. The benefits of compositionally consistent weadehreduction have been partially demon-
strated by the multiple controller model-checking results

The superior counter example generation features of the I88del-checker were particularly use-
ful in debugging the system. The counter examples from thedfanodel-checks of the DRT system
illuminated system behavior that otherwise may not haven lmemsidered in the system design. The
model-checking in turn benefited from the compositionatpsistent equivalence verification technique
as it provided a means of compositionally consistent moel@liction. In the case of the DRT design,
the combination of equivalence verification and model-&hegwere mutually beneficial, leading to a
better design than would have been achieved by the applicafieither method in isolation.

6.1. Limitations and Future Research

Currently in our modeling environment, composition of TTMsist be done manually by the user before
entry into the TTM template. By formalizing TTM compositiam PVS and SAL we should be able to
use these tools to compose the TTMs and prove propertiesgbasite TTMs.

The equivalence proof for the DRT was done interactivelyretjuired significant user interaction.
In the future, we plan on developing prover strategies tgdlr automate the proof procedure. Closer
integration with PVS’s new decision procedures and alterafgebraic formulations of the equivalence
should reduce the effort required to produce equivalenocefpr We should note that the theories are
designed so that alternative equivalence relations carabiéyeapplied. Further, the theorem proving
capabilities of PVS can allow us to verify infinite state gyss and the equivalence of whole classes
of systems (e.g., for parameterized time bounds or everatiperfunctions). We believe that tighter
integration of the theorem prover and model checker may dffebest solution. Plans for a SAL to PVS
export capability outlined in [7] hold out significant hopethis regard.

The significantly faster performance of UPPAAL on a subseheftemporal logic verification in-
dicates that integration of the theorem proving capaégitbf PVS with a specialized real-time model-
checker would allow the verification of significantly largemoblems, at a cost of a more difficult trans-
lation between the prover and the model-checker.
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A. Instantiated ttm decls.pvs for M in Fig. 1

ttm_decls: THEORY

BEGIN

ttm_lib: LIBRARY = "../ttm_lib"
IMPORTING time_thy, actions

activity: TYPE = {a,b,c,d,e}

internal_state: TYPE = [# u:int, v:int #] % * User x

ac: VAR nt_action

W: VAR internal_state

lower_bound(ac) :time = CASES ac OF
alpha: zero, % * User *
beta: two, % * User *
gamma: two % * User *

ENDCASES

upper_bound(ac) :time = CASES ac OF
alpha: one, % * User *
beta: infinity, % * User *
gamma: two % * User *
ENDCASES
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enabled_state (ac, w):bool = CASES ac OF
alpha: (w‘u>=0),

beta: True,
gamma: (w‘v>=0)
ENDCASES;

graph (ac, sa:activity):bool = CASES ac OF
alpha: (sa = a),
beta: (sa = b),
gamma: (sa=a or sa=b)
ENDCASES

IMPORTING ttm[activity,internal_state, nt_action,
lower_bound, upper_bound,enabled_state, graph]
s: VAR states

enabled (ac, s):bool =
IF (not (tick?(ac))) THEN enabled_general(ac,s) & enabled_time(ac,s)
ELSE enabled_tick(s) ENDIF

trans (ac, s):states = IF tick?(ac) THEN s WITH [action_time:= update_clocks(s)]
ELSE s_tmp WITH [action_time:=reset_clocks(ac,s_tmp)]
WHERE s_tmp = CASES ac OF
alpha: s WITH [ activity:=b, basic:=s‘basic WITH[u:=s‘basic‘u+s‘basic‘v]],
beta: s WITH [activity:=d, basic:=s‘basic WITH [u:=s‘basic‘u+l, v:=s‘basic‘v-1]],
gamma: s WITH [activity:=IF (s‘activity=a) THEN c
ELSIF (s‘activity=b) THEN e ELSE s‘activity ENDIF]

ENDCASES
ENDIF

start (s):bool = (s=(# activity:=a,basic:= (# u:=0, v:=1 #),
action_time:=(LAMBDA (ac:nt_action): zero) #) )
IMPORTING ttm_lib@machine[states,action,enabled,trans,start]
END ttm_decls

* %

*

* ok X %

User
User
User

User
User
User

User
User
User
User

User
User

B. SAL translation of ttm_decls for M in Fig. 1

ttm_decls: CONTEXT =
BEGIN
activity: TYPE = {a, b, ¢, d, e};
uvtype: TYPE = [0..2];
action: TYPE = DATATYPE
tick,
alpha,
beta,
gamma
END;
internal_state: TYPE = [# u: uvtype, v: uvtype #];
nt_action: TYPE = {ac: action | ac /= tick};
t1l: CONTEXT = time_thy;
cs: CONTEXT = states{activity, nt_action, internal_state, time_thy!time;};
lower_bound (ac:nt_action): tl!time =
IF ac = alpha THEN t1!zero
ELSIF ac = beta THEN tl!two
ELSIF ac = gamma THEN t1!two
ELSE t1!zero
ENDIF;

upper_bound (ac:nt_action): tl!time =
IF ac = alpha THEN til!two
ELSIF ac = beta THEN t1!infinity
ELSIF ac = gamma THEN t1!two
ELSE t1!zero
ENDIF;

B

preconditions

enabled_state (si:cs!statesl): bool =
IF si.nta = alpha THEN si.is.u >= 0
ELSIF si.nta = beta THEN TRUE
ELSIF si.nta = gamma THEN si.is.v >= 0
ELSE FALSE
ENDIF;

graph(si:cs!states2): bool =
IF si.nta = alpha THEN si.x = a
ELSIF si.nta = beta THEN si.x = b
ELSIF si.nta = gamma THEN si.x = a OR
si.x = b
ELSE FALSE

* ¥ ¥

* * *

* kX %

* ¥
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ENDIF;

t: CONTEXT = ttm{activity, internal_state, nt_action; lower_bound,
upper_bound, enabled_state, graph};
enabled(ac:action,s:cs!states): bool =
IF(not (tick?(ac))) THEN t!enabled_general(ac,s)
AND t'!enabled_time(ac,s)
ELSE t!enabled_tick(s)
ENDIF;
examplettm: MODULE =
BEGIN
GLOBAL s: cs!states
INITIALIZATION
s = (# activ := a,
basic:= (# u :=0, v :=1#),
action_time:=(LAMBDA (a:nt_action): tl!zero)#)

TRANSITION
[
enabled(tick, s) --> s’ = s WITH .action_time := t!update_clocks(s)

enabled (alpha, s) --> s’ = ((s WITH .activ := b) WITH

.basic.u := s.basic.u + s.basic.v) WITH
.action_time:= t!reset_clocks(alpha,
(s WITH .activ := b) WITH .basic.u := s.basic.u + s.basic.v)
0
enabled(beta, s) --> s’ = (((s WITH .activ := d)
WITH .basic.u := s.basic.u + 1)

WITH .basic.v := s.basic.v - 1)
WITH .action_time:= t!reset_clocks(beta,
((s WITH .activ := d) WITH .basic.u := s.basic.u + 1)
WITH .basic.v := s.basic.v - 1)
0
enabled(gamma, s) --> s’ = IF s.activ = a THEN
(s WITH .activ := c) WITH .action_time:= t!reset_clocks(gamma,
s WITH .activ := c)
ELSE
(s WITH .activ := e) WITH .action_time:= t!reset_clocks(gamma,
s WITH .activ := e)
ENDIF

END;
END



