
Lessons Learned from a Successful
Implementation of Formal Methods

in an Industrial Project

Alan Wassyng� and Mark Lawford��

Dept. of Computing and Software, Faculty of Engineering, McMaster University,
Hamilton, Ontario, Canada L8S 4L7

Abstract. This paper describes the lessons we learned over a thirteen
year period while helping to develop the shutdown systems for the nu-
clear generating station at Darlington, Ontario, Canada. We begin with
a brief description of the project and then show how we modified pro-
cesses and notations developed in the academic community so that they
are acceptable for use in industry. We highlight some of the topics that
proved to be particularly challenging and that would benefit from more
in-depth study without the pressure of project deadlines.

Keywords: Industrial application, specification, verification, inspection,
safety critical software, experience paper.

1 Introduction

Among the reasons researchers have cited for the slow adoption of formal meth-
ods by industry are insufficient tool support, cumbersome notation, and a lack
of “real world” examples (see e.g. [1]). Referring to the work on the flight soft-
ware for the U.S. Navy’s A-7 aircraft, one of the first well known applications
of semi-formal methods to safety critical software development [2] and related
works (e.g. [3]), Parnas writes: “Although that project is still alive (now known
as SCR) more than two decades later, I still see a strong lack of good examples.
Other such projects would be a worthwhile investment.” [4]

This paper describes an application of formal methods in the development
of safety critical software in the nuclear industry over a thirteen year period.
The work makes use of tabular specifications, building upon the ideas of [2],
but whereas that earlier work dealt solely with the formal specification of re-
quirements, this paper describes an attempt to apply formal methods “all the
way down” from requirements, through design, implementation and verification.
The methods have been refined over use on several projects involving the spec-
ification, implementation and verification of hundreds of functions. We discuss
methods of addressing the applicability of formal methods in a production set-
ting, provide examples of how formal methods were used, and very briefly discuss
the work that remains to be done to improve the utility of formal methods.
� Consultant to Ontario Hydro/Ontario Power Generation Inc., May 1989–June 2002

�� Consultant to Ontario Hydro/Ontario Power Generation Inc., Feb 1997–Dec 1998

K. Araki, S. Gnesi, and D. Mandrioli (Eds.): FME 2003, LNCS 2805, pp. 133–153, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

134 Alan Wassyng and Mark Lawford

In the remainder of the paper, Section 2 describes the application of the for-
mal methods to the Darlington Nuclear Generating Station Shutdown Systems
software. Section 3 details the lessons learned over the course of applying and
refining the formal methods. Open questions for future research are discussed in
Section 4. Related work is discussed in more detail in Section 5, and Section 6
draws some final conclusions.

2 The Project

2.1 Application Setting

The software application described in this paper relates to the computerised
shutdown system for a nuclear powered generating station. In the Canadian Nu-
clear Industry there is a mandatory split between plant operation and safety
systems. The shutdown application is implemented on redundant hardware and
consists of two independent systems, Shutdown System One (SDS1) and Shut-
down System Two (SDS2). Each of these systems, SDS1 and SDS2, consists of
three “channels”, each channel involving a Trip Computer and a Display/Test
Computer. The Trip Computers are connected to the plant sensors and contain
the software that makes the decisions as to whether the plant should be shut
down or not, and actually invoke the shutdown mechanism. This arrangement
enables the Trip Computers to be concerned with safety issues alone. This pa-
per is specifically about the development of software for the Trip Computers.
Following a general introduction to SDS1 and SDS2 Trip Computers, we will
restrict our attention to SDS1 software.

For comparison with other projects, the code produced for SDS1 consisted of
approximately 60 modules, containing a total of 280 access programs. There were
about 40,000 lines of code (33,000 FORTRAN and 7,000 Assembler) including
comments. SDS1 has 84 system inputs (monitored variables) and 27 system
outputs (controlled variables).

2.2 A (Very) Brief History

The original version of the software was developed in the late 1980s by Ontario
Hydro. The regulators were not sure how to judge whether the software would
perform correctly and reliably, and would remain correct and reliable under
maintenance. David Parnas, as a consultant to the regulator, suggested that a
requirements/design document be constructed without reference to the existing
code. After validating that document, a verification process was conducted. The
entire process was documented in [5]. The verification results were presented in
a guided walkthrough with the regulators. At the conclusion of the walkthrough,
the regulators concluded that the software was safe for use, but that it should
be redesigned to enhance its maintainability.

A Successful Implementation of Formal Methods in an Industrial Project 135

2.3 Preparing a Strategy for the Redesign

Following the successful but painful completion of the verification and walk-
through of the Darlington shutdown systems in 1990, a series of studies were
conducted by Ontario Hydro (now Ontario Power Generation Inc., - OPG). Two
major conclusions were: i) The software would be redesigned using Parnas’ infor-
mation hiding principle [6] as the principal design heuristic. ii) As far as possible,
we would include verification activities in the “forward going process”. Before
embarking on the Darlington Shutdown Systems Redesign, OPG set about defin-
ing a working standard for safety critical software, as well as procedures for the
major steps in the software lifecycle. The Standard for Software Engineering of
Safety Critical Software [7] defines the lifecycle stages, attributes of related doc-
uments, team responsibilities and team independence requirements. Procedures
describing how to perform and document the Software Requirements Specifi-
cation (SRS), the Software Design Description (SDD) [8], and the Systematic
Design Verification (SDV) [9] were developed at that time. The procedures were
tried on actual projects and have been continually refined as we have gained
experience in their application.

SDS1 and SDS2 are developed independent of each other as much as is pru-
dent. The two systems employ different shutdown technologies and run on dif-
ferent kinds of computers. This helps prevent common failure modes in the two
systems. The system-level requirements in both SDS1 and SDS2 are known as the
“Design Input Documentation” (DID), consisting of the Trip Computer Design
Requirements (TCDR) [10] and the Trip Computer Design Description (TCDD)
[11]. In SDS1, the TCDR and TCDD are described mathematically, and the SRS
is contained within the TCDD. The SDS1 lifecycle phases and documents are
shown in Fig. 1.

Fig. 1. SDS1 lifecycle phases and documents.

136 Alan Wassyng and Mark Lawford

2.4 System-Level Requirements

The TCDR contains the externally visible requirements for the Trip Computer,
while the TCDD augments those requirements by including requirements that
are specifically computer related, and by providing detailed descriptions of all
fail-safe requirements.

The Trip Computer Design Requirements (TCDR). The model chosen
for the TCDR was a Mills-type black-box [12]. The system, which in this case
is a Trip Computer, is represented by a “black box”, which relates responses
generated by the system, to stimuli received by the system. The relationship is
described by a mathematical function. The functional descriptions are specified
in Parnas-style “function tables” [13]. If S is the set of stimuli entering the black-
box, R is the set of responses exiting the black-box, and Sh is the set of stimulus
history, then

R = f(S, Sh) (1)

describes the behaviour of the black-box. This model was chosen for the TCDR
since it’s level of abstraction is close to the way in which domain experts under-
stand relevant system behaviour.

In all our documents, stimuli are referred to as monitored variables, and
responses are controlled variables. We prefix identifiers by a suitable character
followed by so as to help identify the role of the identifier, e.g. m name is
a monitored variable, c name is a controlled variable, f name is an internal
function (produced as a result of decomposing the requirements), k name is a
numerical constant, and e name is an enumerated token. In our model, time is
an implicit stimulus and every monitored and controlled variable can be time-
stamped. We use the notation m name to represent the current value of the
monitored variable m name, and m name−1 to represent the previous value of
m name.

The functional description represented by (1) provides an idealised view of
the required behaviour of the system. The TCDR recognises that this idealised
behaviour can never be achieved, and so specifies a variety of tolerances within
which the final implementation must operate. Apart from accuracy tolerances,
the TCDR specifies timing tolerances in the form of a Timing Resolution on all
monitored variables, and Performance Timing Requirements on each monitored-
controlled variable pair.

It should be clear that in any real system it will not be possible to describe
the behaviour represented by (1) in a single function. Instead, the requirements
include a number of inter-acting functions, most of which are represented by
function tables. It quickly became apparent that to have function tables widely
accepted in industrial applications we needed to take into account the preferences
of non-academic practitioners. The function table we used almost exclusively in
SDS1 is shown below with an equivalent construct:

A Successful Implementation of Formal Methods in an Industrial Project 137

Result

Condition name
Condition 1 res 1

...
...

Condition n res n

�� ��������� � ���� ���� � 	�
 �

����� � � �

����� ��������� � ���� ���� � 	�
 �

where we insist that the following two properties hold:

Disjointness: Condition i ∧ Condition j ⇔ FALSE, ∀i, j = 1..n, i �= j, and

Completeness: Condition 1 ∨ . . . ∨ Condition n ⇔ TRUE.

We also found that we can use the table structure to emphasize the logical
relationships involved. For example, we extended the table structure to include
tables of the form:

Result

Condition name

Condition 1 Sub Condition 1 res 1.1
Sub Condition 2 res 1.2

Condition 2 res 2
...

...
Condition n res n

in which adjoining cells are interpreted as being “anded”.
One of the crucial challenges is to define heuristics for partitioning the sys-

tem, and for finding notations that allow us to work with the partitioned system
without losing intellectual control of the complete system behaviour as repre-
sented by the composition of (potentially) many function tables. One aid in this
regard is the use of natural language expressions in the function tables. These
are natural language phrases that have clear meaning to domain experts. Their
use sometimes dramatically simplifies a function table. In order to retain com-
plete mathematical rigour, all such natural language expressions are themselves
defined in function tables in a separate section of the TCDR.

The following table illustrates an actual functional description in the TCDR.
It evaluates the current value of the Neutron Overpower (NOP) setpoint, and
clearly relies heavily on a number of natural language expressions.

138 Alan Wassyng and Mark Lawford

Result

Condition f NOPsp

NOP Low Power setpoint is requested k NOPLPsp
NOP Low Power setpoint is cancelled & k NOPAbn2sp
NOP Abnormal 2 setpoint is requested
NOP Low Power setpoint is cancelled &
NOP Abnormal 2 setpoint is cancelled & k NOPAbn1sp
NOP Abnormal 1 setpoint is requested
NOP Low Power setpoint is cancelled &
NOP Abnormal 2 setpoint is cancelled & k NOPnormsp
NOP Abnormal 1 setpoint is cancelled

As an example “NOP Abnormal 1 setpoint is requested or cancelled” is defined
by:

Result

Condition

NOP Abnormal 1 setpoint
is requested or cancelled

(m NOPspAbn1ON = e NotPressed) &
(m NOPspAbn1OFF = e NotPressed)

No Change

(m NOPspAbn1ON = e NotPressed) &
(m NOPspAbn1OFF = e Pressed) cancelled

(m NOPspAbn1ON = e Pressed) &
(m NOPspAbn1OFF = e NotPressed)

requested

(m NOPspAbn1ON = e Pressed) &
(m NOPspAbn1OFF = e Pressed)

requested

Thus we can see that the natural language expressions effectively partition the
system so that history-based requirements can be stated in much smaller tables.
(Try, for example, to describe f NOPsp without using the natural language ex-
pressions.) Actually, natural language expressions were developed for a different
reason. They were a decisive factor in getting domain experts to buy-in to the
idea of using tabular representations of requirements, since they enable those
experts to read and understand the tables without undue effort, while still re-
taining the rigour and precision required by a formal approach. The positive
effect on the decomposition of the requirements was a pleasant by-product.

The natural language expressions were carefully constructed so as to read
as though they are simply text statements in a natural language, but are still
reasonably easy to parse in associated software tools. Rather than “=”, we use
words like “is” and “are” to assign appropriate values. Clearly, in natural lan-
guage expressions, the enumerated tokens representing the result values are not
prefixed by “e ”. The set of possible enumerated tokens is included in the natural
language expression, elements being separated by “or”.

A Successful Implementation of Formal Methods in an Industrial Project 139

The Trip Computer Design Description (TCDD). The model used in the
TCDD is a Finite State Machine (FSM) with an arbitrarily small clock-tick. So,
if C(t) is the vector of values of all controlled variables at time t, M(t) is the
vector of values of all monitored variables at time t, S(t) is the vector of values
of all state variables at time t, and the time of initialisation is t0, we have:

C(tk) = REQ(M(tk), S(tk))
S(tk+1) = NST(M(tk), S(tk)), for k = 0, 1, 2, 3, . . .

(2)

and the time between tk and tk+1 is an arbitrarily small time, δt. Typically,
state data in the TCDD has a very simple form, namely the previous values of
functions and variables. We indicate elements of state data by f name−1, which
is the value of f name at the previous clock-tick, and similarly, m name−1 and
c name−1. We actually allow x name−k, x=c,f,m and k=1,2,3,. . . , but seldom
use k > 1.

The description of required behaviour in the TCDD builds on the behaviour
specified in the TCDR by converting all black-box representations into the FSM
model, and by adding design specific behaviour that now recognises that the
system will be implemented on a digital computer. This includes the introduction
of fail-safe protection and self-checks.

As an example of how behaviour in the TCDD augments the behaviour in
the TCDR, consider the case of momentary pushbuttons. In the TCDR, as we
have already seen, the behaviour depends solely on the ON/OFF status of the
pushbuttons. In the TCDD, that same behaviour takes into account that the
pushbuttons have to be debounced. So the natural language expression “NOP
Abnormal 1 setpoint is requested or cancelled” would be defined by:

Result

Condition

NOP Abnormal 1 setpoint
is requested or cancelled

f NOPspAbn1ON = e pbStuck OR
f NOPspAbn1OFF = e pbStuck requested

f NOPspAbn1ON = e pbNotDebounced &
f NOPspAbn1OFF = e pbNotDebounced No Change

f NOPspAbn1ON = e pbNotDebounced &
f NOPspAbn1OFF = e pbDebounced cancelled

f NOPspAbn1ON = e pbDebounced &
f NOPspAbn1OFF = e pbNotDebounced requested

f NOPspAbn1ON = e pbDebounced &
f NOPspAbn1OFF = e pbDebounced requested

and f NOPspAbn1ON (for example) defined by

140 Alan Wassyng and Mark Lawford

Results
Condition f NOPspAbn1ON

m NOPspAbn1ON = e NotPressed e pbNotDebounced

[m NOPspAbn1ON = e Pressed] & NOT
[(m NOPspAbn1ON = e Pressed) Held for k Debounce]

e pbNotDebounced

[(m NOPspAbn1ON = e Pressed) Held for k Debounce]
& NOT [(m NOPspAbn1ON = e Pressed) Held for

k pbStuck]

e pbDebounced

(m NOPspAbn1ON = e Pressed) Held for k pbStuck e pbStuck

The above table illustrates the use of a generic function defined for use through-
out the TCDD, namely “(condition) Held for duration”, which evaluates to True
when “condition” has been True for at least “duration” time. Such functions are
defined precisely in the TCDD itself.

Not only does the TCDD define/redefine the behaviour specified in the
TCDR, it also describes how the software will interface with the hardware. To
achieve this we use Parnas’ four-variable model [14]. This model relates the
variables in the requirements domain to the variables in the software domain.
Specifically, I and O represent the input and output variables in the software.
SOF is the function that describes the software’s behaviour as follows:

O = SOF(I∗) (3)
I = IN(M) (4)
C = OUT(O) (5)

where I∗ indicates the variables in I as well as the state variables ultimately de-
pendent on I. (We already saw in (2) that C = REQ(M∗), where M∗ indicates
the variables in M as well as the state variables.)

All the required information relating to (4) and (5) is included in the TCDD.
Another important element of the TCDD is the list of Anticipated Changes.

2.5 Software Design

The software design re-organises the way in which the behaviour in the TCDD
is partitioned. This is done to achieve specific goals, two of which are: i) The
software design should be robust under change; and ii) On the target platform,
all timing requirements will be met.

Like all other stages in the lifecycle, the SDD process and documentation are
described in detail in a Procedure. The quality of the design is tied closely to a
number of quality attributes defined in the Procedure. The Procedure uses these
attributes to drive the design process. It also describes what documentation is
required.

A Successful Implementation of Formal Methods in an Industrial Project 141

Information hiding principles form the basis of the design philosophy. The list
of anticipated changes in the TCDD is augmented by the software developers and
is used to create a Module Guide that defines a tree-structure of modules, each
module having a secret and responsibility. Leaf modules represent the eventual
code, and the entries for those also list the TCDD functions to be implemented
in that module.

The module cover page describes the responsibility of the module, and lists
all exported constants and types as well as the access programs for the module.
The role of each access program is described in natural language, and the black-
box behaviour of the program is defined by referencing the TCDD functions
implemented in the access program. (This will be explained in more detail when
we discuss “supplementary function tables” later in this section.)

The module internal declarations describes all items that are private to the
module, but not confined to a single program. The detailed design of each pro-
gram is documented using either function tables or pseudo-code (sometimes
both). Pseudo code is used when a sequence of operations is mandatory and
cannot easily be described in tabular format, or when specific language con-
structs have to be used, for example when specific assembler instructions have
to be used in transfer events. The function tables used in the software design are
very similar to those used in the TCDD, but are arranged vertically rather than
horizontally. Variables and constants in the SDD are restricted to 6 characters
because the software design had to be implemented in FORTRAN 66, the only
compiler available for the hardware platform.

As an example, we provide an extract from a typical module design. It con-
sists of the module cover page shown in Fig. 2, and the module’s internal dec-
larations, and the specification of one of its programs, shown in Fig. 3. It is
likely that just a portion of a TCDD function may be implemented in an ac-
cess program, or that a composition of TCDD functions may be implemented in
an access program. This poses a couple of important problems. i) We reference
TCDD functions to specify the black-box behaviour of an access program, and
so if the access program does not implement a single, complete TCDD function,
this black-box behaviour is difficult to specify; and ii) It is difficult to verify the
SDD behaviour against the TCDD behaviour when the data-flow topologies of
the two are different.

The way we overcome these difficulties is by use of “supplementary func-
tion tables”. Imagine a pseudo requirements specification in which the data-
flow topology exactly matches that in the SDD. If such a pseudo requirements
specification were to exist, then verifying the SDD against the TCDD could be
performed in two steps: i) Verify the SDD against the pseudo requirements spec-
ification; and ii) Verify the pseudo requirement specification against the TCDD
(we need to verify only those blocks that are different from the original TCDD).
The way we create the pseudo requirements specification is by piece-wise “re-
placing” some composition of TCDD functions by a new set of functions that
have the same behaviour as the TCDD functions, but the topology of the SDD.

142 Alan Wassyng and Mark Lawford

n.m MODULE Watchdog (1.10)
Determines the watchdog system output.

Name Value Type
Constants: (None)

Name Definition
Types: (None)

Access Programs:

EWDOG
Updates the state of the watchdog timer Digital Output.
References: c Watchdog, ‘Watchdog test active’.

IWDOG
Initializes all the Watchdog module internal states and sets the initial watchdog
output.
References: Initial Value, Initialization Requirements.

SWDOG
NCPARM: t_boolean - in
Signals to Watchdog module that a valid watchdog test request is received if NC-
PARM = $TRUE. Note that NCPARM is a “Conditional Output Call Argument”;
calling the program with NCPARM = $FALSE has no effects on the module.
References: ‘Watchdog test active’.

Fig. 2. Example module cover page

These replacement functions are represented by what we called “supplementary
function tables” (SFTs).

Thus, the SFTs are developed during the forward going process, by the soft-
ware designers themselves, but are not considered “proved”. They are then avail-
able to aid in the mathematical verification of the software design. Rather than
show a series of function tables that demonstrates the use of SFTs, we present
some simple data flow examples in Fig. 4 to illustrate these points.

The top left diagram in the figure shows an extract from the TCDD. If we
assume that the software design includes programs that implement the behaviour
starting with an input “a” and resulting in an output “e”, but partitions the
behaviour differently from the TCDD, we may have a situation as pictured in
the top right diagram of Fig 4.

If this is the design, the designers must have had good reasons for partitioning
the behaviour this way, and must also have good reason to believe it implements
the original requirements. For instance, they may have split some of the functions
in the TCDD, so that the requirements can be viewed as shown in the bottom
left diagram.

Finally, we regroup the functions so that they match the topology of the
design as shown in the bottom right portion of Fig. 4. We can now describe
f x, f y, f c′, f d′, f z and f e′ in tabular format, and these function tables “replace”
the original f c, f d and f e. The “replacement” tables are the SFTs, and they, as

t_boolean

A Successful Implementation of Formal Methods in an Industrial Project 143

n.m.1 MODULE Watchdog Internal Declaration

Name Value/Origin Type
Constants: KWDDLY 1000 t_integer

Name Definition/Origin
Types: t_boolean Global

t_integer Global
t_MsecTimerID Timer
t_PBId DigitalInput
t_PBStat DigitalInput
t_PosInt Global
t_TimerOp Timer
t_WDogStat DigitalOutput
Name Type

State Data: WDGST t_boolean
WDGTST t_boolean

n.m.1.1 ACCESS PROGRAM EWDOG

Name Ext value Type Origin
Inputs: l CalEn GPBKS($PBCAL) t PBStat DigitalInput

l TREQD GCMSEC($CWDG) t PosInt Timer
Name Ext value Type Origin

Updates: WDGST - t_boolean State
WDGTST - t_boolean State
Name Ext value Type Origin

Output: l WdgClk
SCMSEC($CWDG,
l WdgClk)

t TimerOp Timer

l WdgDO SDOWDG(l WdgDO) t WDogStat DigitalOutput

Range check assertion 1: (l CalEn = $DBNC) OR (l CalEn = $NDBNC)
Modes:
l InTest 0 < l TREQD < KWDDLY
l NoTest l TREQD = 0
l TstEnd l TREQD >= KWDDLY

VCT:EWDOG

WDGTST = $FALSE NOT(WDGTST = $FALSE)
WDGST= NOT(WDGST l CalEn = NOT(l CalEn = $NDBNC)
$FALSE = $FALSE) $NDBNC l NoTest l InTest l TstEnd

l WdgClk $CRSET $CRSET $CRSET $CSTRT $CNC $CRSET
l WdgDO $WDON $WDOFF $WDNC $WDNC $WDNC $WDNC
WDGST $TRUE $FALSE NC NC NC NC

WDGTST NC NC $FALSE NC NC $FALSE

Fig. 3. Example module internal declarations and program specification.

t_integer
t_boolean
t_integer
t_MsecTimerID
t_PBId
t_PBStat
t_PosInt
t_TimerOp
t_WDogStat
t_boolean
t_boolean
GPBKS($PBCAL)
GCMSEC($CWDG)
t_boolean
t_boolean
SCMSEC
SDOWDG

144 Alan Wassyng and Mark Lawford

Fig. 4. Example use of supplementary function tables.

well as relevant TCDD functions, are used on module cover pages as references
to the TCDD behaviour.

One final point regarding the SDD is that it is easy to “extend” the input
and output mappings so that instead of I, and O, the transfer events work with
Mp and Cp known as “pseudo M” and “pseudo C”, constructed to be as close
to M and C as possible. Then, instead of constructing SOF, the software design
simply has to implement REQ, as described in the TCDD. This situation is
shown graphically in Fig. 5. More details on this decomposition technique can
be found in [15].

REQp(M) = Abst−1
c (SOFreq(Abstm(M)) (6)

Abstm(M) = SOFin(IN(M)) (7)

C = OUT(SOFout(Abstc(C))) (8)

Fig. 5. Modified 4 variable model.

A Successful Implementation of Formal Methods in an Industrial Project 145

2.6 Software Design Verification (SDV)

There are two primary goals of the software design verification. i) Prove that
the behaviour described in the SDD matches the behaviour described in the
TCDD, within tolerance; and ii) Identify behaviour in the SDD that is outside
the behaviour specified in the TCDD, and show that the behaviour is justified
and that it cannot negatively affect TCDD specified behaviour. To accomplish
the first goal, we conduct a mathematical comparison of behaviour in the SDD
against the behaviour in the TCDD. This is by far the more time consuming of
the two activities, since the SDD adds very little behaviour not already defined
in the TCDD. To understand the verification process we need to start with the
overall proof obligation. Fig. 5 shows the input and output mappings replaced
by abstraction functions. Comparing Path 1 with Path 2 we see that our proof
obligation is given by (6). The abstraction functions have to be verified through
Equations (7) and (8).

We prove this in two steps. Firstly we prove the SDD complies with the
pseudo-TCDD. Since the data-flow topology in the SDD is the same as in the
pseudo-TCDD, we can show that verification can be performed block-by-block,
as long as each block has equivalent inputs and outputs in the pseudo-TCDD and
SDD. This piece-wise approach results in a feasible method. The second, smaller
proof, pseudo-TCDD versus TCDD is dealt with on a case-by-case basis.

2.7 Automated SDD Verification

A report on manually applying tabular methods to the block-by-block SDD
verification in [16], highlights the excessive effort required to perform the verifi-
cation by hand. As a result, software tools were developed to extract the relevant
behaviour specifications from the word processor documents that were used to
describe the TCDD and SDD, into a format suitable for input to SRI Interna-
tional’s PVS automated reasoning system [17]. In this way, a subset of all the
verification blocks was proved by an automated system. Additional details on
the reasons for choosing PVS, experience with the verification procedure, and
the tooled tabular methods employed on the SDS Redesign project can be found
in [18], [15].

2.8 Coding and Code Verification

One of the challenges we faced was to come up with a way of implementing
information hiding modules in FORTRAN 66. Using labeled common statements
we managed to define conceptual modules. The Coding Procedure defined quite
specific rules for converting function tables into FORTRAN code. One of the
decisions we made was that comments in the code usually just refer back to
items in the SDD. This reinforced the concept that the SDD is a live document,
and forced good traceability from code constructs to design constructs.

One of the really pleasant surprises we got, was how remarkably straight-
forward code verification is once the majority of the code is developed from

146 Alan Wassyng and Mark Lawford

function tables. We include comments in the code to indicate whether the code
segment is based on a function table or “algorithm”, i.e. pseudo-code. The basic
strategy in the code verification is to create a function table or algorithm from
the code, without reference to the SDD, and then to compare that function table
or algorithm with its counterpart in the SDD.

3 Primary Lessons Learned

3.1 Pure Technology Lessons

Mathematical System-Level Requirements. The use of mathematical re-
quirements at the TCDR and TCDD level in SDS1 was controversial. A full
investigation of the benefits and drawbacks still has to be performed. On the
plus side, some of us thought that the precision of the requirements prompted
discussion with the domain experts at a very early stage, and in most situations
the required behaviour was unambiguously interpreted by specifiers, software
designers and verifiers. However, there were some cases in which details of the
model had not been sufficiently understood or described, and just because the
requirements seemed precise it did not mean that they were unambiguous. They
turned out to be ambiguous because of differences in the interpretation of the
model. For example, the Timing Resolution on a monitored-controlled variable
pair effectively allows a tolerance on the frequency of evaluation of an internal
function (say f a) that depends on that monitored variable, and lies on the rel-
evant data-flow path. What about an internal function (say f b) that depends
on f a and previous values of f a, but not directly on the current value of the
specific monitored variable? In our project, one group decided that since no
specific Timing Resolution seemed to apply, infinite tolerance was applicable.
Another group argued that in the absence of a Timing Resolution, no tolerance
was applicable. Since this is impossible to achieve, it was argued that the Timing
Resolution for the relevant monitored-controlled variable pair applied to all in-
ternal functions on that data-flow path. This apparent ambiguity led to a design
that was significantly different from that expected by the verifiers. Each group
used the precision of the mathematical description to support its interpretation
of the requirement.

A significant practical advantage of a mathematical TCDD, was that a sep-
arate SRS was not required, thus eliminating a source of potential errors as well
as the review/verification step between an SRS and (a natural language) TCDD.

Coping with Accepted Discrepancies. It sometimes appears to be worth-
while to accept seemingly innocuous discrepancies between the SDD and TCDD
in so-called “non-critical” functions (a historical report, for instance), when fix-
ing them would strain resources or severely impact the schedule. However, al-
though the discrepancies can be identified as mathematical mismatches between
the two descriptions of behaviour, it can be difficult to identify all black-box vis-
ible effects of the discrepancy. Thus, domain experts may not be able to judge

A Successful Implementation of Formal Methods in an Industrial Project 147

the full impact of the discrepancy. The time spent on justifying these accepted
discrepancies, may be better spent in trying to “correct” them if at all possible.

The Effect of Older/Slower Hardware. The best scenario for the software
scheduler is typically a single, infinite loop. However, one immediate effect of
slower hardware is that specific functions may need to be scheduled more fre-
quently within that infinite loop in order to meet timing requirements. This
complicates the software scheduler. Since the systematic verification process is
driven by the software schedule, a more complicated scheduler has a negative
effect on the design verification. In general, difficulties related to meeting timing
requirements often force us to make compromises we would not have to consider
in other circumstances. This situation can stretch the design and verification
teams to the limits of their capabilities - and has the potential to raise ten-
sions between the two teams. Older hardware is sometimes not just slower than
newer hardware. It is quite often less reliable as it ages. Thus, to develop a fail-
safe solution may necessitate the inclusion of quite sophisticated self-checks that
otherwise would not be necessary.

3.2 Soft Technology Lessons

Process. The shutdown systems projects we were involved in were successful,
primarily due to two factors: i) The people working on the projects were highly
motivated to succeed and were technically competent; and ii) The processes
used were well researched, practical, and well documented. One of the major
achievements of the developers of the processes was that the procedures were
designed to work together. For example, the software design process was defined
to use the mathematically precise requirements to advantage, and to produce
mathematically precise specifications from which the code could be developed. In
addition, the design process took into account the mathematical verification that
would have to be performed, as well as design reviews and eventual unit testing.
It is important to note that the mathematical aspects introduced into these
processes were never an end unto themselves. They always served a practical
purpose that would enable the teams to produce a software product that was
demonstrably safe to use.

Technology/Research Transfer. The use of function tables throughout the
development process was arguably the greatest single benefit we experienced.
However, it was only through perseverance that we managed to get function
tables accepted to the extent they are now. The convergence to a simplified
notation allowed us to represent behaviour in a way that was readily understood
by all readers/developers of the major system documents. An example of an
original function table used in 1989 is shown in Fig. 6.

Special symbols were used to bracket identifiers to indicate the type of iden-
tifier, for example ##enumeration tokens##, #constants#, /inputs/, etc. In

148 Alan Wassyng and Mark Lawford

APPLY(OR, ((’|ai tbl.pmp[d]|
< 2745) OR ((2745

<= ′ |ai tbl.pmp[d]|<= 2795)
&

(′ |lotrip.sgf.i[d]|<>##u##))),
d=1..4) OR

((′ |ai tbl.pmp[5]|< ′ |vsps.sgf|)
OR ((′ |vsps.sgf|<=
′ |ai tbl.pmp[5]|<=
′ |vsps.sgf|+50) &

(′ |lotrip.sgf.i[5]|<>##u##)))

APPLY(&, ((′ |ai tbl.pmp[d]| >
2795) OR ((2745

<= ′ |ai tbl.pmp[d]| <= 2795) &
(′ |lotrip.sgf.i[d]|=##u##))),

d=1..4) &
((′ |ai tbl.pmp[5]|>′|vsps.sgf|+50)

OR ((′ |vsps.sgf|<=
′ |ai tbl.pmp[5]|<= ′ |vsps.sgf|+50)

& (′ |lotrip.sgf.i[5]|=##u##)))

|lotrip.sgf.n|′ 1..5 0

Fig. 6. Example of original tabular notation

addition, ′x was used to indicate the value of x immediately prior to the eval-
uation of the table (pre-value of x), and x′ indicated the post-value of x. Such
tables were used successfully in the verification project in 1989, but when we
tried to use these tables to present requirements behaviour, readers were quick
to tell us that they probably would not use them. Domain experts especially
found them close to unreadable.

So what did we do to function tables that made them suddenly acceptable
to professional software developers and engineers responsible for determining
system requirements?

One quite trivial change that worked wonders was - we simply turned the
tables sideways. It was suggested by someone new to function tables who said
something like “I would relate to the tables better if we read them left-to-right,
just as we do normal text”. We tried that and it worked. Not only did domain
experts prefer them written that way, but it turned out that it was easier to
format them on standard 81

2
′′ ×11′′ pages. At least this was true for the require-

ments documents, which tend to have single results, and seem to need more rows
(disjoint primitives) than columns (nested conditions).

Another change we made was to remove all the bracketing symbols as well as
the pre and post indicators. It turns out that in our simple tables it is quite obvi-
ous whether a variable is used as a pre-value or a post-value. The result/output
of a table is a post-value, and we allow only pre-values of variables in any cells of
the tables. Note that by pre- and post-values, we mean with respect to invoca-
tion of that particular table, not with respect to the clock-tick of the underlying
model. We are always explicit with respect to the clock-tick.

Rather than bracket identifiers with special symbols, we decided to prefix
identifiers with a character (occasionally two) followed by an underscore as out-
lined in Sec. 2.4. This arrangement is far easier to read, easier to remember,
and still retains the effect that alphabetic sorting of identifiers also sorts identi-
fiers into classification groups. After years of working with professional software
engineers on these projects, we feel qualified to say that this aspect of formal

A Successful Implementation of Formal Methods in an Industrial Project 149

methods, i.e. arriving at notation and presentation methods that industrial par-
ticipants will accept, is about as important as the technology in the formal
methods themselves. Without this effort, even the best of formal methods will
probably not be used in practice.

A side benefit of using function tables was that we could easily identify con-
ditions that lead to a safe-state. This is important in the software design, where
we want to specify the behaviour in such a way that it can be coded into struc-
tures that produce safe behaviour even in the case of hardware malfunctions. By
always having the safe-state in the right-most column, it was clear to designers
and coders alike.

As we indicated earlier, one of the guiding principles for the redesign of
the Darlington Shutdown Software, was Parnas’ “Information Hiding” [6]. As
usual, there is a world of difference between understanding and appreciating the
principles versus putting those principles to work and implementing them in a
software design process - it took us about two years through the first iteration.
An important difference between what we put into practice compared with the
original description was that most of the top level “secrets” that were to be
encapsulated in a module, came from requirements that were likely to change,
not from design decisions as described in [6]. It is important to note the enormous
effort that had to be expended in order to use the ideas that came from academia,
even though the ideas were well accepted (indeed, quite famous) within the
academic community, twenty years after they were first introduced. Even today,
it is not universally appreciated that information hiding is significantly more than
data abstraction. The principles of information hiding can be used to develop a
software design process that eventually results in the decomposition of the design
into data abstractions. The importance of this process is that the resulting data
abstractions are constructed in such a way that, if in the future we need to
change the design to incorporate a “likely change”, the changes will be confined
to a single module, or, at most, a very small number of modules. This is a
crucial selling point of the technology to senior management. Most people, quite
rightly, would be skeptical of any claim to be able to cope “easily” with all future
changes. What information hiding promises and delivers, is that future changes
that are considered likely and are used to drive the decomposition of the software
design, will be relatively easy to implement and verify.

Rationale. Most engineers already appreciate the importance of documenting
rationale for design decisions. Even before the start of the redesign of the Dar-
lington shutdown system software, the responsible group at Ontario Power Gen-
eration conducted a separate project to document the rationale for the existing
software. Both the TCDR and TCDD contain appendices that record changes
made from previous “in use” systems. In addition, rationale is documented for
each function and natural language expression, whenever possible. However, ra-
tionale for some decisions that were made fifteen to twenty years ago has been
lost. In at least one case, that lack of rationale led us to include a requirement
that was later shown to be problematic.

150 Alan Wassyng and Mark Lawford

Software Tools Limitations and Suggested Improvements. While the use
of standard word processors created documents that were easily readable by a
human, producing machine readable output from the documents was much more
difficult. While particular projects may standardize on a given word processor
(and version), maintenance and revision of software obviously becomes an issue
when projects are tied to a specific vendor and revision of a product.

The utility and adoption of mathematically sound tools has been hampered
by a lack of well defined (consistent) open standards and associated support
tools. Significant resources are sometimes required to develop tools that are not
directly related to a company’s core competencies.

One lesson we learned was that developing tools to cope with mundane, but
necessary and time-consuming tasks, can significantly reduce the effort required
to perform those tasks, and thus reduce the schedule time that has to be allocated
to those tasks. These tools may not present the same excitement and challenge
to their developers as more sophisticated tools might, but their importance to
the project can be even more substantial.

3.3 Political Lessons

People. Experienced project managers know that the success of their project
is tied directly to the ability, knowledge and attitude of the people working on
the project. Building reliable software applications of a non-trivial size requires
team members to communicate with each other and with other teams. Often
two teams are in an intentionally adversarial role - but both teams should be
clear that they share the responsibility for achieving a high quality software
application. “Scoring points” at the expense of an individual or team is counter-
productive to the project. Since formal methods are not yet commonplace in
industrial software projects, it is important that all project personnel buy-in
to the specific methodology being used. It is healthy to argue over different
approaches and processes, but compromises are often necessary, and continual
second-guessing of such decisions, after the decision has been finalised, is usually
destructive.

Don’t Compromise Normal Best Practice. Ontario Power Generation
wisely adopted a “defence-in-depth” policy for their safety critical software
projects. Over the years, software professionals and researchers have developed
heuristics for reducing defects at different stages of the software lifecycle. For
example, at the coding stage, there are reasonably well accepted coding guide-
lines that take into account the strengths and weaknesses of the language, that
help us to avoid situations that have been shown to be more error prone. It is
sometimes tempting to argue that since we are applying so much more rigour to
the entire lifecycle, we can relax these “best practice” heuristics. Our experience
is that it is a mistake to follow this path. It is a good idea to remind ourselves
periodically that mathematicians have been known to make mistakes.

A Successful Implementation of Formal Methods in an Industrial Project 151

4 Open Questions

Nothing is ever perfect. Software development is far from that ideal. Also, there
are tremendous financial and schedule pressures on projects such as those de-
scribed in this paper. It is always useful to examine what we did and try to
determine what areas may be strengthened in future projects. We do not have
the space to discuss this in detail, but wanted to mention them briefly, almost
as a final lesson-learned.

Probably the most challenging issue throughout the projects has been to find
ways to specify and verify functional and performance timing requirements. So
far, our methods have dealt much better with the logic aspects of behaviour
than with anything that involves timing. Nothing we have seen in the literature
has stood out as clearly better than what we did. Another challenge is the way
in which we should deal with selfchecks. In the case of hardware malfunction,
it is important that the application be left in a safe-state if at all possible.
The current software design achieves this at significant cost. More research in
this area is warranted. Much progress has been made already on automating
verification activities [3]. Extending these techniques to deal with more cases,
especially those involving time-dependent behaviour, should be a high priority.
In general, we should now be able to build significantly improved software tools.
Finally, we are getting to the stage where we have sufficient experience with
these processes to see how we can extend them to help with non safety critical
software.

5 Related Work

Software practitioners have clearly indicated the need to automate routine tasks
in order to effectively and reliably develop software. The application of formal
methods similarly needs to become a largely automated process with tools of
even better quality than those used for building and testing software. Knight et
al. hypothesize that by incorporating formal methods tools into existing software
packages such as off the shelf office suites and other software engineering tools,
formal methods might be able to overcome their lack of “superstructure” and
become more widely used in industry [19]. The experience described here and in
[18] supports this conjecture.

While applications of tool supported formal methods to industrial examples
have been previously described in e.g., [20], [21], such case studies typically focus
on a specific aspect, such as requirements analysis. Our work differs from other
successful industrial integrations of formal methods into the software engineering
process such as [22] since in our case i) The formal methods were applied to the
entire system, and ii) the formal methods documentation and the main project
documentation are one and the same. It should be pointed out though that the
application described here resulted in roughly one fifth the number of lines of
code as the application in [22] and it was not distributed.

152 Alan Wassyng and Mark Lawford

6 Conclusion

The use of formal methods in these projects was successful, primarily because
of the quality of the personnel involved, and the fact that, by the nature of
the problem, OPG was prepared to put sufficient resources into making it suc-
cessful. It was successful also because it was practical. The level of rigour was
commensurate with the task. The formal methods approach was pervasive, but
was never allowed to develop beyond its usefulness. Tremendous progress was
made in taking ideas from the formal methods research community, and mak-
ing them practical. However, it is our opinion that the formal methods research
community should be trying much harder to make their methods more practical
in the first place. Even after thirteen years though, there are significant aspects
that have not been completely solved - timing issues for example. We coped
with them adequately, but to make these techniques more cost effective, we have
to have much more general solutions. Finally, the methods are just too costly
without reliable, comprehensive tool support.

Acknowledgements

The work presented in this paper represents the combined efforts of many current
and former employees of Ontario Power Generation and AECL, including: Glenn
Archinoff, Dominic Chan, Rick Hohendorf, Paul Joannou, Peter Froebel, David
Lau, Elder Matias, Jeff McDougall, Greg Moum, Mike Viola, and Alanna Wong.
The authors would like to thank Rick Hohendorf and Mike Viola for helping to
obtain permission from OPG to publish this work. The FM 2003 reviewers pro-
vided invaluable feedback. Finally we would like to acknowledge David Parnas.
This work represents the successful application of many of his ideas regarding
software engineering.

References

[1] Saiedian H. (ed.): An invitation to formal methods. IEEE Computer Apr (1996)
16–30

[2] Heninger, K.L.: Specifying software requirements for complex systems: New tech-
niques and their applications. IEEE Transactions on Software Engineering 6
(1980) 2–13

[3] Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR*: A toolset for specifying
and analyzing software requirements. In: Proc. 10th Int. Conf. Computer Aided
Verification (CAV’98), Vancouver, BC, Canada, June-July 1998. Volume 1427 of
LNCS, Springer (1998) 526–531

[4] Parnas, D.L.: Software design. In Hoffman, D., Weiss, D., eds.: Software Funda-
mentals: Collected Papers by David L. Parnas. Addison-Wesley (2001) 137–142

[5] Archinoff, G.H., Hohendorf, R.J., Wassyng, A., Quigley, B., Borsch, M.R.: Ver-
ification of the shutdown system software at the Darlington nuclear generating
station. In: International Conference on Control and Instrumentation in Nuclear
Installations, Glasgow, UK, The Institution of Nuclear Engineers (1990)

A Successful Implementation of Formal Methods in an Industrial Project 153

[6] Parnas, D.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15 (1972) 1053–1058

[7] Joannou, P., et al.: Standard for Software Engineering of Safety Critical Software.
CANDU Computer Systems Engineering Centre of Excellence Standard CE-1001-
STD Rev. 1 (1995)

[8] McDougall, J., Lee, J.: Procedure for the Software Design Description for Safety
Critical Software. CANDU Computer Systems Engineering Centre of Excellence
Procedure CE-1002-PROC Rev. 1 (1995)

[9] Moum, G.: Procedure for the Systematic Design Verification of Safety Critical
Software. CANDU Computer Systems Engineering Centre of Excellence Proce-
dure CE-1003-PROC Rev. 1 (1997)

[10] Wassyng, A.: Darlington NGD Shutdown System Trip Computer Software Re-
design Project, SDS1, Trip Computer Design Requirements Procedure. Technical
Report NK38-MAN-68200-003, Rev. 04, Ontario Hydro (2001)

[11] Wassyng, A.: Darlington NGD Shutdown System Trip Computer Software Re-
design Project, SDS1, Trip Computer Design Description Procedure. Technical
Report NK38-MAN-68200-001, Rev. 03, Ontario Hydro (2001)

[12] Mills, H.D.: Stepwise refinement and verification in box-structured systems. Com-
puter 21 (1988) 23–36

[13] Janicki, R., Parnas, D.L., Zucker, J.: Tabular representations in relational doc-
uments. In Brink, C., Kahl, W., Schmidt, G., eds.: Relational Methods in Com-
puter Science. Advances in Computing Science. Springer Wien New York (1997)
184–196

[14] Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of
Computer Programming 25 (1995) 41–61

[15] Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of
functional and relational methods for the specification and verification of safety
critical software. In Rus, T., ed.: Proceedings Algebraic Methodology and Software
Technology, 8th International Conference, AMAST 2000, Iowa City, Iowa, USA,
May 2000. Volume 1816 of LNCS, Springer (2000) 73–88

[16] Viola, M.: Ontario Hydro’s experience with new methods for engineering safety
critical software. In: SAFECOMP’95: The 14th International Conference on Com-
puter Safety, Reliability and Security, Belgirate, Italy, Springer (1995) 283–298

[17] Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering 21 (1995) 107–125

[18] Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the
specification and verification of a nuclear reactor shutdown system. Accepted for
publication in May 2002. http://www.cas.mcmaster.ca/˜lawford/papers/ (To
appear)

[19] Knight, J.C., Hanks, K.S., Travis, S.R.: Tool support for production use of formal
techniques. In: 12th International Symposium on Software Reliability Engineering
(ISSRE 2001), Hong Kong, China, IEEE Computer Society (2001)

[20] Heitmeyer, C., Kirby, Jr., J., Labaw, B., Archer, M., Bharadwaj, R.: Using ab-
straction and model checking to detect safety violations in requirements specifi-
cations. IEEE Transactions on Software Engineering 24 (1998) 927–948

[21] Crow, J., Di Vito, B.L.: Formalizing Space Shuttle software requirements: Four
case studies. ACM Transactions on Software Engineering and Methodology 7
(1998) 296–332

[22] Hall, A., Chapman, R.: Correctness by construction: Developing a commercial
secure system. IEEE Software Jan/Feb (2002) 18–25

http://www.cas.mcmaster.ca/~lawford/papers/

	Lessons Learned from a Successful Implementation of Formal Methods in an Industrial Project
	1 Introduction
	2 The Project
	2.1 Application Setting
	2.2 A (Very) Brief History
	2.3 Preparing a Strategy for the Redesign
	2.4 System-Level Requirements
	2.5 Software Design
	2.6 Software Design Verification (SDV)
	2.7 Automated SDD Verification
	2.8 Coding and Code Verification

	3 Primary Lessons Learned
	3.1 Pure Technology Lessons
	3.2 Soft Technology Lessons
	3.3 Political Lessons

	4 Open Questions
	5 Related Work
	6 Conclusion

	References

