
Formalizing and Verifying Function Blocks

using Tabular Expressions and PVS

Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

McMaster Centre for Software Certification, McMaster University, Canada L8S 4K1
{pangl,wangcw,lawford,wassyng}@mcmaster.ca

Abstract. Many industrial control systems use programmable logic con-
trollers (PLCs) since they provide a highly reliable, off-the-shelf hardware
platform. On the programming side, function blocks (FBs) are reusable
components provided by the PLC supplier that can be combined to im-
plement the required system behaviour. A higher quality system may be
realized if the FBs are pre-certified to be compliant with an international
standard such as IEC 61131-3. We present an approach to formalizing FB
requirements using tabular expressions, and to verifying the correctness
of the FBs implementations in the PVS proof environment. We applied
our approach to the example FBs of IEC 61131-3 and identified issues in
the standard: ambiguous behavioural descriptions, missing assumptions,
and erroneous implementations.

Keywords: critical systems, formal specification, formal verification,
function blocks, tabular expressions, IEC 61131-3, PVS

1 Introduction

Many industrial control systems have replaced traditional analog equipment by
components that are based upon programmable logic controllers (PLCs) to ad-
dress increasing market demands for high quality [1]. Function blocks (FBs) are
basic design units that implement the behaviour of a PLC, where each FB is a
reusable component for building new, more sophisticated components or systems.
The search for higher quality may be realized if the FBs are pre-certified with
respect to an international standard such as IEC 61131-3 [8, 9]. Standards such
as DO-178C (in the aviation domain) and IEEE 7-4.3.2 (in the nuclear domain)
list acceptance criteria of mission- or safety-critical systems for practitioners to
comply with. Two important criteria are that 1) the system requirements are
precise and complete; and that 2) the system implementation exhibits behaviour
that conforms to these requirements. In one of its supplements, DO-178C ad-
vocates the use of formal methods to construct, develop, and reason about the
mathematical models of system behaviours.

Tabular expressions [20, 21] are a way to document system requirement that
have proven to be both practical and effective in industry [13, 25]. PVS [18]
is a non-commercial theorem prover, and provides an integrated environment
with mechanized support for writing specifications using tabular expressions and

2 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

(higher-order) predicates, and for (interactively) proving that implementations
satisfy the tabular requirements using sequent-style deductions. In this paper we
report on using tabular expressions to formalize the requirements of FBs and on
using PVS to verify their correctness (with respect to tabular requirements).

As a case study, we have formalized1 23 of 29 FBs listed in IEC 61131-3 [8, 9],
an important standard with over 20 years of use on critical systems running on
PLCs. There are two compelling reasons for formalizing the existing behavioural
descriptions of FBs supplied by IEC 61131-3. First, formal descriptions such as
tabular expressions force tool vendors and users of FBs to have the same inter-
pretations of the expected system behaviours. Second, formal descriptions are
amenable to mechanized support such as PVS to verify the conformance of can-
didate implementations to the high-level, input-output requirements. Currently
IEC 61131-3 lacks an adequate, formal language for describing the behaviours
of FBs and for arguing about their correctness. Unfortunately, IEC 61131-3 uses
FB descriptions that are too close to the level of hardware implementations.
For the purpose of this paper, we focus on FBs that are described in the more
commonly used languages of structured text (ST) and function block diagrams
(FBDs). Note that two versions of IEC 61131-3 are cited here. The earlier ver-
sion [8] has been in use since 2003. Most of the work reported on in this paper
relates to this version. When the new version [9] was issued, we expected to find
that the problems we had discovered in the earlier version had been corrected.
However, we found that many of the example FBs had been removed from the
standard and the remaining FBs are still problematic.

Fig. 1: Framework

We now summarize our approach and contributions with reference to Fig. 1.
As shown on the left, a function block will typically have a natural language
description of the block behaviour accompanied by a detailed implementation in
the ST or FBD description, or in some cases both. Based upon all of this infor-
mation we create a black box tabular requirements specification in PVS for the
behaviour of the FB as described in Sec. 3.2. The ST and FBD implementations
are formalized as predicates in PVS, again making use of tables, as described in
Sec. 3.1. In the case when there are two implementations for an FB, one in FBD
and the other in ST, we attempt to prove their (functional) equivalence in PVS.
For any implementation we attempt to prove the correctness and consistency
with respect to the FB requirements in PVS (Sec. 4).

Using our approach, we have identified a number of issues in IEC 61131-3
and suggest resolutions (Sec. 5), which are summarized below:

1 PVS files are available at http://www.cas.mcmaster.ca/˜lawford/papers/

FTSCS2013. All verifications are conducted using PVS 5.0.

Formalizing and Verifying FBs using Tabular Expressions and PVS 3

1. The behaviour of the pulse timer is characterized through a timing diagram
with at least two scenarios unspecified.

2. The description of the sr block (a set-dominant latch) lacks an explicit time
delay on the intermediate values being computed and fed back. By introduc-
ing a delay FB, we verified the correctness of sr.

3. The description of the up-down counter ctud permits unintuitive behaviours.
We eliminate them by incorporating a relation on its three inputs (i.e., low
limit, high limit, and preset value) in the tabular requirement of ctud.

4. The description of the limits alarm block allows the low limit and high limit
alarms to be tripped simultaneously. We resolve this by explicitly constrain-
ing the two hysteresis zones to be both disjoint and ordered.

5. The ST and FBD implementations for the stack int block (stack of inte-
gers) failed the equivalence proof. We identified a missing FB in the FBD
implementation, and then discharged the proof.

We will discuss issues (1), (2), and (3) in further detail in Sec. 5. Details of
the remaining issues that we omit are available in an extended report [19]. In
the next section we discuss background materials: the IEC 61131-3 Standard,
tabular expressions, and PVS.

2 Preliminaries

2.1 IEC 61131-3 Standard Function Blocks Programmable logic con-
trollers (PLCs) are digital computers that are widely utilized in real-time and
embedded control systems. In the light of unifying the syntax and semantics of
programming languages for PLCs, the International Electrotechnical Commit-
tee (IEC) first published IEC 61131-3 in 1993 with revisions in 2003 [8] and
2013 [9]. The issues of ambiguous behaviours, missing assumptions, and erro-
neous behavioural descriptions that we found have not been resolved in the
latest edition.

We applied our methodology to the standard functions and function blocks
listed in Annex F of IEC 61131-3 (1993). FBs are more flexible than standard
functions in that they allow internal states, feedback paths and time-dependent
behaviours. We distinguish between basic and composite FBs: the former consist
of standard functions only, while the latter can be constructed from standard
functions and any other pre-developed basic or composite FBs. We focus on two
programming languages that are covered in IEC 61131-3 for writing behavioural
descriptions of FBs: structured text (ST) and function block diagrams (FBDs).
ST syntax is block structured and resembles that of Pascal, while FBDs visualize
inter-connections or data flows between inputs and outputs of block components.

Fig. 2 shows the FBD of the limits alarm block, consisting of declarations
of inputs and outputs, and the definition of computation. An alarm monitors
the quantity of some variable x, subject to a low limit l and a high limit h,
with the hysteresis band of size eps. The body definition visualizes how ultimate
and intermediate outputs are computed, e.g., output ql is obtained by computing
HYSTERESIS(l + (eps / 2.0), x, eps). There are five internal component blocks

4 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

of limits alarm: addition (+), subtraction(−), division (/), logical disjunction
(≥ 1), and the hysteresis effect (hysteresis). The internal connectives are w1, w2

and w3. The precise input-output tabular requirement is discussed in Sec. 3.2.

(* DECLARATION *)

+--------+

|LIMITS_ |

| ALARM |

REAL --|h qh|-- BOOL

REAL |x q|-- BOOL

REAL --|l ql|-- BOOL

REAL --|eps |

+--------+

INPUTS:

h : high limit

x : variable value

l : low limit

eps: hysteresis

OUTPUTS:

qh : high flag

q : alarm output

ql : low flag

(* FBD of BODY DEFINITION *)

HIGH_ALARM

+------------+

| HYSTERESIS |

x------------------------+--|xin1 q|--+----------qh

+---+ w2| | | |

h----------------| - |------|xin2 | |

+---| | | | | |

| +---+ | | | |

+--------------|eps | | +-----+

+---+w1| | +------------+ +--| >=1 |

eps --| / |--| | | |--q

2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+

| +---+ w3| | HYSTERESIS | |

l ---------------| + |------|xin1 q|--+-----------ql

| | | | | |

+---| | +--|xin2 |

| +---+ | |

+--------------|eps |

+------------+

Fig. 2: Limits alarm standard declaration and FBD implementation [8]

2.2 Tabular Expressions Tabular expressions [20, 21] (a.k.a. function ta-
bles) are an effective approach to describing conditionals and relations, thus
ideal for documenting many system requirements. They are arguably easier to
comprehend and to maintain than conventional mathematical expressions. Tab-
ular expressions have well-defined formal semantics (e.g., [10]), and they are
useful both in inspections and in testing and verification [25]. For our purpose of
capturing the input-output requirements of function blocks in IEC 61131-3, the
tabular structure in Fig. 3 suffices: the input domain and the output range are
partitioned into rows of, respectively, the first column (for input conditions) and
the second column (for output results). The input column may be sub-divided
to specify sub-conditions.

Result

Condition f

C1

C1.1 res1

C1.2 res2
.

C1.m resm

.

Cn resn

IF C1

IF C1.1 THEN f = res1

ELSEIF C1.2 THEN f = res2
...

ELSEIF C1.m THEN f = resm

ELSEIF ...

ELSEIF Cn THEN f = resn

Fig. 3: Semantics of Horizontal Condition Table (HCT)

Formalizing and Verifying FBs using Tabular Expressions and PVS 5

We may interpret the above tabular structure as a list of “if-then-else” pred-
icates or logical implications. Each row defines the input circumstances under
which the output f is bound to a particular result value. For example, the first
row corresponds to the predicate (C1 ∧ C1.1 ⇒ f = res1), and so on. In docu-
menting input-output behaviours using horizontal condition tables (HCTs), we
need to reason about their completeness and disjointness. Suppose there is no
sub-condition, completeness ensures that at least one row is applicable to every
input, i.e., (C1 ∨ C2 ∨ · · · ∨ Cn ≡ True). Disjointness ensures that the rows do
not overlap, e.g., (i 6= j ⇒ ¬(Ci ∧ Cj)). Similar constraints apply to the sub-
conditions, if any. These properties can often be easily checked automatically
using SMT solvers or a theorem prover such as PVS [6].

2.3 PVS Prototype Verification System (PVS) [18] is an interactive environ-
ment for writing specifications and performing proofs. The PVS specification
language is based on classical higher-order logic. The syntactic constructs that
we use the most are “if-then-else” predicates and tables, which we will explain
as we use them. An example of using tabular expressions to specify and verify
the Darlington Nuclear Shutdown System (SDS) in PVS can be found in [13].

PVS has a powerful interactive proof checker to perform sequent-style deduc-
tions. The completeness and disjointness properties are generated automatically
as Type Correctness Conditions (TCCs) to be discharged. We will discuss a
found issue (Sec. 5) where the ST implementation supplied by IEC 61131-3 is
formalized as a PVS table but its disjointness TCC failed to be discharged. In
this paper we omit proof details that are available in an extended report [19].

As PLCs are commonly used in real-time systems, time modelling is a critical
aspect in our formalization. We consider a discrete-time model in which a time
series consists of equally spaced sample times or “ticks”in PVS:

delta_t: posreal

time: TYPE+ = nonneg_real

tick: TYPE = {t: time | EXISTS (n: nat): t = n * delta_t}

Constant delta_t is a positive real number. Here time is the set of non-negative
real numbers, and tick is the set of time sample times [7].

3 Formalizing Function Blocks using Tabular Expressions

Below we present a formal approach to defining standard functions and function
blocks in IEC 61131-3 using tabular expressions.

3.1 Formalizing IEC 61131-3 Function Block Implementations We
perform formalization at levels of standard functions, basic function blocks (FBs),
and composite FBs. Similar to [4], we formulate each standard function or func-
tion block as a predicate, characterizing its input-output relation.

6 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

Standard Functions. IEC 61131-3 defines eight groups of standard functions,
including: 1) data type conversion; 2) numerical; 3) arithmetic; 4) bit-string; 5)
selection and comparison; 6) character string; 7) time and date types; and 8)
enumerated data types. In general, we formalize the behaviour of a standard
function f as a Boolean function:

f(i1, i2, . . . , im, o1, o2, . . . , on) : bool ≡ R(i1, i2, . . . , im, o1, o2, . . . , on)

where predicate R characterizes the precise relation on the m inputs and the
n outputs of standard function f . Our formalization covers both timed and
untimed behaviours of standard functions. As an example of a timed function,
consider function move that takes as inputs an enabling condition en and an
integer in, and that outputs an integer out. The behaviour of move is time-
dependent: at the very first clock tick, out is initialized to zero; otherwise, at
time instant t (t > 0), out is either equal to in at time t, if condition en holds at
t, or otherwise out is equal to in at time t − α ∗ δ (α = 1, 2, . . .) where en was
last enabled (i.e., a case of “no change” for out). More precisely, we translate the
input-output relation of function move into PVS:

move(en:[tick->bool],i,out:[tick->int])(t:tick): bool =

FORALL t: out(t) = IF t = 0 THEN 0

ELSE TABLE +-------------------------+

| en(t) | i(t) ||

+-------------------------+

| NOT en(t)| out(pre(t)) ||

+-------------------------+ ENDTABLE

ENDIF

We characterize the temporal relation between in and out as a universal quan-
tification over discrete time instants. Functions [tick->bool] and [tick->int]
capture the input and output values at different time instants. The behaviour at
each time instant t is expressed as an IF...THEN...ELSE...ENDIF statement.
Construct TABLE...ENDTABLE that appears in the ELSE branch exemplifies the
use of tabular expressions as part of a predicate. The main advantage of embed-
ding tables in predicates is that the PVS prover will generate proof obligations
for completeness and disjointness accordingly.

Untimed behaviour, on the other hand, abstracts from the input-output re-
lation at the current time instant, which makes first-order logic suffice for the
formalization. For example, consider the standard function add that is used as an
internal component of the FB limits alarm (see Fig. 2), which has the obvious
formalization: add(in1, in2, out : int) : bool ≡ out = in1 + in2. Incorporating
the output value out as part of the function parameters makes it possible to
formalize basic FBs with internal states, or composite FBs. For basic FBs with
no internal states, we formalize them as function compositions of their internal
blocks. As a result, we also support a version of add that returns an integer
value: add(in1, in2 : int) : int = in1 + in2.

Formalizing and Verifying FBs using Tabular Expressions and PVS 7

Basic Function Blocks. A basic function block (FB) is an abstraction com-
ponent that consists of standard functions. When all internal components of a
basic FB are functions, and there are no intermediate values to be stored, we
formalize the output as the result of a functional composition of the internal
functions. For example, given FB weigh, which takes as inputs a gross weight gw
and a tare weight tw and returns the net weight nw, we formalize weigh by defin-
ing the output nw as nw = int2bcd(subtract(bcd2int(gross), tare)), where int2bcd
and bcd2int are standard conversion functions between binary-coded decimals
and integers. On the other hand, to formalize a basic FB that has internal states
to be stored, we take the conjunction of the predicates that formalize its internal
functions. We formalize composite FBs in a similar manner.

Composite Function Block. Each composite FB contains as components
standard functions, basic FBs, or other pre-developed composite FBs. For exam-
ple, limits alarm (Sec. 2) is a composite FB consisting of standard functions and
two instances of the pre-developed composite FB hysteresis. Our formalization
of each component as a predicate results in compositionality: a predicate that
formalizes a composite FB is obtained by taking the conjunction of those that
formalize its components. IEC 61131-3 uses structured texts (ST) and function
block diagrams (FBD) to describe composite FBs.

Remark. Predicates that formalize basic or composite FBs represent their black-
box input-output relations. Since we use function tables in PVS to specify these
predicates, their behaviours are deterministic. This allows us to easily compose
their behaviours using logical conjunction. The conjunction of deterministic com-
ponents is functionally deterministic.

Formalizing Composite FB Implementation: ST. We translate an ST
implementation supplied by IEC 61131-3 into its equivalent expression in PVS.
We illustrate (parts of2) our ST-to-PVS translation using concrete examples.

Pattern 1 illustrates that we transform sequential compositions (;) into log-
ical conjunctions (&). We write a

−1 to denote the value of variable a at the
previous time tick (i.e., before the current function block is executed). In gen-
eral, we constrain the relationship between each variable v and v

−1 to formalize
the effect of its containing function block.

ST expressions PVS predicates

1 basic assignments
a := a + b; c := NOT (a > 0) a = a

−1 + b & c = NOT (a > 0)

Pattern 2 illustrates that we reconstruct conditional statement by taking the
conjunction of the assignment effect of each variable; each variable assignment
is formalized via a tabular expression. How variables are used in the tables is
used to derive the order of evaluation. For example, b is evaluated before c to
compute c = a+ b.

2 Other translation patterns can be found in [19].

8 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

2 conditional assignments

IF z THEN

b := c * 3; c := a + b;

ELSE

b := b + c; e := b - 1;

END_IF

b = TABLE | z | c
−1 * 3 ||

| NOT z | b
−1 + c ||

ENDTABLE &

c = TABLE | z | a + b ||

| NOT z | c
−1 ||

ENDTABLE &

e = TABLE | NOT z | b - 1 ||

| z | e
−1 ||

ENDTABLE

For the above example, an “if-then-else” conditional that returns the conjunc-
tion of the variable update predicates more closely correspond to the original
ST implementation may instead be used. In general though when assignment
conditions become more complicated, we feel it is clearer to isolate the update
of each variable.

Pattern 3 illustrates that we translate each invocation of a function block FB
into an instantiation of its formalizing predicate FB_REQ, where the return value
of FB (i.e., FB.output) is incorporated as an argument of FB_REQ.

3 function block invocations, reuse

FB1(in_1 := a, in_2 := b);

FB2(in_1 := FB1.output);

out := FB2.output;

FB1_REQ(a, b, fb1_out) &

FB2_REQ(fb1_out, fb2_out) &

out = fb2_out

Formalizing Composite FB Implementation: FBD. To illustrate the case
of formalizing a FBD implementation supplied by IEC 61131-3, let us consider
the following FBD of a composite FB and its formalizing predicate in Fig. 4:

FBD IMPL(i1, i2, o1, o2)
≡ ∃w1, w2, w3•

B1 REQ(i2, w1)
∧ B2 REQ(w1, w3, w2)
∧ B3 REQ(i1, w2, o1)
∧ B4 REQ(o1, w3, o2)

Fig. 4: Composite FB implementation in FBD and its formalizing predicate

Fig. 4 consists of four internal blocks, B1, B2, B3, and B4, that are already
formalized (i.e., their formalizing predicates B1 REQ, . . . , B4 REQ exist). The
high-level requirement (as opposed to the implementation supplied by IEC 61131-
3) for each internal FB constrains upon its inputs and outputs, documented by
tabular expressions (see Sec. 3.2). To describe the overall behaviour of the above
composite FB, we take advantage of our formalization being compositional. In
other words, we formalize a composite FB by existentially quantifying over the

Formalizing and Verifying FBs using Tabular Expressions and PVS 9

list of its inter-connectives (i.e., w1, w2 and w3), such that the conjunction of
predicates that formalize the internal components hold.

For example, we formalize the FBD implementation of block limits alarm
(Sec. 2) as a predicate LIMITS_ALARM_IMPL in PVS:

LIMITS_ALARM_IMPL(h,x,l,eps,qh,q,ql)(t): bool =

FORALL t:

EXISTS (w1,w2,w3):

div(eps(t),2.0,w1(t)) & sub(h(t),w1(t),w2(t)) &

add(l(t),w1(t),w3(t)) & disj(qh(t),ql(t),q(t)) &

HYSTERESIS_req_tab(x,w2,w1,qh)(t) & HYSTERESIS_req_tab(w3,x,w1,ql)(t)

We observe that predicate LIMITS_ALARM_IMPL, as well as those for the internal
components, all take a time instant t ∈ tick as a parameter. This is to account
for the time-dependent behaviour, similar to how we formalized the standard
function move in the beginning of this section.

The above predicates that formalize the internal components, e.g., predicate
HYSTERESIS_req_tab, do not denote those translated from the ST implementa-
tion of IEC 61131-3. Instead, as one of our contributions, we provide high-level,
input-output requirements that are missing from IEC 61131-3 (to be discussed
in the next section). Such formal, compositional requirement are developed for
the purpose of formalizing and verifying sophisticated, composite FBs.

3.2 Formalizing Requirements of Function Blocks As stated, IEC 61131-
3 supplies low-level, implementation-oriented ST or FBD descriptions for func-
tion blocks. For the purpose of verifying the correctness of the supplied imple-
mentation, it is necessary to obtain requirements for FBs that are both complete
(on the input domain) and disjoint (on producing the output). Tabular expres-
sions (in PVS) are an excellent notation for describing such requirements. Our
method for deriving the tabular, input-output requirement for each FB is to
partition its input domain into equivalence classes, and for each such input con-
dition, we consider what the corresponding output from the FB should be.

Result

Condition q
qh ∨ ql True

¬(qh ∨ ql) False

assume: l + eps < h− eps

Result

Condition qh
x > h True

h - eps ≤ x ≤ h NC

x < h − eps False

assume: eps > 0

Result

Condition ql
x < l True

l ≤ x ≤ l + eps NC

x > l + eps False

assume: eps > 0

Fig. 5: Limits alarm requirement in tabular expression

10 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

As an example, we consider the requirement for function block limits alarm
(Sec. 2). The expected input-output behaviour and its tabular requirement
(which constrains the relation between inputs x, h, l, eps and outputs q, qh,
ql) is depicted in Fig. 5. Our formalization process revealed the need for two
missing assumptions from IEC 61131-3: eps > 0 and l + eps < h − eps. They
allow us to ensure that the two hysteresis zones [l, l + eps] and [h − eps, h] are
non-empty, disjoint and ordered [19].

Let predicates f_qh, f_ql, and f_q be those that formalize, respectively, the
table for qh, ql and q, we then translate the above requirement into PVS as:

LIMITS_ALARM_REQ(h,x,l,eps,qh,q,ql)(t): bool =

f_qh(x,h,eps,qh)(t) & f_ql(x,l,eps,ql)(t) & f_q(qh,ql,q)(t)

By using the function definitions of q, qh and ql, we can verify the correctness
of the FBD implementation of limits alarm, formalized as the predicate above.
This process can be generalized to verify other FBDs in IEC 61131-3.

4 Verifying Function Blocks in PVS

We now present the two kinds of verification we perform.

4.1 Verifying the Correctness of an Implementation Given an imple-
mentation predicate I, our correctness theorem states that, if I holds for all
possible inputs and outputs, then the corresponding requirement predicate R
also holds. This corresponds to the proofs of correctness shown in Fig. 1. For
example, to prove that the FBD implementation of block limits alarm in Sec. 3.1
is correct with respect to its requirement in Sec. 3.2, we must prove the following
in PVS:

⊢ ∀h, x, l, eps • ∀qh, q, ql • limits alrm impl(h, x, l, eps, qh, q, ql) ⇒
limits alrm req(h, x, l, eps, qh, q, ql)

(1)

Furthermore, we also need to ensure that the implementation is consistent
or feasible, i.e., for each input list, there exists at least one corresponding list
of outputs, such that I holds. Otherwise, the implementation trivially satisfies
any requirements. This is shown in Fig. 1 as proofs of consistency. In the case
of limits alarm, we must prove the following in PVS:

⊢ ∀h, x, l, eps • ∃qh, q, ql • limits alrm impl(h, x, l, eps,qh, q, ql) (2)

4.2 Verifying the Equivalence of Implementations In IEC 61131-3,
block limits alarm is supplied with ST only. In theory, when both ST and FBD
implementations are supplied for the same FB (e.g., stack int), it may suffice to
verify that each of the implementations is correct with respect to the require-
ment. However, as the behaviour of FBs is intended to be deterministic in most
cases, it would be worth proving that the implementations (if they are given
at the same level of abstraction) are equivalent, and generate scenarios, if any,
where they are not. This is also labelled in Fig. 1 as proofs of equivalence.

Formalizing and Verifying FBs using Tabular Expressions and PVS 11

In Sec. 3.1 we discussed how to obtain, for a given FB, a predicate for its ST
description (say FB st impl) and one for its FBD description (say FB fbd impl).
Both predicates share the same input list i1, . . . , im and output list o1, . . . , on.
Consequently, to verify that the two supplied implementations are equivalent,
we must prove the following in PVS:

⊢ ∀i1, . . . , im • ∀o1, . . . , on •

FB st impl(i1, . . . , im, o1, . . . , on) ≡ FB fbd impl(i1, . . . , im, o1, . . . , on)
(3)

However, the verification of block stack int is an exception. Its ST and FBD
implementations are at different levels of abstraction: the FBD description is
closer to the hardware level as it declares additional, auxiliary variables to in-
dicate system errors (Appendix E of IEC 61131-3) and thus cause interrupts.
Consequently, we are only able to prove a refinement (i.e., implication) relation-
ship instead (i.e., the FBD implementation implies the ST implementation).

Although IEC 61131-3 (2003) had been in use for almost 10 years, while
performing this verification on stack int, we found an error (of a missing FB in
the FBD implementation) that made the above implication unprovable [19].

5 Case Study: Issues Found in Standard IEC 61131-3

To justify the value of our approach (Secs. 3 and 4), we have formalized and
verified 23 of 29 FBs from IEC 61131-3. Our coverage so far has revealed a
number of issues that are listed in the introduction. We briefly discuss the first
three and our reactions to them. The complete discussion is available in [19].

5.1 Ambiguous Behaviour: Pulse Timer in Timing Diagrams Block
pulse is a timer defined in IEC 61131-3, whose graphical declaration is shown
on the LHS of Fig. 6. It takes two inputs (a boolean condition in and a length
pt of time period) and produces two outputs (a boolean value q and a length
et of time period). It acts as a pulse generator: as soon as the input condition
in is detected to hold, it generates a pulse to let output q remain true for a
constant pt of time units. The elapsed time that q has remained true can also be
monitored via output et. IEC 61131-3 presents a timing diagram3 as depicted on
the RHS of Fig. 6, where the horizontal time axis is labelled with time instants
ti (i ∈ 0..5), to specify (an incomplete set of) the behaviour of block pulse.
The above timing diagram suggests that when a rising edge of the input condition
in is detected at time t, another rising edge that occurs before time t+ptmay not
be detected, e.g., the rising edge occurring at t3 might be missed as t3 < t2 + pt.

The use of timing diagrams to specify behaviour is limited to a small number
of use cases; subtle or critical boundary cases are likely to be missing. We for-
malize the pulse timer using tabular expressions that ensure both completeness
and disjointness. We found that there are at least two scenarios that are not
covered by the above timing diagram supplied by IEC 61131-3. First, if a rising
edge of condition in occurred at t2 + pt, should there be a pulse generated to

3 For presenting our found issues, it suffices to show just the parts of in and q.

12 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

+------+

|Pulse |

| |

BOOL --|in q|-- BOOL

| |

TIME --|pt et|-- BOOL

| |

+------+

+--------+ ++ ++ +--------+

in | | || || | |

--+ +-----++-++-------+ +---

t0 t1 t2 t3 t4 t5

+----+ +----+ +----+

q | | | | | |

--+ +---------+ +------+ +-------

t0 t0+pt t2 t2+pt t4 t4+pt

Fig. 6: pulse timer declaration and definition in timing diagram

let output q remain true for another pt time units? If so, there would be two
connected pulses: from t2 to t2 + pt and from t2 + pt to t2 + 2pt. Second, if the
rising edge that occurred at t3 stays high until some time tk, (t2+ pt ≤ tk ≤ t4),
should the output et be default to 0 at time t2 + pt or at time tk?

Result

Condition q

¬q
−1

¬in
−1 ∧ in true

in
−1 ∨ ¬in false

q
−1

Held For(q,pt) false
¬Held For(q,pt) true

Result

Condition pulse start time
¬q

−1 ∧ q t
q
−1 ∨ ¬q NC

Result

Condition et
q t − pulse start time

¬q

¬Held For ts(in,pt,pulse start time) 0

Held For ts
in

t − pulse start time ≥ pt pt
t − pulse start time < pt t − pulse start time

(in,pt,pulse start time) ¬in 0

Fig. 7: Requirement of pulse timer using tabular expressions

We use the three tables in Fig. 7 to formalize the behaviour of the pulse timer,
where outputs q and et and the internal variable pulse start time are initialized
to, respectively, false, 0, and 0. The tables have their obvious equivalents in PVS.
To make the timing behaviour precise, we define two auxiliary predicates:

Held_For(P:pred[tick],duration:posreal)(t:tick): bool =

EXISTS(t_j:tick): (t-t_j >= duration) &

(FORALL (t_n: tick | t_n >= t_j & t_n <= t): P(t_n))

Held_For_ts(P:pred[tick],duration:posreal,ts:tick)(t:tick): bool =

(t-ts >= duration) & (FORALL (t_n: tick | t_n >= ts & t_n <= t): P(t_n))

Predicate Held For(P, duration) holds when the input predicate P holds for
at least duration units of time. Predicate Held For ts(P, duration, ts) is more
restricted, insisting that the starting time of duration is ts. As a result, we make

Formalizing and Verifying FBs using Tabular Expressions and PVS 13

explicit assumptions to disambiguate the above two scenarios. Scenario 1 would
match the condition row (in bold) in the upper-left table for output q, where
q at the previous time tick holds (i.e., q

−1) and q has already held for pt time
units, so the problematic rising edge that occurred at t2 + pt would be missed.
Due to our resolution to Scenario 1, at time t2+ pt, Scenario 2 would match the
condition row (in bold) in the lower table for output et, where q at the current
time tick does not hold (i.e., ¬q), condition in has held for more than pt time
units, so the value of et remains as pt without further increasing.

As pulse timer is not supplied with implementation, there are no correctness
and consistency proofs to be conducted. Nonetheless, obtaining a precise, com-
plete, and disjoint requirement is valuable for future concrete implementations.

5.2 Ambiguous Behaviour: Implicit Delay Unit PLC applications often
use feedback loops: outputs of a FB are connected as inputs of either another FB
or the FB itself. IEC 61131-3 specifies feedback loops through either a connecting
line or shared names of inputs and outputs. However, feedback values (or of
intermediate output values) cannot be computed instantaneously in reality. We
address this issue by introducing a delay block Z

−1 and its formalization below:

Z
−1(i, o)(t) =

{

o(t) = i(t− 1) if t > 0
False if t = 0

sr impl(s1, r, q1)
≡ ∃w1, w2, w3 •

neg(r,w1)
∧ conj(w1, w3, w2)
∧ disj(s1, w2, q1)
∧ Z

−1(q1, w3)

Fig. 8: Block sr implementation in FBD and its formalizing predicate

There is an explicit, one-tick delay between the input and output of block
Z
−1, making it suitable for denoting feedback values as output values produced

in the previous execution cycle. The types of i and o must match. For example,
block sr creates a set-dominant latch (a.k.a. flip-flop), takes as inputs a boolean
set flag s1 and a boolean reset flag r, and returns a boolean output q1. The
value of q1 is fed back as another input of block sr. Value of q1 remains true as
long as the set flag s1 is enabled, and q1 is reset to false only when both flags
are disabled. There should be a delay between the value of q1 is computed and
passed to the next execution cycle. We formalize this by adding the explicit delay
block Z

−1 and conjoining predicates for the internal blocks (as shown in Fig. 8).
Blocks B1 (formalized by predicate neg), B2 (conj), B3 (disj), and B4 (Z

−1) in
Fig. 8 denote the FB of, respectively, logical negation, conjunction, disjunction,
and delay. Arrows w1, w2, and w3 are internal connectives. Adding an explicit

14 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

delay block Z
−1 to formalize feedback loops led us to discharge the correctness

and consistency theorems (Sec. 4) of the FBD implementation in Fig. 8.

5.3 Missing Assumption: Limit on Counters FBs An up-down counter
(ctud) in IEC 61131-3 is composed of an up counter (ctu) and a down counter
(ctd). The output counter value cv is incremented (using the up counter) if a
rising edge is detected on an input condition cu, or cv is decremented (using the
down counter) if a rising edge is detected on the input cd. Actions of increment
and decrement are subject to, respectively, a high limit PVmax and a low limit
PVmin. The value of cv is loaded to a preset value pv if a load flag ld is true;
and it is default to 0 if a reset condition r is enabled. Two Boolean outputs are
produced to reflect the change on cv: qu ≡ (cv > pv) and qd ≡ (cv <= 0).

As we attempted to formalize and verify the correctness of the ST implemen-
tation of block ctud supplied by IEC 61131-3, we found two missing assumptions.

Result

Condition cv
r 0

¬r

ld pv

¬ld

cu ∧ cd NC

cu∧¬cd
cv

−1< PVmax cv
−1+1

cv
−1≥ PVmax NC

¬cu∧cd
cv

−1> PVmin cv
−1-1

cv
−1≤ PVmin NC

¬cu ∧ ¬cd NC
assume: PVmin < pv < PVmax

Fig. 9: Tabular requirement of ctud

First, the relationship between the
high and low limits is not stated. Let
PVmin be 10 and PVmax be 1, then
the counter can only increment when
cv < 1, decrement when cv > 10
(disabled when 1 ≤ cv ≤ 10). This
contradicts with our intuition about
how low and high limits are used to
constrain the behaviour of a counter.
Consequently, we introduce a new as-
sumption4: PVmin < PVmax.

Second, the range of the preset
value pv, with respect to the limits
PVmin and PVmax, is not clear. If
cv is loaded by the value of pv, such
that pv > PVmax, the output qu can
never be true, as the counter incre-
ments when cv < PVmax. Similarly, if pv is such that pv < PVmin and pv = 1,
the output qd can never be true, as the counter decrements when cv > PVmin.
As a result, we introduce another assumption: PVmin < pv < PVmax. Our
tabular requirement for the up-down counter that incorporates the missing as-
sumption is shown in Fig. 9. Similarly, we added pv < PVmax and PVmin < pv
as assumptions for, respectively, the up and down counters.

6 Related Work

There are many works on formalizing and verifying PLC programs specified
by programming languages covered in IEC 61131-3, such as sequential func-
tion charts (SFCs). Some approaches choose the environment of model checking:
e.g., to formalize a subset of the language of instruction lists (ILs) using timed

4 If the less intuitive interpretation is intended, we fix the assumption accordingly.

Formalizing and Verifying FBs using Tabular Expressions and PVS 15

automata, and to verify real-time properties in Uppaal [15]; to automatically
transform SFC programs into the synchronous data flow language of Lustre,
amenable to mechanized support for checking properties [12]; to transform FBD
specifications to Uppaal formal models to verify safety applications in the in-
dustrial automation domain [23]; to provide the formal operational semantics
of ILs which is encoded into the symbolic model checker Cadence SMV, and
to verify rich behavioural properties written in linear temporal logic (LTL) [5];
and to provide the formal verification of a safety procedure in a nuclear power
plant (NPP) in which a verified Coloured Petri Net (CPN) model is derived by
reinterpretation from the FBD description [17]. There is also an integration of
SMV and Uppaal to handle, respectively, untimed and timed SFC programs [2].

Some other approaches adopt the verification environment of a theorem
prover: e.g., to check the correctness of SFC programs, automatically gener-
ated from a graphical front-end, in Coq [3]; and to formalize PLC programs
using higher-order logic and to discharge safety properties in HOL [24]. These
works are similar to ours in that PLC programs are formalized and supported
for mechanized verifications of implementations. An algebra approach for PLC
programs verification is presented in [22]. In [14], a trace function method (TFM)
based approach is presented to solve the same problem as ours.

Our work is inspired by [16] in that the overall system behaviour is defined by
taking the conjunction of those of internal components (circuits in [16] or FBs in
our case). Our resolutions to the timing issues of the pulse timer are consistent
with [11]. However, our approach is novel in that 1) we also obtain tabular
requirements to be checked against, instead of writing properties directly for the
chosen theorem prover or model checker; and 2) our formalization makes it easier
to comprehend and to reason about properties of disjointness and completeness.

7 Conclusion and Future Work

We present an approach to formalizing and verifying function blocks (FBs) using
tabular expressions and PVS. We identified issues concerning ambiguity, missing
assumptions, and erroneous implementations in the IEC 61131-3 standard of
FBs. As future work, we will apply the same approach to the remaining FBs in
IEC 61131, and possibly to IEC 61499 that fits well with distributed systems.

References

1. Bakhmach, E., O.Siora, Tokarev, V., Reshetytskyi, S., Kharchenko, V., Bezsalyi,
V.: FPGA - based technology and systems for I&C of existing and advanced reac-
tors. International Atomic Energy Agency p. 173 (2009), IAEA-CN-164-7S04

2. Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Sturs-
berg, O.: Verification of PLC programs given as sequential function charts. In:
Integration of Software Specification Techniques for Applications in Engineering,
LNCS, vol. 3147, pp. 517–540. Springer Berlin Heidelberg (2004)

3. Blech, J.O., Biha, S.O.: On formal reasoning on the semantics of PLC using Coq.
CoRR abs/1301.3047 (2013)

16 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

4. Camilleri, A., Gordon, M., Melham, T.: Hardware verification using higher-order
logic. Tech. Rep. UCAM-CL-TR-91, Cambridge Univ. Computer Lab (1986)

5. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the auto-
matic verification of PLC programs written in instruction list. In: IEEE Interna-
tional Conference on Systems, Man and Cybernetics. pp. 2449–2454 (2000)

6. Eles, C., Lawford, M.: A tabular expression toolbox for Matlab/Simulink. In:
NASA Formal Methods. pp. 494–499 (2011)

7. Hu, X., Lawford, M., Wassyng, A.: Formal verification of the implementability of
timing requirements. In: FMICS. LNCS, vol. 5596, pp. 119–134. Springer (2009)

8. IEC: 61131-3 Ed. 2.0 en:2003: Programmable Controllers — Part 3: Programming
Languages. International Electrotechnical Commission (2003)

9. IEC: 61131-3 Ed. 3.0 en:2013: Programmable Controllers — Part 3: Programming
Languages. International Electrotechnical Commission (2013)

10. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions.
Science of Computer Programming 75(11), 980 – 1000 (2010)

11. John, K.H., Tiegelkamp, M.: IEC 61131-3: Programming Industrial Automation
Systems Concepts and Programming Languages, Requirements for Programming
Systems, Decision-Making Aids. Springer, 2nd edn. (2010)

12. Kabra, A., Bhattacharjee, A., Karmakar, G., Wakankar, A.: Formalization of se-
quential function chart as synchronous model in Lustre. In: NCETACS. pp. 115–
120 (2012)

13. Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of func-
tional and relational methods for the specification and verification of safety critical
software. In: Proc. of AMAST 2000. LNCS, vol. 1816, pp. 73–88. Springer (2000)

14. Liu, Z., Parnas, D., Widemann, B.: Documenting and verifying systems assembled
from components. Frontiers of Computer Science in China 4(2), 151–161 (2010)

15. Mader, A., Wupper, H.: Timed automaton models for simple programmable logic
controllers. In: ECRTS. pp. 114–122. IEEE (1999)

16. Melham, T.: Abstraction mechanisms for hardware verification. In: VLSI Specifica-
tion, Verification and Synthesis. pp. 129–157. Kluwer Academic Publishers (1987)

17. Németh, E., Bartha, T.: Formal verification of safety functions by reinterpretation
of functional block based specifications. In: FMICS, pp. 199–214. Springer (2009)

18. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In:
CADE. LNCS, vol. 607, pp. 748–752 (1992)

19. Pang, L., Wang, C.W., Lawford, M., Wassyng, A.: Formalizing and verifying func-
tion blocks using tabular expressions and PVS. Tech. Rep. 11, McSCert (Aug 2013)

20. Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of
Computer Programming 25(1), 41–61 (1995)

21. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Transactions on Software Engineering 20, 948–976 (1994)

22. Roussel, J.M., Faure, J.: An algebraic approach for PLC programs verification. In:
6th International Workshop on Discrete Event Systems. pp. 303–308 (2002)

23. Soliman, D., Thramboulidis, K., Frey, G.: Transformation of function block dia-
grams to Uppaal timed automata for the verification of safety applications. Annual
Reviews in Control (2012)

24. Völker, N., Krämer, B.J.: Automated verification of function block-based industrial
control systems. Science of Computer Programming 42(1), 101 – 113 (2002)

25. Wassyng, A., Janicki, R.: Tabular expressions in software engineering. In: Proceed-
ings of ICSSEA’03. vol. 4, pp. 1–46. Paris, France (2003)

