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McMaster Centre for Software Certification

The Need for Certification

Software is essential to more and more products. In many industries — medi-
cal, automotive, aerospace, nuclear power, military equipment, for example —
failure of software to meet its requirements can be disastrous. Society is increas-
ingly demanding that software used in such critical systems must meet minimum
safety, security and reliability standards. Manufacturers of these systems are in
the unenviable position of not having consistent and effective guidelines as to
what constitutes acceptable evidence of software quality, and how to achieve it.
This drives up the cost of producing these systems without producing a com-
mensurate improvement in dependability.

The Need for Evidence

Critical, software-intensive devices are typically certified on the basis of the pro-
cess used to develop them. We believe that this is inadequate, that while a good
process may be necessary for producing dependable software, it is not sufficient:
certification must also be based on evidence obtained from the product. Our re-
search is therefore into what kind of evidence is sufficient, and how different kinds
of evidence may be combined into an argument for safety that is sufficient. This
research is partly theoretical, but also practical: we work with industries involved
in developing critical, software-intensive systems on their practical problems.

The Centre

The Centre for Software Certification was established at McMaster University
in 2008. Its objective is to improve the practice of software engineering applied
to critical systems involving software. To achieve this it

– performs research on how to produce software that can be certified, and on
how existing software may be certified

– works with industrial partners on the development and certification of soft-
ware

– works with regulatory authorities on the relevant standards and approaches
to software certification

– works with universities to improve their software engineering curricula
– works with the bodies responsible for recognising professional engineers to

improve their requirements

While our emphasis is on software, we recognise that the safety of products
that depend on software is a problem in systems engineering: the hardware
that contains the software has to be part of the engineering, and part of the
certification.
To find out more, visit our web site http://www.mcscert.ca or contact us at
mcscert@cas.mcmaster.ca.
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Abstract. Many industrial control systems use programmable logic con-
trollers (PLCs) since they provide a high reliability, off the shelf hardware
platform. On the programming side function blocks (FBs) are reusable
components provided by the PLC supplier that can be combined to im-
plement the required system behaviour. A higher quality system may be
realized if the FBs are pre-certified to be compliant with an international
standard such as IEC 61131-3. We present an approach to formalizing
FB requirements using tabular expressions and verifying the correctness
of the FBs implementations in the PVS proof environment. We apply
our approach to the example FBs of the IEC 61131-3 standard. Our ap-
proach identified issues in the standard, ambiguous behavioural descrip-
tions, missing assumptions, and erroneous implementations. In addition,
we are able to provide suggested resolutions to these issues.

Keywords: critical systems, formal specification, formal verification,
function blocks, tabular expressions, IEC 61131-3, PVS

1 Introduction

Many industrial control systems have replaced traditional analog equipment by
components that are based upon programmable logic controllers (PLCs) to ad-
dress increasing market demands for high quality [3]. Function blocks (FBs) are
basic design units that implement behaviour on a PLC, where each FB is a
reusable component for building new, more sophisticated components or sys-
tems. The search for higher quality may be realized if the FBs are pre-certified
to be compliant with an international standard, such as IEC 61131-3 [10, 11].
Standards such as DO-178C [2] (in the aviation domain) and IEEE 7-4.3.2 [1]
(in the nuclear domain) list acceptance criteria of mission- or safety-critical sys-
tem for practitioners to comply with. Two important criteria are that 1) the
system requirements are precise and complete; and that 2) the system imple-
mentations exhibits behaviours that conform to these requirements. In one of
its supplements, DO-178C advocates the use of formal methods to construct,
develop, and reason about the mathematical models of system behaviours.

Tabular expressions [25][26] are a promising way to documenting the system
requirement and have proven to be both practical and effective for use in in-
dustry [17][30]. PVS [23] is a non-commercial theorem prover, and provides an
integrated environment with mechanized support for writing specifications using
tabular expressions and (higher-order) predicates, and for (interactively) prov-
ing that implementations satisfy the tabular requirements using sequent-style
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deductions. In this paper we report on using tabular expressions to formalize
the requirements of FBs and on using PVS to verify their correctness (with
respect to requirements).

As a case study, we have formalized and verified 23 of 29 FBs listed in
IEC 61131-3 [10][11], which has long been one of the most important stan-
dards in the industrial automation of critical systems using PLCs1. There are
two compelling reasons for formalizing the existing behavioural descriptions of
FBs supplied by IEC 61131-3. First, formal descriptions such as tabular expres-
sions force tool venders and users of FBs to have the same interpretations of
the expected system behaviours. Second, formal descriptions are amenable to
mechanized support such as PVS to verify the conformance of candidate im-
plementations to the high-level, input-output requirements. From our point of
view, IEC 61131-3 still lacks an adequate, formal language for describing the
behaviours of FBs and for arguing their correctness. Unfortunately, IEC 61131-3
uses FB descriptions that are too close to the level of hardware implementations.
For the purpose of this paper, we focus on FBs that are described in the more
commonly used languages of structured text (ST) and function block diagrams
(FBDs). Note that two versions of IEC 61131-3 are cited here. The earlier ver-
sion [10] has been in use since 2003. Most of the work reported on in this paper
relates to this version. When the newer version was issued, we expected to find
that the problems we had discovered in the earlier version had been corrected.
Instead we found that many of the example FBs have been removed from the
standard and the remaining FBs are still problematic.

Figure 1 presents our approach, and we use it to summarize our research
contributions as follows:

Logical Implication
Verification in PVS

Logical Implication 
Verification in PVS

By Tabular 
Expressions

(1)

FBD Implementation

ST Implementation

Natural Language 
Description

IEC 61131-3 Standard

FBD Specification ST Specification
Equivalence

PVS Verification Environment

FB Requirements

Correctness,
consistency

Correctness,
consistency

Formalization

Formalization

Formalization

Manual translation

PVS verification

Fig. 1: Framework

We now summarize our approach and contributions with reference to Fig. 1.
As shown on the left a function block will typically have a natural language
description of the block behaviour accompanied by a detailed implementation
in the ST or FBD description, or in some cases both. Based upon all of this
information we create a black box tabular requirements specification in PVS
for the behaviour of the FB as described in Section 3.2. The ST and FBD

1 PVS files are available at http://www.cas.mcmaster.ca/˜lawford/papers/

FTSCS2013. All verifications are conducted using PVS 5.0.
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implementations are formalized as predicates in PVS, again making use of tables,
as described in Section 3.1. In the case when there are two implementations for
an FB, one in FBD and the other in ST, we attempt to prove their (functional)
equivalence in PVS. For any implementation we attempt to prove the correctness
and consistency with respect to the FB requirements in PVS (Section 4).

Using our approach, we have identified a number of issues in IEC 61131-3
and provide suggested resolutions (Section 5), and summarized below:

1. The behaviour of the pulse timer is characterized through a timing diagram
with at least two scenarios unspecified.

2. The description of the sr block (a set-dominant latch) lacks an explicit time
delay on the intermediate values being computed and fed back. By introduc-
ing a delay FB, we verified the correctness of sr.

3. The description of the up-down counter ctud permits unintuitive behaviours.
We eliminate them by incorporating a relation on its three inputs (i.e., low
limit, high limit, and preset value) in the tabular requirement of ctud.

4. The description of the limits alarm block allows the low limit and high limit
alarms to be tripped simultaneously. We resolve this by explicitly constrain-
ing the two hysteresis zones to be both disjoint and ordered.

5. The ST and FBD implementations for the stack int block (stack of inte-
gers) failed the equivalence proof. We identified a missing FB in the FBD
implementation, and then discharged the proof.

We will discuss issues (1) and (2) in further detail in Section 5. In the next
section we discuss background materials: the IEC 61131-3 Standard, tabular
expressions, and PVS.

2 Preliminaries

2.1 IEC 61131-3 Standard of Function Blocks. Programmable logic con-
trollers (PLCs) are digital computers that are widely utilized in real-time and
embedded control systems. In the light of unifying the syntax and meanings of
programming language for PLCs, the International Electrotechnical Commit-
tee (IEC) first published the IEC 61131-3 Standard in 1993 and released two
revisions in 2003 [10] and in 2013 [11]. Most of our research results were com-
pleted before the third edition was released. Nonetheless, the third edition is
fully compatible with the second. In particular, those issues of ambiguous be-
haviours, missing assumptions, and erroneous behavioural descriptions that we
found have not been resolved in the latest edition.

We applied our methodology to the standard functions and function blocks
(FBs) listed in Annex F of IEC 61131-3 (1993). FBs are more flexible than
standard functions in that they allow internal states, feedback paths and time-
dependent behaviours. We distinguish between basic and composite FBs: the
former consist of standard functions only, while the latter can be constructed
from standard functions and any other pre-developed basic or composite FBs.
We focus on two of the programming languages that are covered in IEC 61131-3
for writing behavioural descriptions of FBs: structured text (ST) and function
block diagrams (FBDs). The syntax of ST is block structured and resembles
that of Pascal, while FBDs visualize the inter-connections or data flows between
inputs and outputs of block components.
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As an example of FBDs, we consider the limits alarm block that we will be us-
ing as a running example for later sections. In Figure 2, the FBD of limits alarm
as shown below consists of two parts: 1) declaring its inputs and outputs; and
2) defining its body of computation.

(* DECLARATION *)
+--------+
|LIMITS_ |
| ALARM |

REAL --|h qh|-- BOOL
REAL |x q|-- BOOL
REAL --|l ql|-- BOOL
REAL --|eps |

+--------+

INPUTS:
h : high limit
x : variable value
l : low limit
eps: hysteresis

OUTPUTS:
qh : high flag
q : alarm output
ql : low flag

(* FBD of BODY DEFINITION *)
HIGH_ALARM

+------------+
| HYSTERESIS |

x------------------------+--|xin1 q|--+----------qh
+---+ w2| | | |

h----------------| - |------|xin2 | |
+---| | | | | |
| +---+ | | | |
+--------------|eps | | +-----+

+---+w1| | +------------+ +--| >=1 |
eps --| / |--| | | |--q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

l ---------------| + |------|xin1 q|--+-----------ql
| | | | | |
+---| | +--|xin2 |
| +---+ | |
+--------------|eps |

+------------+

Fig. 2: Limits alarm standard declaration and FBD implementation

Block limits alarm implements an alarm that monitors the quantity of some
variable x, subject to a low limit l and a high limit h, with the hysteresis band
of size eps. The body definition of limits alarm visualizes how ultimate and
intermediate outputs are computed, e.g., output ql is obtained by computing
HYSTERESIS(l + (eps / 2.0), x, eps). There are five internal component blocks
of limits alarm: addition (+), subtraction(−), division (/), logical disjunction
(≥ 1), and the hysteresis effect (hysteresis). The internal connectives are w1,
w2 and w3. We will discuss the precise input-output requirement, using tabular
expressions, of limits alarm in Section 3.2.

2.2 Tabular Expressions. Tabular expressions [12, 24–26] (a.k.a. function ta-
bles) are an effective approach to describing conditionals and relations, and they
are thus ideal for documenting system requirements. They are arguably easier to
comprehend and to maintain than conventional mathematical expressions. Tab-
ular expressions have well-defined formal semantics (e.g., [13][14]). Reference [13]
presents a relational semantics for tabular expressions. The model covers most of
the known types of tabular expressions used in software engineering, and admits
precise classification and definition of new types of tabular expressions. Recently,
reference [14] presented a new semantics for tabular expressions by using index-
ing to decouple the appearance of a tabular expression from its semantics. They
have been proven to be of great help both in inspections [30] and in testing and
verification [31]. For our purpose of capturing the input-output requirements of
standard functions and function blocks in IEC 61131-3, the following tabular
structure in Figure 3 suffices: the input domain and the output range are parti-
tioned into rows of, respectively, the first column (for input conditions) and the
second column (for output results). The input column may be sub-divided to
specify sub-conditions.
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Result
Condition f

C1

C1.1 res1
C1.2 res2
. . . . . .
C1.m resm
. . . . . .

Cn resn

IF C1

IF C1.1 THEN f = res1
ELSEIF C1.2 THEN f = res2
...

ELSEIF C1.m THEN f = resm
ELSEIF ...

ELSEIF Cn THEN f = resn

Fig. 3: Semantics of HCT

We may interpret the above tabular structure as a list of “if-then-else” pred-
icates or logical implications. Each row defines the input circumstances under
which the output f is bound to a particular result value. For example, the first
row corresponds to the predicate (C1 ∧ C1.1 ⇒ f = res1.1), and so on. In doc-
umenting input-output behaviours (total functions) using horizontal condition
tables (HCTs), there are two important properties to reason about: complete-
ness and disjointness. Completeness ensures that at least one row is applicable
to every input, i.e., (C1 ∨ C2 ∨ · · · ∨ Cn) is always True. Disjointness ensures
that the rows do not overlap, e.g., (i 6= j ⇒ ¬(Ci ∧ Cj)). Similar constraints
apply to the sub-conditions C1.1, . . . , C1.m. Checks on these properties can often
be easily automated in development environments such as Matlab/Simulink [8]
and PVS [23].

2.3 PVS. Prototype Verification System (PVS) [23] is developed by SRI as an
interactive environment for writing formal specifications and performing formal
proofs. The specification language of PVS is based on classical higher-order logic.
The syntactic constructs that we use the most are “if-then-else” predicates and
tables, which we will explain as we use them in later sections.

PVS has a powerful interactive proof checker to perform sequent-style deduc-
tions. Syntactically, a PVS sequent is showed as: P1, P2, . . . , Pm `Q1, Q2, . . . , Qn,
where Pi, i = 1, 2, . . . ,m, and Qj , j = 1, 2, . . . , n are formulas and ` is entail-
ment. In PVS, a sequent is displayed as:

{-1} P1

{-2} ...

{-3} Pm

|-------

{1} Q1

{2} ...

{3} Qn

The antecedents are combined by conjunctives while consequents are con-
nected by disjunctives. Thus, PVS sequent is logically equivalent to P1 ∧ P2 ∧
· · ·∧Pm ` Q1∨Q2∨· · ·∨Qn. In our specification, we use ¬, ∧, ∨,⇒ to denote log-
ical negation, conduction, disjunction and implication and ∀, ∃ for universal and
existential quantifiers. It is very useful to formulate intermediate lemmas either
to be reused multiple times to eliminate repeated work or to decompose complex
problem into smaller ones and address one of them at a time. For example, we
can formulate and verify one lemma for each output correctness verification that
can be used when we verify overall correctness of this function block.
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The completeness and disjointness properties are generated automatically as
Type Correctness Conditions (TCCs) to be discharged. After typechecking which
is required to ensure conservative extension of PVS logic, most of the generated
proof obligations are discharged automatically. Complex TCCs and any other
user-made lemmas and theorems need to be interactively proved by users. The
proof is not considered to be complete until all TCCs and any imported and
current theory have been proved. We will discuss a found issue (Section 5) where
the ST implementation supplied by IEC 61131-3 is formalized as PVS table but
its disjointness TCC failed to be discharged.

Three important definitions are used in our work, equivalence, consistency
and correctness. Each of them will be represented as theorems in PVS and will
be discussed in Section 4.

Equivalence Implementations of a function block in different programming lan-
guages are equivalent if their implementation predicates are logically equivalent.

Consistency Implementation of a function block is consistent (or feasible) if
there exists such assignments for arguments of implementation predicate that
this predicate is satisfied.

Correctness Implementation of a function block is correct against its require-
ment if requirement predicate can be logically implied by implementation pred-
icate.

An example of using tabular expressions to model software specified and
verified in PVS in the Darlington Nuclear Shutdown System (SDS) can be found
in reference [17].

As PLCs are commonly used in real-time systems, modelling of time is a
critical aspect in our formalization. We consider a discrete-time model in which
a time series consists of equally divided clock ticks, denoted as

{t0, t1, t2, . . . , tn, . . . } = {0, δ, 2δ, . . . , nδ, . . . }

where δ ∈ R+ and δ is small enough to represent time interval between two
consecutive clock ticks.

More precisely, in PVS we define:

delta_t: posreal
time: TYPE+ = nonneg_real
tick: TYPE = {t: time | EXISTS (n: nat): t = n * delta_t}

Constant delta_t is a positive real number. We define two type synonyms:
time as the set of non-negative real numbers, and tick as the set of time instants
that are equally divided. We will use operators on tick [9], such as pre and next
that return, respectively, the previous and the next time tick. This definition of
tick is reproduced by [9] from [18].

3 Formalizing Function Blocks using Tabular Expressions

IEC 61131-3 does not adopt a unified, formal language to define standard func-
tions and function blocks. In many cases, both structural text (ST) and function
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block diagram (FBD) are used to describe a single function block. However,
both ST and FBD are informal, implementation-oriented notations, and they
are thus not adequate for capturing the precise input-output relationship that
is both complete and disjoint. Moreover, it is not possible to formally establish
that these implementations are correct (i.e. consistent with the input-output re-
quirement). We present a formal approach to defining standard functions and
function blocks in IEC 61131-3 using tabular expressions. For each function block
in IEC 61131-3, we: 1) translate the supplied ST or FBD implementation into
predicates in PVS (Section 3.1); and 2) capture its input-output requirement
using tabular expressions in PVS (Section 3.2). Consequently, we have a unified,
formal framework to verify the correctness of function blocks (Section 4).

3.1 Formalizing IEC 61131-3 Function Block Implementations

We perform formalization at levels of standard functions, basic function blocks
(FBs), and composite FBs. Similar to [6], we formulate each standard function
or function block as a predicate, characterizing its input-output relation.

Standard Functions. IEC 61131-3 defines eight groups of standard functions,
including: 1) data type conversion; 2) numerical; 3) arithmetic; 4) bit-string; 5)
selection and comparison; 6) character string; 7) time and date types; and 8)
enumerated data types. In general, we formalize the behaviour of a standard
function f as a Boolean function:

f(i1, i2, . . . , im, o1, o2, . . . , on) : bool ≡ R(i1, i2, . . . , im, o1, o2, . . . , on)

where predicate R characterizes the precise relation on the m inputs and the
n outputs of standard function f . Our formalization covers both timed and
untimed behaviours of standard functions. As an example of a timed function,
consider function move that takes as inputs an enabling condition en and an
integer in, and that outputs an integer out. The behaviour of move is time-
dependent: at the very first clock tick, out is initialized to zero; otherwise, at
time instant t (t > 0), out is either equal to in at time t, if condition en holds
at t, or otherwise out is equal to in at time t−α ∗ δ (α = 1, 2, . . . ) where en was
last enabled (i.e. a case of “no change” for out).

A predicate representing its behaviour is expressed as “if-then-else” state-
ment in which initial value is located in “if” branch and other cases are defined
by a tabular expression embedded in “else” branch. NC is used to indicate the
effect of no change. Thus, the definition of function move can be expressed in (1):

move(en: tick → bool, in, out: tick → int)(t : tick) : bool (1)

≡ out(t) =

IF t = 0 THEN 0

ELSE

Result

Condition out
en in
¬en NC
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More precisely, we translate the input-output relation of function move into
PVS:

move(en:[tick->bool],i,out:[tick->int])(t:tick): bool =
FORALL t: out(t) = IF t = 0 THEN 0

ELSE TABLE +-------------------------+
| en(t) | i(t) ||

+-------------------------+

| NOT en(t)| out(pre(t)) ||
+-------------------------+ ENDTABLE

ENDIF

We characterize the temporal relation between in and out as a universal quan-
tification over discrete time instants. Functions [tick->bool] and [tick->int]
capture the input and output values at different time instants. The behaviour at
each time instant t is expressed as an IF...THEN...ELSE...ENDIF statement.
Construct TABLE...ENDTABLE that appears in the ELSE branch exemplifies the
use of tabular expressions as part of a predicate. The main advantage of embed-
ding tables in predicates is that the PVS prover will generate proof obligations
of completeness and disjointness accordingly.

Untimed behaviour, on the other hand, abstracts from the input-output re-
lation at the current time instant, which makes first-order logic suffice for the
formalization. For example, we may simplify the behaviour of function move
by eliminating the enabling condition en and constraining that in and out are
always equal. As another example, consider the standard function add that is
used as an internal component of the FB limits alarm (Section 2), which has
the obvious formalization: add(in1, in2, out : int) : bool ≡ out = in1 + in2. In-
corporating the output value out as part of the function parameters makes it
possible to formalize basic FBs with internal states, or composite FBs. For basic
FBs with no internal states, we formalize them as function compositions of their
internal blocks. As a result, we also support a version of add that returns an
integer value: add(in1, in2) : int = in1 + in2.

Basic Function Blocks. A basic function block (FB) is an abstraction com-
ponent that consists of standard functions. When all internal components of a
basic FB are functions, and there are no intermediate values to be stored, we
formalize the output as the result of a functional composition of the internal
functions. For example, given FB weigh, which takes as inputs a gross weight gw
and a tare weight tw and returns the net weight nw, we formalize weigh by defin-
ing the output nw as nw = int2bcd(subtract(bcd2int(gross), tare)), where int2bcd
and bcd2int are standard conversion functions between binary-coded decimals
and integers. On the other hand, to formalize a basic FB that has internal states
to be stored, we take the conjunction of the predicates that formalize its internal
functions. We formalize composite FBs in a similar manner.

Composite Function Block. Each composite FB contains as components stan-
dard functions, basic FBs, or other pre-developed composite FBs. For example,
limits alarm (Section 2) is a composite FB consisting of standard functions and
two instances of the pre-developed composite FB hysteresis. Our formalization
of each component as a predicate results in compositionality: a predicate that
formalizes a composite FB is obtained by taking the conjunction of those that
formalize its components. IEC 61131-3 uses structured texts (ST) and function
block diagrams (FBD) to describe composite FBs.
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Remark. Predicates that formalize basic or composite FBs represent their black-
box input-output relations. Since we use function tables in PVS to specify these
predicates, their behaviours are deterministic. This allows us to easily compose
their behaviours using logical conjunction. The conjunction of deterministic com-
ponents is functionally deterministic.

Formalizing Composite FB Implementation: ST. In the case of an ST
implementation supplied by IEC 61131-3, we translate it into its equivalent
expression in PVS. Figure 4 summarizes our ST-to-PVS translation strategy,
illustrated using concrete examples.

# ST expressions PVS predicates

1 basic assignments

a := a + b; c := NOT (a > 0) a = a−1 + b & c = NOT (a > 0)

2 conditional assignments

IF z THEN
b := c * 3; c := a + b;

ELSE
b := b + c; e := b - 1;

END_IF

b = TABLE | z | c−1 * 3 ||

| NOT z | b−1 + c ||

ENDTABLE &
c = TABLE | z | a + b ||

| NOT z | c−1 ||

ENDTABLE &
e = TABLE | NOT z | b - 1 ||

| z | e−1 ||

ENDTABLE
3 function block invocations, reuse

FB1(in_1 := a, in_2 := b);

FB2(in_1 := FB1.output);

out := FB2.output;

FB1_REQ(a, b, fb1_out) &

FB2_REQ(fb1_out, fb2_out) &

out = fb2_out
4 output initialization

VAR_OUTPUT
q: int = False;

END_VAR

t: VAR tick

q: VAR [ tick -> bool ]

q = IF t = 0 THEN False
ELSE ... (def. of q at t > 0)
END_IF

5 for-loops

(suppose:

q is initialized to q0)

FOR i := M TO 1 BY -1 DO;
q := q + i;

END_FOR

loop(i): RECURSIVE nat =
IF i = 0 THEN 0
ELSE loop(i-1) + i END_IF
MEASURE (LAMBDA (i: nat): i)

q = q0 + loop(M)

Fig. 4: Translation from ST language to PVS language

Pattern 1 illustrates that we transform sequential compositions (;) into logical
conjunctions (&). We write a−1 to denote the value of variable a at the previous
time tick (i.e. before the current function block is executed). In general, we con-
strain the relationship between each variable v and v−1 to formalize the effect

of its containing function block. Pattern 2 illustrates that we reconstruct con-
ditional statements by taking the conjunction of the assignment effect of each
variable; each variable assignment is formalized via a tabular expression. The
order of evaluation depends on how variables are used in the function. For ex-
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ample, b is evaluated before c to compute c = a+b by b = c−1 +3. For the above
example (#2 in Fig. 4), an “if-then-else” conditional that returns the conjunc-
tion of the variable update predicates more closely correspond to the original
ST implementation may instead be used. In general though when assignment
conditions become more complicated, we feel it is clearer to isolate the update

of each variable. Pattern 3 illustrates that we translate each invocation of func-
tion block FB into an instantiation of its formalizing predicate FB_REQ, where the
return value of FB (i.e. FB.output) is incorporated as an argument of FB_REQ.

Pattern 4 illustrates that in a timed context, we transform the initialization
of an output q into a predicate that constrains q’s value at time instant 0 ac-
cordingly. As an example, see how we formalized standard function move in the

beginning of this section. Pattern 5 illustrates that we formalize a for-loop as a
recursive function, equipped with a measure (or variant) function that specifies
the progress towards termination.

We include an example in Section 5 formalization of the ST implementa-
tion hysteresis. In this example, the ST implementation is translated into its
equivalent predicate expressions in PVS. Its tabular requirement is also made
to be verified against with implementation. We claim that for each FB with a
ST implementation supplied, there is a corresponding predicate using the above
translation rules.

Formalizing Composite FB Implementation: FBD. To illustrate the case
of formalizing a FBD implementation supplied by IEC 61131-3, let us consider
the following FBD of a composite FB and its formalizing predicate in Figure 5:

B
1 B

2

B
3

 B
4

i
1

i
2

o
1

w
1

w
3

w
2

o
2

FBD IMPL(i1, i2, o1, o2)
≡ ∃w1, w2, w3•

B1 REQ(i2, w1)
∧ B2 REQ(w1, w3, w2)
∧ B3 REQ(i1, w2, o1)
∧ B4 REQ(o1, w3, o2)


Fig. 5: Composite FB implementation in FBD and its formalizing predicate

The above FBD consists of four internal blocks, B1, B2, B3, and B4, that are
previously developed for their formalization (i.e. their formalizing predicates
B1 REQ, . . . , B4 REQ are available). The high-level requirement (as opposed
to the implementation supplied by IEC 61131-3) for each internal FB constrains
upon its inputs and outputs, documented by tabular expressions (to be discussed
in Section 3.2). To describe the overall behaviour of the above composite FB,
we take advantage of our formalization being compositional. In other words, we
formalize a composite FB by existentially quantifying over the list of its inter-
connectives (i.e. w1, w2, and w3), such that the conjunction of predicates that
formalize the internal components hold.

For example, we formalize the FBD implementation of block limits alarm
(Section 2) as a predicate LIMITS_ALARM_IMPL in PVS:

t: VAR tick
x, h, l, w2, w3: VAR [tick -> real]
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eps, w1: VAR [tick -> posreal]
qh, ql, q: VAR pred[tick]

LIMITS_ALARM_IMPL(h,x,l,eps,qh,q,ql)(t): bool =
FORALL t:
EXISTS (w1,w2,w3):
div(eps(t),2.0,w1(t)) & sub(h(t),w1(t),w2(t)) &

add(l(t),w1(t),w3(t)) & disj(qh(t),ql(t),q(t)) &

HYSTERESIS_req_tab(x,w2,w1,qh)(t) & HYSTERESIS_req_tab(w3,x,w1,ql)(t)

We observe that predicate LIMITS_ALARM_IMPL, as well as those for the internal
components, all take a time instant t ∈ tick as a parameter. This is to account
for the time-dependent behaviour, similar to how we formalized the standard
function move in the beginning of this section.

The above predicates that formalize the internal components, e.g. predicate
HYSTERESIS_req_tab, do not denote those translated from the ST implementa-
tion of IEC 61131-3. Instead, as one of our contributions, we provide high-level,
input-output requirements that are missing from IEC 61131-3 (to be discussed
in the next section). Such formal, compositional requirement are developed for
the purpose of formalizing and verifying sophisticated, composite FBs.

3.2 Formalizing Requirements of Function Blocks

As stated, IEC 61131-3 supplies low-level, implementation-oriented ST or FBD
descriptions for function blocks. For the purpose of verifying the correctness of
the supplied implementation, or the consistency between multiple implementa-
tions, it is necessary to obtain requirements for FBs that are both complete (on
the input domain) and disjoint (on producing the output). Tabular expressions
(in PVS) are an excellent notation for describing such requirements. Our method
for deriving the tabular, input-output requirement for each FB is to partition
its input domain into equivalence classes, and for each such input condition, we
consider what the corresponding output from the FB should be.

As an example, we consider the requirement for function block limits alarm
(Section 2). The expected input-output behaviour is depicted in the following
Figure 6, and its tabular requirement (which constrains the relation between
inputs x, h, l, eps and outputs q, qh, ql) is captured in the three surrounding
tables. When variable value x exceeds the high limit h, the high flag qh becomes
true. Symmetrically, when x goes below the low limit l, the low flag ql becomes
true. Both flags qh and ql are set to false when x is in the exclusive range of
(l + eps, h− eps). There exists a hysteresis band for the high limit inside which
the value of qh remains unchanged: [h − eps, h]. Symmetrically, there exists a
hysteresis band for the low limit: [l, l + eps]. Finally, the alarm output q is set
to true if and only if either of the flags is set to true, or set to false otherwise.
The input-output requirement is captured in the three function tables. We will
discuss (Section 5) how our formalization process revealed the need for the two
missing assumptions from IEC 61131-3: eps > 0 and l + eps < h− eps.

Let predicates f_qh, f_ql, and f_q be those that formalize, respectively, the
table for qh, ql, and q, we then translate the above requirement into PVS as:

LIMITS_ALARM_REQ(h,x,l,eps,qh,q,ql)(t): bool =
f_qh(x,h,eps,qh)(t) & f_ql(x,l,eps,ql)(t) & f_q(qh,ql,q)(t)
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time

h

h-(eps/2)

qh=true

NC(No change)

l

l+(eps/2)

h-eps

l+eps

qh=false

ql=false

ql=true

NC(No change)

x

Result
Condition q

qh ∨ ql True

¬(qh ∨ ql) False

assume: l + eps < h− eps

Result
Condition qh

x > h True

h - eps ≤ x ≤ h NC

x < h − eps False

assume: eps > 0

Result
Condition ql

x < l True

l ≤ x ≤ l + eps NC

x > l + eps False

assume: eps > 0

Fig. 6: Limits alarm requirement in tabular expression

By using the function definitions of q, qh and ql, we can verify the correctness
of the FBD implementation of limits alarm, formalized as the predicate above.
This process can be generalized to verify other FBDs in IEC 61131-3.

4 Verifying Function Blocks in PVS

We consider the ST and FBD descriptions supplied by IEC 61131-3 as imple-
mentations of FBs. For each FB, under the same proof environment of PVS, we
formalize (Section 3.1) its supplied implementation and capture (Section 3.2) its
input-output requirement that is both complete and disjoint. We now present
the two kinds of verification we perform.

Verifying the Correctness of Implementation. Given an implementation
predicate I, our correctness theorem states that, for all possible inputs and out-
puts such that I holds, then the corresponding requirement predicate R also
holds. This contribution corresponds to the proofs of correctness showed in Fig-
ure 1. For example, to prove that the FBD implementation of block limits alarm
in Section 3.1 is correct with respect to its requirement in Section 3.2, we must
prove the following in PVS:

` ∀h, x, l, eps • ∀qh, q, ql •
limits alrm impl(h, x, l, eps, qh, q, ql)
⇒ limits alrm req(h, x, l, eps, qh, q, ql)

(2)

Furthermore, we also need to ensure that the suggested implementation is
consistent or feasible, i.e. for each input list, there exists at least one correspond-
ing list of outputs, such that I holds. Otherwise, the implementation trivially
satisfies any requirements. It is showed in Figure 1 of the proofs of consistency.
In the case of limits alarm, we must prove the following in PVS:

` ∀h, x, l, eps • ∃qh, q, ql • limits alrm impl(h, x, l, eps,qh, q, ql) (3)
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Verifying the Equivalence between Implementations. In IEC 61131-3,
block limits alarm is supplied with a ST implementation only. In theory, when
both ST and FBD implementations are supplied for the same FB (e.g. block
stack int), it may suffice to verify that each of the implementations is correct with
respect to the requirement. However, as the behaviour of FBs is intended to be
deterministic in most cases, it would be worth proving that the implementations
(if they are given at the same level of abstraction) are equivalent and observing
scenarios, if any, where they are not. This is also labelled in Firgure 1 with the
proofs of equivalence.

In Section 3.1 we discussed how to obtain, for a given FB, a predicate for its
ST implementation (say FB st impl) and one for its FBD implementation (say
FB fbd impl). Both predicates share the same input list i1, . . . , im and output
list o1, . . . , on. Consequently, to verify that the two supplied implementations
are equivalent, we must prove the following in PVS:

` ∀i1, . . . , im • ∀o1, . . . , on •
FB st impl(i1, . . . , im, o1, . . . , on)

≡ FB fbd impl(i1, . . . , im, o1, . . . , on)
(4)

However, the verification of block stack int is an exception. Its ST and FBD
implementations are at different levels of abstraction: the FBD description is
closer to the hardware level as it declares additional, auxiliary variables to in-
dicate system errors (Appendix E of IEC 61131-3) and thus cause interrupts.
Consequently, we are only able to prove a refinement (i.e., implication) rela-
tionship instead. In this case, we only need to prove that the higher level ST
implementation can be logically implied from the lower level FBD implementa-
tion, i.e., replace the “≡” with “⇐” in Equation (4). Thus, we will prove the
following formula instead:

` ∀i1, . . . , im • ∀o1, . . . , on •
FB fbd impl(i1, . . . , im, o1, . . . , on)

⇒ FB st impl(i1, . . . , im, o1, . . . , on)
(5)

Although IEC 61131-3 (2003) had been in use for almost 10 years, while
performing this verification on stack int, we found an error (of a missing FB in
the FBD implementation) that made the above implication (5) unprovable.

5 Case Study: Issues Found in Standard IEC 61131-3

To justify the value of our proposed approach (Sections 3 and 4), we have for-
malized and verified many2 of the FBs listed in IEC 61131-3, as well as standard
functions that are used in these function blocks. Our coverage so far reveals
a number of issues that are listed in the introduction. For the purpose of this
paper, we discuss the above found issues and our reactions to them.

5.1 Ambiguous Behaviour: Pulse Timer in Timing Diagrams. Block
pulse is one of the timers defined in IEC 61131-3. Its graphical declaration is
shown in on the LHS of the Figure 8 below. It takes two inputs (a boolean
condition in and a length pt of time period) and produces two outputs (a boolean

2 We have formalized and verified, in PVS, 22/29 FBs from IEC 61131-3 at the time
of submitting this paper.
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value q and a length et of time period). It acts as a pulse generator: as soon as
the input condition in is detected to be true, it generates a pulse to let output q
remain true for a constant pt of time units. The elapsed time that q has remained
true can also be monitored via output et. IEC 61131-3 presents a timing diagram3

as depicted on the RHS of the Figure 8 below, where the horizontal time axis
is labelled with time instants ti (i ∈ 0..5), to specify (an incomplete set of) the
behaviour of block pulse.

+------+

|Pulse |

| |

BOOL --|in q|-- BOOL

| |

TIME --|pt et|-- BOOL

| |

+------+

+--------+ ++ ++ +--------+

in | | || || | |

--+ +-----++-++-------+ +---

t0 t1 t2 t3 t4 t5

+----+ +----+ +----+

q | | | | | |

--+ +---------+ +------+ +-------

t0 t0+pt t2 t2+pt t4 t4+pt

pt +---+ + +---+

: / | /| / |

et : / | / | / |

: / | / | / |

: / | / | / |

--+ +-----+ +------+ +---

t0 t1 t2 t4 t5

Fig. 7: pulse timer declaration and definition in timing diagram

The above timing diagram suggests that when a rising edge of the input condition
in is detected at time t, another rising edge that occurs before time t+pt may not
be detected, e.g. the rising edge occurring at t3 might be missed as t3 < t2 + pt.

The use of timing diagrams to specify behaviour is inherently limited to a
small, finite number of use cases; subtle or critical boundary cases are likely to be
missing. We formalize the pulse timer using tabular expressions that ensure both
completeness and disjointness. We found that there are at least two scenarios
that are not covered by the above timing diagram supplied by IEC 61131-3:

1. If a rising edge of condition in occurred at t2 + pt, should there be a pulse
generated to let output q remain true for another pt time units? If so, there
would be two connected pulses: from t2 to t2 +pt and from t2 +pt to t2 +2pt.

2. If the rising edge that occurred at t3 stays high until some time tk, (t2 +pt ≤
tk ≤ t4), should the output et be default to 0 at time t2 + pt or at time tk?

We use the three tables in Figure 8 to formalize the behaviour of the pulse
timer, where outputs q and et, as well as an internal variable pulse start time,
are initialized to, respectively, false, 0, and 0.

3 For presenting our found issues, it suffices to show just the parts of in and q.
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Result
Condition q

¬q−1
¬in−1 ∧ in true
in−1 ∨ ¬in false

q−1
Held For(q,pt) false
¬Held For(q,pt) true

Result
Condition pulse start time
¬q−1 ∧ q t
q−1 ∨ ¬q NC

Result
Condition et

q t - pulse start time

¬q

¬Held For ts(in,pt,pulse start time) 0

Held For ts
in

t - pulse start time
pt≥ pt

(in,pt, t - pulse start time
t - pulse start time

pulse start time) < pt
¬in 0

Fig. 8: pulse timer specification in tabular expression

The above tables have their obvious equivalents in PVS. To make the timing
behaviour of the pulse timer precise, we define two auxiliary predicates:

Held_For(P:pred[tick],duration:posreal)(t:tick): bool =
EXISTS(t_j:tick): (t-t_j >= duration) &

(FORALL (t_n: tick | t_n >= t_j & t_n <= t): P(t_n))
Held_For_ts(P:pred[tick],duration:posreal,ts:tick)(t:tick): bool =
(t-ts >= duration) & (FORALL (t_n: tick | t_n >= ts & t_n <= t): P(t_n))

Predicate Held For(P, duration) is true when the input predicate P holds true
at least a period of time of duration. Predicate Held For ts(P, duration, ts) is a
more restricted version of Held For, insisting that the starting time of duration
is ts.

The value of our approach lies in that we make our assumptions explicit to
disambiguate the above two scenarios. Scenario 1 would match the condition
row (in bold) in the upper-left table for output q, where q at the previous time
tick holds (i.e. q−1) and q has already held for pt time units, so the problematic
rising edge that occurred at t2 + pt would be missed. Due to our resolution to
Scenario 1, at time t2 + pt, Scenario 2 would match the condition row (in bold)
in the lower table for output et, where q at the current time tick does not hold
(i.e. ¬q), condition in has held for more than pt time units and still stays true,
so the value of et remains as pt without further increasing.

As there is no implementation supplied in IEC 61131-3 for the pulse timer,
there are no proofs of correctness or equivalence to be discharged. Nonetheless,
obtaining a precise, complete, and disjoint requirement above for the pulse timer
is itself valuable for any future concrete implementations.

5.2 Ambiguous Behaviour: Implicit Delay Unit. PLC applications often
specify feedback loops: the output of a FB is connected as the input either
of another FB, or of itself. IEC 61131-3 specifies paths of feedback loops either
through a connecting line, or through adopting the same input and output name.
However, in real systems computations of feedback values (or of intermediate
output values) cannot occur instantaneously.
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We address this issue by introducing a delay block Z−1 and its formalization
showed in Figure 9:

Z�1
i o

Z−1(i, o)(t) =

{
o(t) = i(t− 1) if t > 0
False if t = 0

Fig. 9: Definition on delay unit

There is an explicit delay (i.e. one tick of clock) between the input and output
of block Z−1. Consequently, we can use block Z−1 to explicitly denote feedback
values as output values that are produced in the previous execution cycle. The
type of i and o can be any defined type, e.g. boolean type in the following
example, but have to be the same type.

To illustrate the use of block Z−1, we consider the block sr that creates a set-
dominant latch (a.k.a. flip-flop) in Figure 10. Block sr takes as inputs a boolean
set flag s1 and a boolean reset flag r, and it returns a boolean output q1. In
fact, the value of q1 is fed back as another input of block sr. Value of q1 remains
true as long as the set flag s1 is enabled, and q1 is reset to false only when both
flags are disabled. Obviously, there should be a delay between the value of q1 is
computed and passed to the next execution cycle. We formalize this by adding
the explicit delay block Z−1 and by taking the conjunction of the predicates
for the internal blocks: Blocks B1 (formalized by predicate neg), B2 (conj), B3

¬
˄

˅

 Z
-1

s
1

r

q
1

w
1

B
3

B
2B

1

w
3

w
2

B4

sr impl(s1, r, q1)
≡ ∃w1, w2, w3 •

neg(r, w1)
∧ conj(w1, w3, w2)
∧ disj(s1, w2, q1)
∧ Z−1(q1, w3)



Fig. 10: Block sr implementation in FBD and its formalizing predicate

(disj), and B4 (Z−1) in the above FBD denote the FB of, respectively, logical
negation, conjunction, disjunction, and delay. Arrows w1, w2, w3 are internal
connectives.

Adding an explicit block Z−1 of delay to formalize feedback loops led us
to discharge the correctness theorem (Section 4) of the above FBD implemen-
tation. More precisely, the following theorems are discharged in PVS, in which
sr fbd impl, sr req denote FBD implementation and tabular requirement of block
sr:

` ∀s1, r • ∀q1 • sr fbd impl(s1, r, q1)⇒ sr req(s1, r, q1) (6)

` ∀s1, r • ∃q1 • sr fbd impl(s1, r, q1) (7)

Our tabular requirement for sr block is specified in Figure 11:
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Result
Condition q

s1 True

¬s1
r False
¬r NC

Fig. 11: Tabular requirement for block sr

5.3 Missing Assumption: Limit on Counter FBs. IEC 61131-3 describes
three types of counters. An up-down counter (ctud) is composed of an up counter
(ctu) and a down counter (ctd). The output counter value cv is incremented
(using the up counter) if a rising edge is detected on an input condition cu, or cv
is decremented (using the down counter) if a rising edge is detected on the input
cd. Actions of increment and decrement are subject to, respectively, a high limit
PVmax and a low limit PVmin. The value of cv is loaded to a preset value pv if
a load flag ld is true; and it is default to 0 if a reset condition r is enabled. Two
Boolean outputs are produced to reflect the change on cv: qu ≡ (cv > pv) and
qd ≡ (cv <= 0).

The ST implementation and graphical declaration are provided in the stan-
dard in Figure 12:

+--------+

| CUTD |

| |

BOOL --|cu qu|-- BOOL

BOOL --|cd qd|-- BOOL

BOOL --|r |

BOOL --|ld |

INT --|pv cv|-- INT

+--------+

IF R THEN CV := 0 ;

ELSIF LD THEN CV := PV ;

ELSE

IF NOT (CU AND CD) THEN

IF CU AND (CV < PVmax)

THEN CV := CV + 1;

ELSIF CD AND (CV > PVmin)

THEN CV := CV - 1;

END IF;

END IF;

END IF;

QU := (CV >= PV) ;

QD := (CV <= 0) ;

Fig. 12: Block ctud declaration and ST implementation

As we attempted to formalize and verify the correctness of the ST implemen-
tation of block ctud supplied by IEC 61131-3, we found two missing assumptions.
First, the relationship between the high and low limits is not stated. Let PVmin
be 10 and PVmax be 1, then the counter can only increment when cv < 1, decre-
ment when cv > 10, and is disabled when 1 ≤ cv ≤ 10. This contradicts with our
intuition about how low and high limits are used to constrain the behaviour of

a counter. Consequently, we introduce a new assumption4: PVmin < PVmax .
Second, the range of the preset value pv, with respect to the limits PVmin and

PVmax, is not clear. If cv is loaded by the value of pv, such that pv > PVmax,
the output qu can never be true, as the counter increments when cv < PVmax.
Similarly, if pv is such that pv < PVmin and pv = 1, the output qd can never be

4 If the less intuitive interpretation is intended, we fix the assumption accordingly.
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true, as the counter decrements when cv > PVmin. As a result, we introduce an

assumption: PVmin < pv < PVmax .

Result
Condition cv

r 0

¬r

ld pv

¬ld

cu ∧ cd NC

cu∧¬cd
cv−1< PVmax cv−1+1
cv−1≥ PVmax NC

¬cu∧cd
cv−1> PVmin cv−1-1
cv−1≤ PVmin NC

¬cu ∧ ¬cd NC
assume: PVmin < pv < PVmax

Fig. 13: Tabular requirement for block CTUD

Our tabular requirement for the up-down counter that incorporates the miss-
ing assumption is shown above in Figure 13. Similarly, we added pv < PVmax
and PVmin < pv as assumptions for, respectively, the up and down counters.

5.4 Missing Assumption: Hysteresis Value. We revisit the tabular require-
ment of block limits alarm (Section 3.2) that implements a high/low limit alarm
with the hysteresis effect. Two internal blocks of limits alarm are high alarm and
low alarm. We introduced an assumption eps > 0 (i.e. positive hysteresis epsilon
value) to ensure that the two hysteresis zones [l, l + eps] and [h − eps, h] are
positive and are computed at the right directions. Moreover, we reckon that the
intention of having both high and low limits is to have two disjoint hysteresis
zones. Otherwise, the high and low alarms may be tripped on simultaneously,
and this is reflected by PVS as a failure to discharge the type correctness con-
straint of disjointness of the tabular requirement. As a result, we introduced
another assumption: h− eps > l + eps, or equivalently h− l > 2eps.

With our tabular requirement that incorporates these two assumptions, we
proved that the ST implementation supplied by IEC 61131-3 is both correct and
feasible (Section 4). The verification process involved the predicates for 5 pre-
defined functions and FBs, 3 lemmas for implementation correctness, 1 theorem
for implementation feasibility, 1 theorem for implementation correctness, and
about 140 PVS proof commands. The verified limits alarm block can thus be
safely reused to construct more complex FBs.

Similarly, another example of function block hysteresis showed in Figure 14
needs the same assumption on eps, i.e. eps > 0. This block implements boolean
hysteresis on the difference of two real inputs. Declaration and ST implementa-
tion are showed above. It takes as three inputs, two reals xin1, xin2 and hysteresis
epsilon value eps and one output q which indicates boolean hysteresis effect of
the difference of xin1, xin2. The behaviour of block hysteresis is illustrated as
following together with our tabular expression which has incorporated with the
missing assumption in Figure 15. The shaded area is used to present hysteresis
effect. When xin1 < xin2 − eps, output q becomes false and xin1 > xin2 + eps
then q becomes true. While xin1 is in between xin2 − eps and xin2 + eps, the
value of q is left unchanged by setting it to its previous value.
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(* DECLARATION *)

+------------+

| HYSTERESIS |

| |

REAL --|xin1 q|-- BOOL

REAL |xin2 |

REAL --|eps |

| |

+------------+

INPUTS:

xin1 : real input1

xin2 : real input2

eps: hysteresis

OUTPUTS:

q : hysteresis indicator

FUNCTION BLOCK HYSTERESIS

VAR INPUT XIN1, XIN2, EPS : REAL;

END VAR

VAR OUTPUT Q : BOOL := 0;

END VAR

IF Q THEN IF XIN1 < (XIN2 - EPS) THEN Q := 0;

END IF ;

ELSIF XIN1 > (XIN2 + EPS) THEN Q := 1;

END IF ;

END FUNCTION BLOCK

Fig. 14: Block hysteresis declaration and ST implementation

time

hysteresis

xin1>xin2+eps

xin2-eps<=xin1
<=xin2+eps

xin1<xin2-eps

true

false

NC(No change)

Result
Condition q

xin1 < (xin2 − eps) false

(xin2 − eps) ≤ xin ≤ (xin2 + eps) NC

xin1 > (xin2 + eps) true

assume: eps > 0

Fig. 15: Block hysteresis behaviour in tabular expression
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Tabular expression without the last line of assumption is the one translated
directly from the standard. It can not be correctly typechecked in PVS. An
unprovable disjointness TCC is generated by PVS prover as follows:

% Disjointness TCC generated (at line 54, column 7) for

% TABLE

%---------------------------------------------------------------------+-------++

% | xin1(t) < (xin2(t) - eps_no(t)) | FALSE ||

%---------------------------------------------------------------------+-------++

% |(xin2(t) - eps_no(t)) <= xin1(t) & xin1(t) <= (xin2(t) + eps_no(t))| prev ||

%---------------------------------------------------------------------+-------++

% | (xin2(t) + eps_no(t)) < xin1(t) | TRUE ||

%---------------------------------------------------------------------+-------++

% ENDTABLE

% unfinished

HYSTERESIS_tab_without_assumption_TCC1: OBLIGATION

FORALL (xin1: [tick[delta_t] -> real], xin2: [tick[delta_t] -> real],

eps_no: [tick[delta_t] -> real], q: pred[tick[delta_t]],

t: tick[delta_t], t1):

NOT init(t1) IMPLIES

(FORALL (prev: bool):

prev = q(pre(t1)) IMPLIES

NOT (xin1(t1) < (xin2(t1) - eps_no(t1)) AND

(xin2(t1) - eps_no(t1)) <= xin1(t1) &

xin1(t1) <= (xin2(t1) + eps_no(t1)))

AND

NOT (xin1(t1) < (xin2(t1) - eps_no(t1)) AND

(xin2(t1) + eps_no(t1)) < xin1(t1))

AND

NOT (((xin2(t1) - eps_no(t1)) <= xin1(t1) &

xin1(t1) <= (xin2(t1) + eps_no(t1)))

AND (xin2(t1) + eps_no(t1)) < xin1(t1)));

Thus, this function table is not well-defined because first and third row can
be satisfied at the same time but return different values. To address this problem,
we explicitly constraint the type of eps from any real numbers to positive real
numbers, i.e. from [tick -> real] to [tick -> posreal] to discharge the
above TCC. Such missing assumption can be potential danger propagating from
requirement to detailed implementation.

5.5 Error: Failed Implication Proof of Implementations. IEC 61131-
3 supplies both ST and FBD implementations for block stack int (a stack of
integers). It takes as inputs push, pop, r1, in, n and three outputs, out, empty
and oflo. The explanation for each is as follows:

It may perform operations of push(set by push), pop(set by pop), or re-
set(set by r1), subject to some limit on its depth(set by n). It outputs an inte-
ger value(out), depending upon which operation was performing, and Boolean
values reflecting if the current stack is empty(denoted by empty) or has an over-
flow(denoted by oflo). The data pushed into stack is from in. The maximum
stack depth is determined at the time of resetting.

The ST and FBD implementations are not given at the same abstraction
level, i.e. ST implementation is an abstraction of FBD implementation. Hence,
we should be able to prove the implication from FBD to ST implementation.
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5 Case Study: Issues Found in Standard IEC 61131-3

+-----------+

| STACK_INT | INPUTS: OUTPUTS:

| | push : push operation empty : stack

BOOL --|push empty|-- BOOL pop : pop operation is empty

BOOL --|pop oflo|-- BOOL r1 : reset oflo : stack

BOOL --|r1 out|-- INT in : input data is overflow

INT --|in | n : depth of stack out : top of stack

INT --|n |

| |

+-----------+

Fig. 16: Block stack int declaration

` ∀ push, pop, r1, in, n • ∀ out, empty, oflo •
stack int fbd impl(push, pop, r1, in, n,out, empty, oflo)

⇒ stack int st impl(push, pop, r1, in, n,out, empty, oflo)

(8)

We provide the push stk part of its implementations in ST in Figure 17 and
FBD in Figure 18 below which is relevant to this undischarged proof sequent.
There are four kinds internal FBs, move(:=), addition(+), substraction(−) and
boolean selection(sel). Block move updates output by input, block addition re-
turns the result of additions of two inputs, block subtraction returns the result
of subtraction of two inputs and block selection outputs one of two inputs de-
pending on a selection input. Note both enable input (en) and output (eno) are
used in each FB. The FB is enabled if en is hold and functions as specified,
otherwise, the output remains unchanged and eno is set to false.

...(* omit the others parts of this implementation*)

ELSIF PUSH & NOT OFLO THEN

EMPTY := 0; PTR := PTR + 1; OFLO := (PTR = NI);

IF NOT OFLO THEN OUT := IN; STK[PTR] := IN;

ELSE OUT := 0;

END IF;

END IF;

Fig. 17: push stk part of implementation of block stack int in ST

However, we failed to prove this functional implication specified above in (8).
The following unprovable sequent in PVS makes the proof of (8) incomplete. As
introduced in Section 2, this proof sequent can be completed if the disjunction
of consequents can be implies by the conjunction of antecedents. The variables
ending in “!1” are skolem constants (i.e. arbitrary constant of corresponding
type) that are used to eliminate quantifiers. By the definition of time (Sec-
tion 2), tick t!2 is the number n!2 tick on the time axis. Internal stack pointer
is ptr!1. inp!1 is the value pushed into stack which is set by input push!1.
Line {-1,-2,-3} is the definition of t!2. Line {-4} indicates input push!1 is
hold. The stack is overflow at tick t!2 which is showed in line {1}. Line {2}
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push_stk:

+---------+ +-------+ +-------+

| := | | + | | = |

1--|en eno|--------------|en eno|--------------|en eno|--

0--| |--empty 1--| |-----ptr------|g |--+--oflo

+---------+ +--| | ni--| | |

ptr-----------------------+ +-------+ +-------+ |

+------------------------------------------+--------------+

| | +-------+

| +---------+ | | sel |

| | := | +---|g |-----out

+------|en eno| +------|in0 |

in--+-------| |--stk[ptr] | 0--|in1 |

| +---------+ | +-------+

+----------------------------------------+

Fig. 18: push stk part of implementation of block stack int in FBD

shows that the value pointed by ptr!1 is equal to the value pushed in by inp!1
at tick t2!1. The following sequent states that, at tick t!2, if a value inp!1
is pushed into stack by setting push!1, either the stack is overflow denoted by
oflo!1 or the top of stack is updated by inp!1. This is not the case expressed
in ST implementation, i.e. the top of stack is updated by inp!1 happens when
the stack is not overflow.

STACK_INT_fbd_implies_st.3.14 :

{-1} n!2 >= 0

{-2} n!2 * delta_t >= 0

{-3} t!2 = n!2 * delta_t

{-4} push!1(n!2 * delta_t)

|-------

{1} oflo!1(n!2 * delta_t)

{2} stk!1(ptr!1(n!2 * delta_t)) = inp!1(n!2 * delta_t)

By inspecting the FBD implementation, we found that there was a missing
negation FB to specify that normal actions proceed only the current stack is not
in an overflow state (i.e. opposite to the formula in Line {1}). By correcting this
found error, we proved that ST implementation can be logically implied from
FBD implementation. In order to have the same notations as used in standard,
we add a small circle to indicate where to insert this negation FB. This circle
(negation) is inserted between oflo and the enable input of bottom block move.
After correcting, the logical implication from FBD to ST implementation can be
proved, i.e. the above proof sequent can be discharged.

6 Related Work

There are many works on formalizing and verifying PLC programs specified
by programming languages covered in IEC 61131-3, such as sequential func-
tion charts (SFCs). Some approaches choose the environment of model checking:
e.g., to formalize a subset of the language of Instruction Lists (ILs) using timed
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automata, and to verify real-time properties in Uppaal [20]; to automatically
transform SFC programs into the synchronous data flow language of LUSTRE,
amenable to mechanized support for checking properties [16]; to transform FBD
specifications to Uppaal formal models to verify safety applications in the in-
dustrial automation domain [28]; to provide the formal operational semantics
of ILs which is encoded into the symbolic model checker Cadence SMV and to
verify rich behavioural properties written in linear temporal logic (LTL) [7]; and
to provide the formal verification of a safety procedure in a nuclear power plant
(NPP) in which a verified Coloured Petri Net (CPN) model is derived by reinter-
pretation from the FBD description [22]. There is also an interesting integration
of both model checker Cadence SMV and the real-time model checker Uppaal
to handle, respectively, untimed and timed SFC programs [4]. Some other ap-
proaches adopt the verification environment of a theorem prover: e.g., to check
the correctness of SFC programs, automatically generated from a graphical front-
end, in Coq [5]; and to formalize PLC programs using higher-order logic and to
discharge safety properties in HOL [29]. These works are similar to ours in that
PLC programs are formalized and supported for mechanized verifications of im-
plementations. An algebra approach for PLC programs verification is presented
in [27]. In [19], a trace function method (TFM) based approach is presented to
solve the same problem as ours where tabular expression are used to document
internal variables.

Our work is inspired by [21] developed in the context of hardware verification.
The similarity is that the overall system behaviour is defined by taking the
conjunction of those of internal components (circuits [21] or FBs in our case).
Also, our resolutions to the timing issues of the pulse timer are consistent with
those provided in [15]. The novelty of our approach lies in that we also obtain
high-level, input-output tabular requirements to be checked against, instead of
writing properties directly in the language of the chosen theorem prover or model
checker. Our formalism is precise yet easy to understand compared with other
approaches and more importantly, disjointness and completeness properties can
be guaranteed.

7 Conclusion and Future Work

We presented an approach to formalizing and verifying function blocks using
both tabular expressions and PVS. Using our approach, we identified issues
concerning ambiguity, missing assumptions, and erroneous implementations in
the IEC 61131-3 standard of function blocks. As future work, we will apply the
same approach to the remaining FBs in IEC 61131, and possibly to IEC 61499
that fits well with distributed systems.
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