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Many industrial control systems use programmable logic controllers (PLCs) since they 
provide a highly reliable, off-the-shelf hardware platform. On the programming side, 
function blocks (FBs) are reusable components provided by the PLC supplier that can be 
combined to implement the required system behaviour. A higher quality system may be 
realized if the FBs are pre-certified to be compliant with an international standard such 
as IEC 61131-3. We present an approach: 1) to create complete and unambiguous FB 
requirements using tabular expressions; and 2) to verify the consistency and correctness 
of FB implementations in the PVS proof environment. We apply our approach to the 
examples in the informative Appendix F of the IEC 61131-3 standard. We examined the 
entire library of FBs and their supplied implementations described in structured text (ST) 
and function block diagrams (FBDs). Our approach identified issues in the informative 
examples, including: a) ambiguous behavioural descriptions; b) missing assumptions; and 
c) inconsistent implementations. We also proposed solutions to these issues.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many industrial control systems have replaced traditional analog equipment by components that are based upon pro-
grammable logic controllers (PLCs) to address increasing market demands for high quality [1]. Function blocks (FBs) are 
basic design units that implement the behaviour of a PLC, where each FB is a reusable component for building new, more 
sophisticated components or systems. Standards such as DO-178C [2] (in the aviation domain) and IEEE 7-4.3.2 [3] (in the 
nuclear domain) list acceptance criteria for mission- or safety-critical systems that practitioners need to comply with. Two 
important criteria are: 1) the system requirements are precise and complete; and 2) the system implementation exhibits 
behaviour that conforms to these requirements. In one of its supplements, DO-178C advocates the use of formal methods to 
construct, develop, and reason about the mathematical models of system behaviours. To this end, we present methods that 
support the use of formal notations for specifying the required behaviour of FBs, and for verifying that each FB (including 
composed FBs) complies with its requirements.

Tabular expressions [4,5] (a.k.a., function tables or tables) have proven to be both practical and effective in formally 
documenting system requirements in industry [6,7]. PVS [8] is a general purpose theorem prover that provides an integrated 
environment with mechanized support for writing specifications using tabular expressions and (higher-order) predicates, 
and for (interactively) proving that implementations satisfy the tabular requirements using sequent-style deductions. In 
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this paper we report on using tabular expressions to formalize the requirements of FBs and on using PVS to verify their 
correctness (with respect to tabular requirements).

As a case study, we attempted to verify the FBs1 listed in “Informative” Annex F of the 2003 version of IEC 61131-3 [9]
as well as the FBs described in the standard itself. IEC 61131-3 is an important standard with over 20 years of use on 
critical systems running on PLCs. We had two reasons for choosing IEC 61131-3 for our case study. First of all, this provided 
a number of FBs that represent useful behaviours in a number of application domains, so our methods could be applied to 
FBs that we knew were representative of industrial use. Secondly, although the FBs of Annex F are not technically part of 
the standard as indicated by the labelled “Informative”, the entire document, including all annexes, has become the de facto
standard for FBs. PLC vendors have based their libraries on the FBs from Annex F, as well as those described in the body of 
the standard.

The standard itself does not make any claim as to the completeness and appropriateness of the behaviour of FBs. In 
addition, no one has published a “validated and verified” version of the FBs in the standard. Thus, companies that develop 
mission-critical or safety-critical systems using PLCs had to qualify the behaviour of their libraries based on IEC 61131-3 
(including Annex F), at considerable cost. If practitioners can use pre-defined and pre-verified FBs, then this will help raise 
the quality of FB-based implementations in industry without the overhead that would be required if each practitioner had 
to perform the verification separately.

Currently, some of the design specifications in the standard (expressed in source code) are incorrect, in that they are not 
what is commonly expected in practice. We believe that formal requirements of the FB behaviour, such as those provided 
by tabular expressions, help tool vendors and users of FBs have the same interpretations of the expected system behaviours. 
Also, formal descriptions are amenable to mechanized support such as PVS to verify the conformance of candidate imple-
mentations to a high-level, input-output requirements. For the purpose of this paper, we focus on FBs that are described in 
the more commonly used languages of structured texts (STs) and function block diagrams (FBDs). Note that two versions 
of IEC 61131-3 are cited here. The earlier version [9] has been in use since 2003. Most of the work reported in this paper 
relates to this version.

As we will see, a number of issues were uncovered in the FBs in the standard and in its informative Annex F. Our 
intent in the proceeding discussion is to illustrate how our methodology raised questions about some of these FBs. It is 
not a direct criticism of the standard, since the original mandate of the standard did not include the presentation of a 
pre-validated and pre-verified FB library. In fact, the standard does not attempt to define the required behaviour of each FB 
at the semantic level that we would expect from a requirements specification. Instead it uses code. These source programs 
are operational descriptions, making it hard to identify unexpected behaviour, and they are thus at an inappropriate level of 
abstraction for specifying requirements. Consequently, we had to provide the high-level requirements specifications based on 
our experience and on what we deduced was the intended behaviour of the FB. Readers may not agree with our version of 
the required behaviour, but we did make an honest attempt to define the behaviour that would be consistent with industrial 
norms. In any case, our motivation here is to demonstrate our methods, not to criticize the standard. We hope that readers 
will be interested that the methodology highlighted potential problems with FBs that have been in use for many years, and 
that this type of methodology can help us improve the quality of FB-based designs. In 2013, a new version of the standard 
was issued [10], and this version did not include Annex F. Some of the FBs in the new version do still exhibit behaviour 
that we believe could be improved through use of this methodology.

Our approach and contributions
We now summarize our approach and contributions with reference to Fig. 1. As shown on the left of the figure, an FB 

will typically have a natural language description of the block behaviour accompanied by a detailed implementation in the 
ST or FBD description, or in some cases both. Based upon all of this information we created a black box tabular requirements 
specification in PVS for the behaviour of the FB (Section 3.2). The ST and FBD implementations are formalized as predicates 
in PVS, again making use of tables (Section 3.1). In the case when there are two implementations for an FB, one in an FBD 
and the other in ST, we attempt to prove their (functional) equivalence in PVS (Section 4.2). We also use PVS to attempt to 
prove the consistency2 and correctness of each implementation with respect to its FB requirements (Section 4.1).

Using our approach, we identified a number of possible issues that warrant users’ attention: ambiguous behaviour (Sec-
tion 5.1); possible missing input assumptions (Section 5.2); and inconsistent implementations (Section 5.3). We compare our 
approach and results with other related work in Section 6, and end up with some concluding remarks in Section 7.

This paper extends [11] by including the following new contributions:

• We provide a complete example which illustrates the modelling of FB requirements in PVS (Section 3.2).
• A revised list of ST-to-PVS translation rules (Section 3.1.4) is included, sufficient to handle all the implementations in-

cluded in IEC 61131-3 [9] and its Annex F. Constructs that are supported by the ST language but not used in Annex F of 
the standard [9] (e.g., CASE statement, WHILE and REPEAT loops, etc.) are not covered in our list of rules. Nonetheless, 

1 PVS files are available at http://www.cas.mcmaster.ca/~lawford/papers/SCP2014. All formalization and proofs are conducted using PVS 6.0.
2 In this paper, we overload the term consistency in two contexts. Two implementations are consistent if they exhibit the same input-output behaviour. 

An implementation is consistent (or feasible) if for any legitimate input, it produces an expected output. However, the context should be clear when we use 
the term.

http://www.cas.mcmaster.ca/~lawford/papers/SCP2014
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Fig. 1. Framework.

the value of our translation is justified by the fact that the Annex F example function blocks are commonly used in 
industry.

• We extend the discussion on the SR block by supplying the exact definitions of: 1) what we consider should be the 
black-box input-output requirements table; 2) its theory of consistency; and 3) its theory of correctness (Section 5.1.2).

• We completed the verification of all FBs listed in IEC 61131-3 and found more blocks that warrant discussion: HYS-
TERESIS (Section 5.2.2), LIMITS_ALARM (Section 5.2.3), DELAY (Section 5.2.4), AVERAGE (Section 5.2.5), PID (Section 5.2.6), 
DIFFEQ (Section 5.2.7), and STACK_INT (Section 5.3.1). We present tabular requirements for these blocks and propose 
solutions3 for the potential issues we uncovered using this methodology.

In the next section we discuss background material: the IEC 61131-3 Standard, tabular expressions, and PVS.

2. Preliminaries

2.1. IEC 61131-3 standard for function blocks

Programmable logic controllers (PLCs) are digital computers that are widely utilized in real-time and embedded control 
systems. In an effort to unify the syntax and semantics of programming languages for PLCs, the International Electrotechnical 
Committee (IEC) first published IEC 61131-3 in 1993, and later revisions in 2003 [9] and 2013 [10]. Most of our research 
results were completed before the third edition was released.

We applied our methodology to the standard functions and also to the FBs listed in Annex F of IEC 61131-3 (2003). FBs 
are more flexible than standard functions in that they allow internal states, feedback paths, and time-dependent behaviours. 
We distinguish between basic and composite FBs: the former consist of standard functions only, while the latter can be 
constructed from standard functions and any other pre-developed basic or composite FBs.

Each FB is fed by input values, performs computations on them according to the behaviour specified in either ST or 
FBD (or both4), and produces output values. We focus on two programming languages that are covered in IEC 61131-3 for 
writing behavioural descriptions of FBs: STs and FBDs. These two languages are widely used in PLC-based control systems. 
The ST notation is a high level textural programming language which resembles another high-level programming language, 
Pascal. FBDs are a graphical programming notation. The fundamental concept behind FBDs is the inter-connections among 
block components, which specify the data flow dependency.

However, we found that in some cases for the same FB, its ST and FBD implementations (supplied in IEC 61131-3 2003 
and its Annex F) cannot be mapped from one to the other, and thus cannot be proved to be equivalent; instead, we prove 
that one implementation conforms to the other (but not vice versa). For example, the FBD implementation supplied for 
STACK_INT block (discussed in Section 5.3.1) has an explicit execution order for its component FBs, and such specificity is 
not required in the ST implementation for the same block.

As an example of FBD implementation, we consider the LIMITS_ALARM block (Annex F.6.7) that will be used as a running 
example for later sections. The FBD of the LIMITS_ALARM block (Fig. 2) consists of two parts: 1) declaration of inputs and 
outputs; and 2) definition of the computation of its body. An alarm monitors the quantity of some input variable X , subject 
to a low limit L and a high limit H , with a hysteresis band of size EPS.

There are five component blocks of LIMITS_ALARM: addition (+), subtraction (−), division (/), logical disjunction (≥ 1), 
and two instances of hysteresis (i.e., HIGH_ALARM and LOW_ALARM). The internal connectives w1, w2 and w3 are used to 

3 We deliberately choose the term solution, as opposed to resolution, in that we only propose possible solutions for the potential issues, and we do not 
intend to claim that they are the only solutions.

4 In the main text of the standard, each basic FB is defined in one single language. In the case of composite FBs, several languages can be used as the 
component FBs may be described using different programming languages.
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(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
. . . . . .

C1.m R E Sm

. . . . . .

Cn R E Sn

IF C1

IF C1.1 THEN F = R E S1

ELSEIF C1.2 THEN F = R E S2

...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using 
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0 ).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0 ).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS 
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they 
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than 
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers 
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics 
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular 
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of 
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input 
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders, 
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may 
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the 
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which 
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover 
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all input combinations, i.e., if we suppose that there are no sub-conditions, (C1 ∨ C2 ∨ · · · ∨ Cn ≡ TRUE). Disjointness ensures 
that the rows do not overlap, e.g., (i �= j ⇒ ¬(Ci ∧ C j), i, j ∈ {1, 2, . . . , n}). Similar constraints apply to the sub-conditions, 
if any.

2.3. PVS language and prover

The Prototype Verification System (PVS) [8] was developed by the Computer Science Lab at SRI International as an 
interactive environment for writing specifications and conducting proofs. PVS consists of a specification language, predefined 
theories, a parser, a type checker, a theorem prover which supports several decision procedures, a symbolic model checker, 
pre-developed libraries, and utilities and documentation with examples in different application areas.

The PVS specification language is based on classical, typed higher-order logic. The base types include uninterpreted 
types and built-in types such as the Booleans. The type-constructors include functions, sets, tuples, records, enumerations, 
and inductively-defined (or coinductively-defined) abstract data types. In addition, users can adopt predicate subtypes and 
dependent types to introduce constraints to greatly increase the expressiveness and naturalness of specifications. But the 
expense is that these constrained types may generate proof obligations called Type Correctness Conditions (TCCs) during type-
checking. In many cases, these generated TCCs can be discharged automatically by the theorem prover. PVS specifications are 
organized into theories that may include imported theorems, assumptions, definitions, axioms, lemmas, and goal theorems. 
Furthermore, the theories can be parameterized with constants, types, and theory instances. Definitions are conservative, 
e.g., subtype TCC generated with dependent types and termination TCC generated with recursive function definitions. PVS 
expressions support the arithmetic and logical operators, function application, lambda abstraction, and quantifiers, within a 
natural syntax. Tabular expressions are also provided with automated checks for disjointness and completeness. A prelude 
is included in PVS to provide over 1000 useful definitions and lemmas. The NASA PVS Library is also a collection of formal 
developments contributed and maintained by the NASA Langley Formal Methods Team [17].

The built-in theorem prover provides a collection of powerful proof commands to conduct propositional and quantifier 
rules, equality, and arithmetic formal reasoning under user guidance. Proof commands can be combined to form higher-level 
proof strategies. The PVS specification language is designed to work with the prover so that the inference mechanisms 
exploit the type information of a defined term and most of the generated TCCs are automatically discharged by the prover. 
To facilitate debugging of proofs, the PVS proof checker allows any proof step to be undone. It also permits modification of 
specification over the course of a proof. Proof scripts can be edited and rerun to support proof maintenance, allowing many 
similar theorems to be proved efficiently and adjusted economically.

We chose the PVS theorem prover to formalize the input-output requirements of function blocks primarily because it 
supports the syntax and semantics of tables (Section 2.3.1). In particular, for each table that is syntactically valid, PVS 
automatically generates its associated healthiness conditions of completeness and disjointness as TCCs. We have expertise 
built from past experience in applying PVS to check requirements and designs in the nuclear domain [6] that gave us 
confidence in using the toolset, and for modelling real-time behaviour we reused parts of the PVS theories from [18,19]. 
Our ongoing work on proving properties of real-time function blocks that consider timing tolerances also relies on the same 
set of theories. Nonetheless, the techniques presented in this paper are transferable to other theorem provers that support 
reasoning in higher-order logic, although checks of completeness and disjointness may then have to be manually encoded 
or a generator for the properties would have to be developed.

The function blocks in Annex F of IEC 61131-3 [9] involve only simple expressions using linear integer or real arithmetic 
and in our experience, when these constraints are provable, the table-related TCCs generated were typically automatically 
discharged by PVS’s built-in default strategies. Alternatively, these table correctness conditions can be automatically dis-
charged by an SMT solver, using the solver’s theories for linear integer and real arithmetic. However, such verification may 
not be as convenient as in PVS, since one will need to manually encode these constraints for each table in the SMT solver, 
unless an existing tool that supports automated generation of correctness conditions (e.g., [20]) is chosen to create the 
tables. Further, when handling additional user-defined or library blocks that involve nonlinear arithmetic, the table’s cor-
rectness conditions may be undecidable by an SMT solver. In this case, the PVS environment allows us to interactively prove 
these conditions.

2.3.1. Support for function tables in PVS
The PVS specification language provides two alternative built-in constructs for specifying function tables: COND and 

TABLE. They are semantically equivalent to a series of IF–THEN–ELSE–ENDIF statements. The use of COND and TABLE causes 
PVS to generate the proof obligations on disjointness and completeness to guarantee that the function table is well-defined. 
These can often be discharged automatically using the built-in proof strategies in PVS, i.e., (COND–COVERAGE–TCC) and 
(COND–DISJOINT–TCC). When the table cannot be automatically proved as well-defined, some useful feedback is returned. 
However, for readability, it is more advisable for users to adopt the TABLE construct, which will be translated into the 
equivalent COND construct in PVS for typechecking and proofs. Later in this paper (Section 5.2.2), we will discuss an issue 
in which the ST implementation supplied by IEC 61131-3 is formalized as a PVS table but the table fails the proof on 
the TCC of disjointness. The syntactic constructs that we use the most are IF–THEN–ELSE–ENDIF predicates and tables. An 
example of using tabular expressions to specify and verify the Darlington Nuclear Shutdown System (SDS) in PVS can be 
found in [6].
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x: VAR int

f _cond(x) : bool =
COND x >= 0 -> TRUE,

x < 0 -> FALSE
ENDCOND

f _table(x) : bool =
TABLE | x >= 0 | TRUE ||

| x < 0 | FALSE ||
ENDTABLE

% Disjointness TCC generated (at line 15, column 2) for
% COND x >= 0 -> TRUE, x < 0 -> FALSE ENDCOND
% proved - complete

f _cond_TCC1: OBLIGATION
FORALL (x : int) : NOT (x >= 0 AND x < 0);

% Coverage TCC generated (at line 15, column 2) for
% COND x >= 0 -> TRUE, x < 0 -> FALSE ENDCOND
% proved - complete

f _cond_TCC2: OBLIGATION
FORALL (x : int) : x >= 0 OR x < 0;

Fig. 4. Function tables and their TCCs in PVS.

x : VAR real

g(x) : real = 1/x

% Subtype TCC generated (at line 108, column 17) for x
% expected type nznum
% unfinished

g_TCC1: OBLIGATION FORALL (x : real) : x/ = 0;

Fig. 5. Expressions and well-definedness TCCs in PVS.

2.3.2. Type correctness conditions
We briefly review failed TCCs that we encountered in our verification process. PVS automatically generates TCCs as proof 

obligations, which often can be automatically discharged, if they are provable, using the default proof strategies. However, 
in cases where they are too complicated to be discharged automatically, human interaction is required to guide the prover. 
Unproven TCCs often help users reveal issues (e.g., incompleteness, non-disjointness, ill-definedness, etc.) that can be traced 
back to the original specifications. One may choose to continue other proofs for the same specification while bypassing 
unproven TCCs, but until all TCCs have been discharged, a specification is not considered as type-correct, and lemmas and 
theorems that depend on theses unproven TCCs are considered provisional.

PVS checks the completeness and disjointness properties for a function table (Section 2.2) by automatically generating 
two types of TCCs: (COND–COVERAGE–TCC) for coverage (i.e., completeness) and (COND–DISJOINT–TCC) for disjointness.

As an example, consider a simple Boolean function f (x) with an integer parameter x:

f (x) =
{

TRUE if x ≥ 0
FALSE if x < 0

In PVS, function f can be specified as a function table using either the COND construct or the TABLE construct as shown on 
the Left Hand Side (LHS) of Fig. 4. The associated TCCs5 of (COND–COVERAGE–TCC) and (COND–DISJOINT–TCC) are automat-
ically generated by PVS – see the Right Hand Side (RHS) of Fig. 4.

Since constraints can be imposed on the types in a PVS specification, subtype TCCs are generated for expressions whose 
types are defined using the predicate subtype notation (e.g., positive real numbers posreal). It makes very explicit and intu-
itive statements about the domains and ranges of functions, thereby contributing to the clarity of the PVS specification. The 
price paid is that it requires theorem proving to prove that expressions satisfy the constraints attached to types. Consider a 
general PVS function F , which is defined as:

F : { x : T | P (x) } → { y : T ′ | Q (y) }
with the domain type constrained by predicate P and range type constrained by predicate Q . Whenever a function f is 
invoked, subtype TCCs are generated to ensure that, the output has to satisfy predicate constraint Q and the input has to 
satisfy predicate constraint P . Division is a particular instance of this problem.

As an example, consider a function g(x) with a real parameter x:

g(x) = 1/x

To model g in PVS, we use the built-in division operator (LHS in Fig. 5). For g to be well-defined, all expressions involved 
in its definition must be well-defined, i.e., the denominator x must be non-zero. Such a well-definedness constraint is 
formulated automatically by PVS as a TCC (RHS in Fig. 5).

There are other categories of TCCs that are automatically generated in PVS: existence TCCs and termination TCCs. Exis-
tence TCCs are generated for expressions whose types are declared as non-empty. Termination TCCs are generated to ensure 
that recursive functions always terminate for all possible inputs by requiring a well-founded measure to strictly decrease on 
each recursive calls. More precisely, recursive functions must be specified with a measure, that is a function whose signature 

5 We show only the generated TCCs for function f_COND, as the same TCCs are generated for f_TABLE.
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matches that of the recursive function, but with range type the domain of the order relation, which defaults to < on nat or 
ordinal.

2.3.3. Proofs in PVS
PVS has a powerful interactive proof checker to perform sequent-style deductions. The basic structure of the underlying 

calculus in PVS is a sequent [21]. Syntactically, a PVS sequent is showed as:

P1, P2, . . . , Pm � Q 1, Q 2, . . . , Q n

where Pi , i = 1, 2, . . . , m are antecedent formulas, Q j , j = 1, 2, . . . , n are consequent formulas, and � denotes entailment. 
Where the context is empty (i.e., no antecedent), � may be dropped. The antecedents are combined by conjunctives while 
consequents are connected by disjunctives. Thus, the above PVS sequent is equivalent to the following expression in predi-
cate logic6:

P1 ∧ P2 ∧ · · · ∧ Pm � Q 1 ∨ Q 2 ∨ · · · ∨ Q n

The final goal of a PVS sequent is to determine whether at least one of its consequents is a logical consequence of its 
antecedents. In an editor panel of the PVS prover, a sequent is displayed as follows:

{-1} P1
... ...
{-m} Pm
|-------
{1} Q1
... ...
{n} Qn

A sequent can be discharged only if one of the following three cases applies: 1) FALSE occurs in the antecedents; 2) TRUE
occurs in the consequents; or 3) the formula P occurs in both the antecedents and the consequents [19]. A PVS sequent 
may be discharged by splitting it into sub-goals and by proving all of these sub-goals. The prover maintains a proof tree, 
and the final goal is to discharge each of its leaves by invoking relevant proof commands.

In practice, it is useful to decompose a complex problem into smaller ones, and to formulate and prove each of these sub-
problems as a lemma. For example, to verify the overall correctness of the LIMITS_ALARM block (Section 4.1), we formulate 
the correctness conditions of its three output variables (i.e., QL, Q, and QH) as separate lemmas and conduct independent 
proofs.

Our justification for decomposing requirements by their outputs is two-fold. First, output variables in our proposed 
requirements tables do not depend upon each other. As discussed in Section 2.4, our requirements model describes idealized 
behaviour with an arbitrarily small clock-tick. At each discrete time instant, outputs are produced simultaneously as the 
inputs are updated. This means that the value of each output of a function block depends solely on those of the inputs. 
Second, all input-output requirements tables that we propose are completely functional. This claim is supported by the fact 
that all our proposed function tables are provably complete and disjoint, meaning that at any time instant, exactly one value 
can be produced for each output. Consequently, it is always possible to separate the definition of an output by projecting 
onto its relevant range of values. For example, consider any input types I1 and I2 and output types O 1 and O 2, then we 
declare

REQ : I1 × I2 → O 1 × O 2
req1 : I1 × I2 → O 1
req2 : I1 × I2 → O 2

where REQ represents the overall requirements function, and req1 and req2 represent, respectively, the requirements for the 
first output and second output, then for input values i1 ∈ I1 and i2 ∈ I2, we have

req1(i1, i2) = π1 ◦ REQ(i1, i2)

req1(i1, i2) = π2 ◦ REQ(i1, i2)

where π1 and π2 are operators for, respectively, the first projection and second projection. This example can be generalized 
to arbitrary numbers of inputs and outputs.

Consequently, for each output, we are able to: 1) specify a separate function table that characterizes its relationship with 
the inputs; and 2) prove its correctness separately.

6 We use ¬, ∧, ∨, ⇒, ∀, and ∃ to denote, respectively, logical negation, conjunction, disjunction, implication, and universal and existential quantifiers. 
The corresponding notations in PVS are NOT, &, OR, IMPLIES, FORALL, and EXISTS.
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2.4. Modelling time in PVS

As PLCs are widely used in real-time systems, the modelling of time is a critical aspect in our formalization. We consider 
a discrete-time model, where a time series consists of equally distributed time samplings, or “ticks”. More precisely:

{t0, t1, t2, . . . , tn, . . . } = {0, δ,2δ, . . . ,nδ, . . . }
where δ ∈ R

+ is small enough to represent the time interval between two consecutive clock ticks. This kind of definition of 
tick is reproduced by [18] from [22]. It represents the type TIME in IEC 61131-3. In the real world, the sampling frequency is 
usually different from the clock tick frequency, i.e., the clock tick frequency should be significantly larger than the sampling 
frequency. In the software domain, all the actions occurring at the sampling times can be captured at the corresponding 
clock ticks. To approximate the continuous time model, the value of δ may be arbitrarily small.

As a result, we define a Time theory in PVS:

delta_t : posreal
time : TYPE+ = nonneg_real
tick : TYPE = { t : time | EXISTS (n : nat) : t = n × delta_t }

The constant delta_t is a positive real number. We define two type synonyms: time as the set of non-negative real 
numbers, and tick as the set of non-negative multiples of delta_t . We will perform operations on tick [18]: e.g., init (the 
very first tick) and pre(t) (the tick preceding t, given that init(t) does not hold).

We define a characteristic predicate init which is TRUE only at the initial tick t0:

init(t : tick) : bool = (t = 0)

It is important to explicitly identify the initial values of internal or output variables of FBs in PLC-based control system.
Given a time instant t, we use rank(t) to denote the ordinal of t in a discrete time setting.

rank(t : tick) : nat = t / delta_t

For example, time instant 8.8 is the 4th tick given that delta_t = 2.2.
However, we choose to adopt the notion of real-valued ticks, rather than their corresponding integer ranks, for specifying 

function blocks (and their properties) as they more closely correspond to the sampling times in reality. In other words, the 
notion of ticks is more meaningful for the user to manipulate: e.g., for timer blocks, an output that denotes the elapsed 
time should be measured in real-valued units rather than integer ranks. However, given some fixed delta_t , the set of 
real-valued ticks is isomorphic to its set of integer ranks. Consequently, proving lemmas or theorems in both domains is 
equally complex.

As PVS requires that all functions are total, to define the pre operator, we need a subtype noninit_elem that denotes the 
set of ticks starting from t1 (i.e., excluding t0):

noninit_elem: TYPE = { t : tick | NOT init(t)}

Using noninit_elem, the pre operator is defined as follows:

pre(t : noninit_elem) : tick = t − delta_t

An important yet simple proposition we use in our model to prove some desired properties is an induction scheme over 
time ticks [19]. It states that a predicate P holds at all ticks if (a) P holds at the initial tick t0; and (b) for any t > 0, the fact 
that P holds at tick tn−1 implies that P holds at tick tn . The formalization of this induction scheme is as follows:

time_induction : PROPOSITION
FORALL (P : pred[tick]) :

(FORALL (t : tick) : init(t) ⇒ P (t)) ∧ (FORALL (t : noninit_elem) : P (pre(t)) ⇒ P (t))
⇒ (FORALL (t : tick) : P (t))

We consider most FBs listed in IEC 61131-3 as time-dependent. Each FB is formalized as a theory in PVS, parameterized 
by the constant time interval delta_t and by importing our timing theory presented in this section.
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3. Formalizing standard functions and function blocks using tabular expressions

We need to tailor our approach depending on the language(s) used to describe the required behaviour and the imple-
mented behaviour of the FBs. In this case we have tailored our approach to deal with the languages used in IEC 61131-3. 
In many cases, IEC 61131-3 uses both ST and FBD to describe a single function block. However, both ST and FBD are in-
formal, implementation-oriented notations, and they are thus not suitable for capturing a precise input-output relationship 
that is both complete and disjoint. Moreover, it is not possible to formally establish that these implementations are correct
(i.e., consistent with the input-output requirement), since the required behaviour of the FBs in the standard and in Annex 
F is defined using natural language or not defined at all. We present a formal approach to define IEC 61131-3 standard 
functions and function blocks using tabular expressions and PVS. For each function block, we: 1) translate the supplied 
ST or FBD implementation into predicates in PVS (Section 3.1); and 2) capture its input-output requirement using tabular 
expressions in PVS (Section 3.2). Consequently, we have a unified, formal framework to verify the correctness of function 
blocks (Section 4).

3.1. Formalizing IEC 61131-3 function block implementations

We perform formalization at the level of standard functions, basic function blocks (FBs), and composite FBs. Similar 
to [23], we formulate each standard function or function block as a predicate, characterizing its input-output relation.

3.1.1. Standard functions
IEC 61131-3 defines eight groups of standard functions, including: 1) data type conversion; 2) numerical; 3) arithmetic; 

4) bit-string; 5) selection and comparison; 6) character string; 7) time and date types; and 8) enumerated data types. In 
general, we formalize the behaviour of a standard function f as a relation (i.e., Boolean function or predicate):

f (i1, i2, . . . , im) : (o1, o2, . . . , on) � R(i1, i2, . . . , im, o1, o2, . . . , on)

where the symbol � denotes that function f is formalized using relation (or predicate) R . Predicate R represents the 
specification of function f with input vector i and output vector o, by characterizing the precise relation on the m inputs 
and the n outputs of function f . Our formalization covers both timed and untimed behaviours of standard functions.

As an example, consider function WEIGH (Annex F.1), which takes as inputs a gross weight gross_weight (a word 
encoding in Binary-Coded Decimal (BCD)) and a tare weight tare_weight (an integer), and returns the net weight 
net_weight (a BCD-encoded word). The standard supplies a one-line ST code program for the implementation of 
WEIGH: WEIGHT := INT_TO_BCD(BCD_TO_INT(gross_weight) - tare_weight), where INT_TO_BCD and
BCD_TO_INT are standard conversion functions [9, p. 55]. We formalize the ST description of WEIGH in PVS by defin-
ing the output net_weight as

net_weight = INT_TO_BCD( SUB( BCD_TO_INT(gross_weight), tare_weight ) ),

where INT_TO_BCD and BCD_TO_INT are PVS functions, whose names are deliberately chosen to match those in the standard, 
that formalize the corresponding conversions and SUB is the standard subtraction function. We use bit vectors supported by 
PVS to model words, and follow the standard rules of performing conversions between BCD-encoded words and integers. 
However, as our modelling is performed at the level of requirements, we do not consider implementation issues such as 
arithmetic overflows. Therefore, unless the input or output values are explicitly bounded like in the case of WEIGH, we use 
mathematical, unbounded integers or reals to model input and output values.

Nonetheless, as we stated earlier in the paper, since the focus of the standard is primarily on the notations used to 
describe the FB implementations, the standard does not include precise descriptions of the required behaviour of each FB. 
So as a demonstration of our approach, based on our experience and whatever we can deduce from the standard itself, we 
propose a formal requirements specification for the FB. More precisely, in the example above, we make the requirements 
of WEIGH and explicitly define the inputs domain. Of course, readers may disagree with our requirements specification 
and may have another in mind. This is quite usual in practice. The essential point here is that the requirements behaviour 
needs to be precise, and we did not make up these requirements behaviours simply to generate discrepancies between the 
requirements and implementations.

To complete this section we also discuss another standard function ADD (i.e., “+”). This function is stateless, and it may 
be used as an internal component of other FBs, such as LIMITS_ALARM (see Fig. 2), which has the obvious formalization: 
ADD(IN1, IN2, OUT : int) : bool ≡ OUT = IN1 + IN2. Incorporating the output value OUT as part of the predicate parameters 
makes it possible to formalize basic FBs with internal states, or composite FBs. The predicate formalizing ADD can be reused 
to produce more complex composite FBs. For basic FBs with no internal states, we formalize them as function compositions 
of their internal blocks. As a result, we also support a version of ADD that returns an integer value: ADD(IN1, IN2 : int) :
int = IN1 + IN2. The functional formalization of ADD is used to discharge a consistency proof using instantiation, if an ADD
block is one of the internal components.
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+-------+
| SR |

BOOL --|S1 Q1|-- BOOL
BOOL --|R |

+-------+

+-----+
S1----------------| >=1 |---Q1

+---+ | |
R------o| & |-----| |
Q1------| | | |

+---+ +-----+

Fig. 6. Declaration of the block SR and its FBD implementation [9].

3.1.2. Basic function blocks
A basic function block (FB) is an abstraction component that consists of standard functions. When all internal components 

of a basic FB are functions, and there are no intermediate values to be stored, we formalize the output as the result of a 
functional composition of the internal functions.

As an example in Fig. 6., consider the SR block, which implements a set-dominant latch (a.k.a., flip-flop). Block SR takes 
as inputs a Boolean set flag S1 and a Boolean reset flag R , and returns a Boolean output Q 1. The value of Q 1 is fed back 
as another input of block SR itself. The value of Q 1 remains TRUE as long as the set flag S1 is enabled. Q 1 is reset to FALSE
not only when the reset flag is enabled, but also when the set flag is disabled (so it cannot dominate the output result). 
Otherwise, Q 1 stays unchanged. There should be a delay between the value of Q 1 which is computed and passed to the 
next execution cycle. We formalize this by adding the explicit unit delay block z−1 and conjoining predicates for the internal 
blocks. The formalization of the delay block will be introduced in Section 5.1.2. IEC 61131-3 uses a circle (e.g., the upper 
input to conjunction block in Fig. 6) to negate the value of Boolean input signal. We explicitly replace such circle with a 
negation block wherever it occurs.

We formalize composite FBs in a similar manner.

3.1.3. Composite function blocks
Each composite FB contains as components standard functions, basic FBs, or other pre-developed composite FBs. For 

example, LIMITS_ALARM (Fig. 2) is a composite FB consisting of standard functions and two instances of the pre-developed 
composite FB HYSTERESIS. Our formalization of each component as a predicate results in compositionality: a predicate that 
formalizes a composite FB is obtained by taking the conjunction of those that formalize its components. IEC 61131-3 uses 
ST or FBD, or both in the case that component FBs are described using different languages, to describe the behaviour of 
composite FBs. At this point we should note that predicates that formalize basic or composite FBs represent their black-box 
input-output relations. Since we use function tables in PVS to specify these predicates, their behaviours are deterministic. 
This allows us to easily compose their behaviours using logical conjunction. The conjunction of deterministic components is 
functionally deterministic.

3.1.4. Formalizing composite FB implementations: ST
As discussed in Section 2.1, in general it is not possible to translate an arbitrary ST implementation into its equivalent FBD 

implementation. Instead, for the purpose of our verification in PVS, we develop a limited set of translation rules that suffices 
to translate the ST implementations that are supplied by Annex F of IEC 61131-3 [9] into their equivalent expressions in 
PVS. This step of formalization in PVS allows us to verify the correctness of ST implementations against their input-output 
requirements (Section 3.2).

In this section, we discuss our ST-to-PVS translation in four phases: 1) state the challenge, scope of translation, and input 
assumptions; 2) provide an overview of translation; 3) provide a list of formal rules of translations; and 4) illustrate our 
translation rules via a number of examples.

ST-to-PVS: challenge, scope of translation, and input assumptions
The main challenge of using PVS to formalize ST is that these two languages belong to two distinct paradigms. The ST 

programming language is an imperative notation, whereas the PVS specification language is a functional notation. For exam-
ple, an IF-THEN-ELSE statement in ST is meant to perform conditional updates on the state (i.e., output or local variables), 
whereas an IF–THEN–ELSE expression in PVS is side-effect-free and returns a value (corresponding to the satisfying branch 
condition).

Nonetheless, our ultimate goal is to use only function blocks that are listed in the Annex of the standard [9] to illustrate 
our proposed approach. Consequently, our intention is not to formalize any arbitrary ST code whose syntax conforms with 
the standard. Instead, for the purpose of our verification, our rules of ST-to-PVS translation are designed to only handle 
the syntactic constructs of the ST language that are exploited in Annex F. That is, constructs that are supported by the ST 
language but not used in the Annex of the standard [9] (e.g., CASE statement, WHILE and REPEAT loops, etc.) Nonetheless, 
the value of our translation should be justified by the fact that the Annex F example function blocks are commonly used 
in industry. In other words, our translation rules should be able to handle many other similar function blocks outside the 
scope of Annex F [9].

For our ST-to-PVS translation, there are two primary assumptions about the input ST code. Both of the following assump-
tions are satisfied by all function blocks listed in Annex F [9].
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FUNCTION_BLOCK F
VAR_INPUT

v1 : T1

END_VAR
VAR_OUTPUT

v2 : T2

END_VAR
VAR

v3 : T2

END_VAR
v3 := f (p1 := e1, p2 := e2);
IF e5 THEN

v2 := v3;
ELSEIF e6 THEN

G(p3 := e3, p4 := e4);
v2 := G.Q ;

END_IF;
END_FUNCTION_BLOCK

F [(IMPORTING Time) delta_t: posreal] : THEORY
BEGIN IMPORTING ClockTick[delta_t]

v1 : VAR [tick -> �T1 �]
v2 : VAR [tick -> �T2 �]
F_st_impl (v1, v2): bool =
EXISTS (v3: [tick -> �T2 �], Q : [tick -> �T2 �]):
FORALL (t: tick):
( NOT �e5 � AND �e6 � => G(�e3 �, �e4 �, Q) ) IMPLIES
IF init(t) THEN TRUE
ELSE

v3(t) = f (�e1 �, �e2 �, v3) AND
v2(t) = TABLE

| �e5 � | v3(t) ||
| NOT �e5 � AND �e6 � | Q(t) ||
| NOT �e5 � AND NOT �e6 � | v2(pre(t)) ||

ENDTABLE
ENDIF

END F

Fig. 7. ST-to-PVS translation: a contrived example.

• Type correctness. Each ST code is assumed to be type-correct: e.g., no references to unknown function blocks in variable 
declarations, no references to undeclared variables, no references to unknown formal parameters of a function in its 
invocation, etc. The PVS type system may be exploited to type-check the ST code, because if the source ST code is not 
type-correct, then neither will its corresponding formalized PVS theory. However, for the purpose of tracing type errors 
in the original code, if any, adopting a third-party ST programming tool is more appropriate.

• Single assignment. Each output or local variable in the body of the ST code gets assigned at most once. This will allow 
us to formalize each sequential composition operator (;) in ST as a logical conjunction (∧) in PVS. As far as the 
formalization of function blocks in Annex F [9] is concerned, this assumption is always met. However, to relax this 
assumption, we will need to introduce a mechanism of building the dependency graph of variable assignments and, 
when it is acyclic, introduce auxiliary variables on the PVS side to impose the topological order.

Given the above assumptions, and the richness of the specification language and supported libraries of PVS, our ST-to-PVS
translation is reasonably straightforward. Our translation rules shown below, although presented in a formal way, are still 
meant as guidance for users who want to translate the ST code manually into PVS. To adapt them for automation, some 
further context-sensitive analysis needs to be performed beforehand. Extension to the full coverage of ST syntax, or to the 
automation of these rules, is outside the scope of this paper.

ST-to-PVS: an overview
Our strategy of translation is to map each complete ST program (i.e., with variable declarations and function block body) 

into a PVS theory. More precisely, we map (unconditional, conditional, or iterative) variable assignments into PVS predicates 
(Boolean functions) that encode the intended state effect as variable constraints. Let �_� : ST � PVS denote our translation 
function that maps ST code to PVS expressions. Since we do not intend to handle the full ST syntax, the translation function 
is declared as partial.

An example translation Fig. 7 presents an overview of our ST-to-PVS translation. On the LHS of Fig. 7 we have the complete 
definition of a function block named F , declared with an input v1 (of type T1), an output v2 (of type T2). There is also 
a local variable v3 whose type is declared to match that of the output v2. We assume that: 1) a standard function f is 
declared with parameters p1 and p2 and a return value of type T2; and 2) a function block G is declared with parameters 
p3 and p4 and an output value of type T2; 3) types of expressions e1, e2, e3, and e4 match those of, respectively, p1, p2, 
p3, and p4; and 4) e5 and e6 are Boolean expressions.

The body of function block F is defined as a sequential composition (denoted by a semicolon ;) of three programming 
statements: 1) assign to v3 the return value of invoking the standard function f ; 2) invoke the function block G; and 3) 
assign to v2, depending on the values of e5 and e6. In both cases of invoking a standard function and a function block, 
the order in which argument values are passed is flexible: names of the formal parameters (e.g., p1, p2, etc.) are specify 
explicitly to bind those argument values. Moreover, there is a distinction between invocations of a standard function and of 
a function block: the former is an expression (a R-value), whereas the latter is a statement whose output must be retrieved 
in a later statement (e.g., G.Q ).

On the RHS of Fig. 7 we have a PVS theory7 F that formalizes the function block F defined on the LHS. As our translation 
is recursive, we write �T1 �, �T2 �, �e1 �, �e2 �, etc. to denote the corresponding, equivalent PVS expressions. In the following, 
we summarize (part of) our translation strategy as exemplified in Fig. 7:

7 Note that negation (NOT) binds the tightest. Conjunction (AND) binds tighter than implication (IMPLIES or ⇒).
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• For readability, we retain names of the function block and all its declared variables.
• The theory is always parameterized by an arbitrary clock tick interval delta_t , which is used to instantiate the imported 

timing theory (Section 2.4).
• We formalize all ST (input, output, and local) variables as time-dependent logical variables in PVS (i.e., functions with 

the tick domain). However, we treat the parameter types of standard functions and function blocks differently in PVS. 
We formalize ST function blocks as input-output relations whose parameters are time-dependent (i.e., function blocks 
constrain inputs and outputs over time). On the other hand, parameters of standard functions are “untimed” (i.e., they 
are simple values instead of functions). All ST input and output variables are translated into global variables in PVS, 
so that they are implicitly universally quantified. On the other hand, local variables and return values from function 
invocations are translated into dummy variables of an existential quantification, so that they are hidden inside the 
function block.

• The function block body is formalized as a relation (i.e., Boolean function) which constrains the list of input and output 
variables over all discrete time ticks. The name of the relation has the _st_impl suffix to indicate that it is translated 
from some ST code.

• We define the input-output relation using a logical implication.
– The antecedent constrains output values of function block invocations, so that their output values can be referenced 

in the consequence. For each invocation that occurs in the context of some (nested) conditional branch, we guard 
it using an implication (e.g., the invocation of function block G is guarded by ¬�e5 � ∧ �e6 �). The guard (or the 
antecedent) may be used to prove that the input assumptions of the function block are satisfied upon its invocation. 
For example, in ST we may invoke the HYSTERESIS block under the condition EPS > 0, and we formalize it as the 
constraint EPS > 0 ⇒ HYSTERESIS(. . . ) in PVS.

– In the consequence, as output and local variables may be initialized, we use a universal quantification (over discrete 
tick values) to distinguish cases of the initial tick and non-initial ticks. At the initial tick, we constrain the values of 
those output and local variables that are explicitly initialized in the ST code; if no variables are explicitly initialized, 
the constraint is TRUE. At non-initial ticks, we constrain the value of each output variable according to how it is 
updated in the ST code. For example, the value of v2 at time t , where ¬ init(t), is equal to either: 1) the value of v3
at time t if �e5 � holds; 2) the value of Q at time t if ¬�e5 � ∧ �e6 � holds8; or 3) itself at the previous time tick if 
¬�e5 � ∧ ¬�e6 �.

ST-to-PVS: formal rules of translation
In this section, we provide the list of translation rules that is sufficient for translating ST code supplied by Annex F [9]

into PVS.

Notational convention For clarity, we typeset ST constructs in the code style (e.g., a + b), and PVS constructs in the math 
style (e.g., a + b). As our translation is recursive, when the translation of an ST construct (e.g., If-THEN-ELSE statement) 
involves the translation of its components (e.g., branching conditions, body statements, etc.), say e, then we write �e� to 
denote the translated PVS expression for e. Moreover, as partly illustrated in Fig. 7, we adopt the following conventions: 
1) e, e1, e2, etc., denote ST expressions; 2) v , v1, v2, etc., denote ST variables; 3) f , g , h, etc. denote standard functions; 
4) F , G , H , etc. denote function block names; 5) T , T1, T2, etc. denote ST types; 6) S , S1, S2, etc., denote ST statements; 
and 7) i denotes a loop counter.

Translation context Our translation function �_� often needs to carry around context information from the translation of 
one component to another. First, since all ST variables are mapped into time-dependent variables in PVS, when generating 
a reference to a variable v , we need to determine either to refer to: 1) its entirety v as a timed sequence; 2) its value 
v(0) at the initial tick; or 3) its value v(t) at some non-initial tick t . Second, since for each output variable we need to 
infer its intended update as constraints, the current translation may need to know the target variable in order to make the 
corresponding inference. As a result, given that v is the target variable, and that t ∈ { init, ninit, seq } is the context for 
variable references, we write �_�t

v to denote the corresponding translation. We drop the context when it is not necessary 
for the translation in question to proceed. As an example, we write �_�seq for translating the invocation of a function block, 
where its arguments are expected to be time-dependent (i.e., timed sequences). In this example, the target variable is 
irrelevant and is thus dropped.

Context-sensitive analysis To assist our translation, we often need to extract information from the ST code fragment under 
consideration. For example, given a statement (e.g., the function block body as a sequential composition), we may extract the 
list of function block invocations that it makes. Furthermore, for those invocations, we need to extract the exact conditions 
where they occur and guard them accordingly (e.g., see Fig. 7 where the invocation of function block G is properly guarded). 
As another example, we may calculate the write set of a given statement (i.e, the set of variables that appear at the RHS 

8 This branching condition is guaranteed by the fact that the ST IF-THEN-ELSE statement evaluates those conditions in order.
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Table 1
ST-to-PVS: function block definition.

ST function block definition PVS theory Delegates

FUNCTION_BLOCK F
VAR_INPUT

v1 : T1

END_VAR
VAR_OUTPUT

v2 : T2

END_VAR
VAR

v3 : T3 := e
END_VAR
S1

END_FUNCTION_BLOCK

F [(IMPORTING Time) delta_t: posreal] : THEORY
BEGIN IMPORTING ClockTick[delta_t]

�v1 : T1 �
�v2 : T2 �
F_st_impl (v1, v2): bool =
EXISTS (�v3 : T3 � , � Q : T Q � ):

F(�e1 �seq, . . ., �en �seq, Q ) IMPLIES
FORALL (t: tick):

IF init(t) THEN v3(0) = �e�init

ELSE
v2(t) = � S1 �v2 AND
v3(t) = � S1 �v3

ENDIF
END F

Table 2
Tables 7–6
Tables 8–10

of assignments), so as to determine if a variable has already been written. Tasks of such kind are standard and we do not 
address them in detail.

Translation rule: function block definition Table 1 presents the translation rules for function block definitions. The defini-
tion of each function block consists of two parts: variable declarations and body definition (denoted as S1). Without loss 
of generality, we consider the case where the function block declares one variable from each of the categories (i.e., input, 
output, and local).

As illustrated in Fig. 7, each function block defined in ST is mapped into a PVS theory that has a matching name, and 
instantiates our timing theory (Section 2.4) with an arbitrarily small, positive clock tick interval delta_t . We delegate the 
translation of each input or output declaration in ST to Table 2.

The ST function block body S1 is mapped into the PVS relation F _st_impl that constrains values of its parameters: the 
list of inputs and outputs. Inside the definition of this relation, we use an existential quantification to hide: 1) the list of 
local variables (i.e., v3); and 2) return values from function invocations. For 2), we use Q (of type T Q ) to denote the list of 
return values that are referenced in S1, if any.

In the case of function block invocations, as discussed, we model each function block F as a relation (a Boolean function) 
on the lists of inputs (i1, i2, . . . , in) and outputs (Q ), and each input or output is time-dependent and thus modelled as 
a timed sequence. In the case where the computation of output values depends on those of local variables, as mentioned 
above, we translate the relevant local variables into dummy variables of the corresponding existential quantification (see 
Fig. 7). As a result, the translated argument values are expected to be timed sequences (i.e., �e1 �seq , . . . , �en �seq). As illus-
trated in Fig. 7, we use matching names9 to capture values of outputs, so that in the same scope of context, these output 
variables may be referenced to define the constraints at both initial and non-initial time ticks. In the case where an invo-
cation occurs within some (nested) conditional branch, we need to add an antecedent accordingly to guard the invocation. 
Inferring the exact antecedent to guard each invocation is an example of the context-sensitive analysis mentioned above, 
and we omit its details here.

In the case of the initial time tick, we constrain values of variables according to their specified initial values, if specified.10

For example, v3 is initialized with the value �e�init . In the case of non-initial ticks, each declared local or output variable 
will trigger the generation of a constraint that encodes its intended update. When there are multiple output variables, we 
combine all these constraints using logical conjunctions. For example, for output variable v2, we generate its constraint 
of intended update via � S1 �v2 (see Tables 7–6). So when given an ST statement S1, our translation function effectively 
“projects” S1 onto the target variable (e.g., v2). The result of the projection is a list of “guarded values”, where guards 
correspond to the branching conditions of the IF-THEN-ELSE statements in the source ST code. The resulting list of 
guarded values can then be straightforwardly encoded as a TABLE expression in PVS. For example, as already seen in Fig. 7, 
the projection onto output variable v2 results in three guarded values.

Translation rule: variable declarations Table 2 presents the translation rules for variable declarations, where we reuse all 
variable names in PVS. Our treatment of the declarations of input (declared under VAR_INPUT ... END_VAR), output 
(declared under VAR_OUTPUT ... END_VAR), and local variables (declared under VAR ... END_VAR) are the same.

9 Where multiple function blocks (e.g., FB1 and FB2) have outputs with the same name (e.g., Q), we resolve the ambiguity by adding their names as 
prefixes (i.e., FB1_Q and FB1_Q ).
10 We may choose to specify an initial value for some uninitialized variable, but this is beyond the scope of the translation.
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Table 2
ST-to-PVS: variable declarations.

ST variable declaration PVS variable declaration Delegates

Case without initialization Table 3
v : T v : VAR [tick -> �T �]
Case with initialization
v : T := e v : VAR [tick -> �T �]

Table 3
ST-to-PVS: types.

ST type PVS type Delegates

INT int Tables 8–10
REAL real
BOOL bool
WORD bvec
TIME tick
F F
ARRAY[ e1 .. e2 ] OF T ARRAY[ subrange(�e1 �init,, �e2 �init) -> �T � ]

Table 4
ST-to-PVS: basic statements.

ST statement PVS expression Delegates

Assignments With context variable v Tables 8–10
v := e �e�ninit

x := e ⊥
v[ e1 ] := e2 v(pre(t)) WITH [ (�e1 �ninit) := �e2 �ninit ]
x[ e1 ] := e2 ⊥

Since each ST variable is time-dependent in our execution context of function blocks, we parameterize the PVS type �T �
(translated from the ST type t) by discrete time ticks (Section 2.4). At the level of variable declarations, the translation does 
not consider whether or not an initial value is specified in the source ST code. Instead, such information is considered at 
the higher level of function block definitions (Table 1), where the context init is passed for translating the specified initial 
value (i.e., �e�init).

Translation rule: types Table 3 presents the translation rules for types supported by ST. We categorize these types into 
four kinds: 1) primitive types (integers, reals, Booleans); 2) built-in types (e.g., words, time, etc.); 3) user-defined function 
blocks (e.g., F ); and 4) arrays.

For primitive types, we can easily find the direct corresponding types in PVS. For built-in types, we import relevant 
theories to support their operations (e.g., bit vectors bvec from the bv prelude library, tick in Section 2.4, etc.). For a function 
block F that is user-defined, we simply reuse its name, assuming that its full definition is translated into a PVS theory.

The only structured type that we need for the purpose of Annex F [9] is that of arrays, which is also directly supported 
in PVS. The ARRAY type in PVS is essentially a function with a contiguous subset of integers for the domain and a proper 
range type, but the associated TCCs, e.g., validity of indices, are automatically generated by the prover. The operator subrange
is supported by PVS to denote an integer range with specified lower and upper bounds. Presumably, e1 and e2 should be 
integer expressions, which is guaranteed by our assumption of input type-correctness. As the size of an array does not 
change at runtime, values of e1 and e2 must be available initially. As a result, we write �e1 �init and �e2 �init to denote the 
translated values in PVS.

Translation rule: statements Tables 4–7 present the translation rules for statements in ST (with no returned values). We 
assume that the context variable is v , meaning that �_�v is applied to infer the guarded values for v . We partition ST 
statements into two categories: 1) simple statements, including variable assignments and function block invocations; and 
2) program combinators, including sequential compositions, IF-THEN-ELSE conditionals, and loops. Since all statements 
(including assignments) appear in the context of non-initial ticks, all involved expressions are translated via the invocation 
of �_�ninit (e.g., �e1 �ninit).

Table 4 presents the translation for variable assignments in ST. In both cases of assignments, we return a special value ⊥
when the assignment target does not match the context variable v . A match in the case of a simple variable assignment is 
then straightforward: just return the translated value of the assignment source (i.e., �e�ninit ). A match in the case of an array 
variable assignment returns an array that is identical to the original (i.e., v(pre(t))), except that the item at the specified 
index is updated. To specify this, we pass as arguments the translated values of array index (i.e., �e1 �ninit) and assignment 
source (i.e., �e2 �ninit) to the PVS function override operator WITH.

Table 5 presents the translation for the IF-THEN-ELSE conditional statement in ST. Indeed, the rule generalizes the 
case presented in Fig. 7, with a (possibly empty) list of ELSIF statements. If the context variable v is not written at all 
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Table 5
ST-to-PVS: conditional statements.

ST statement PVS expression Side condition

IF e0 THEN S0

ELSIF e1 THEN S1

. . .

ELSIF en−1 THEN Sn−1

ELSE Sn

END_IF

TABLE | �e0 �ninit | � S0 �ninit
v ||

| NOT(�e0 �ninit) AND �e1 �ninit | � S1 �ninit
v ||

. . .

| NOT(
∧n−2

j=0 �e j �ninit) AND �en−1 �ninit | � Sn−1 �ninit
v ||

| NOT(
∧n−1

j=0 �e j �ninit) | � Sn �ninit
v ||

ENDTABLE

written (v)

⊥ ¬written (v)

where written (v) � (∃i • v ∈ write (Si))

Table 6
ST-to-PVS: loop statements.

ST statement PVS expression Side condition

FOR i := e1 TO e2

DO
S

END_FOR

for[�T �](�e1 �ninit, �e2 �ninit, v(pre(t)),

LAMBDA (i: subrange(�e1 �ninit, �e2 �ninit), v: �T �):
v = � S �v

)

v ∈ write (S)

⊥ v /∈ write (S)

Table 7
ST-to-PVS: sequential composition.

ST statement PVS expression Side condition

Sequential composition
s1 ; s2 � S1 �v � S2 �v = ⊥
s1 ; s2 � S2 �v � S1 �v = ⊥

by any of the body statements Si (0 ≤ i ≤ n), then we return ⊥. Otherwise, to correspond to the execution semantics 
of the ST IF-THEN-ELSE statement, each guard in PVS is defined as the conjunction of: 1) the translated value of the 
corresponding branching condition (e.g., �e1 �ninit); and 2) translated values of all branching conditions that are checked 
before it (e.g., �e0 �ninit). We use 

∧
as a meta-operator to denote the conjunction of a sequence of expressions occurring in 

PVS.
The resulting PVS table in Table 5 is a list of guarded values. If any of the body statements (S0, S1, . . . , Sn) contain 

further nested IF-THEN-ELSE statements, then we will have nested table expressions in the resulting PVS, which are 
allowed. If the ELSE part is missing from the source ST code, then there is no change on the value of v . Accordingly, we 
specify v(pre(t)) as the return value in the PVS table: it is as if v were assigned to its value at the previous tick.

Table 6 presents the translation for the loop statement in ST. Similar to the case of translating the IF-THEN-ELSE
statement, if the context variable v is not written by the loop body statement S , then we return ⊥. Otherwise, with the use 
of the for higher-order function from the structures library provided by NASA [24, p. 114], encoding of an ST loop statement, 
with respect to the context variable v (of type T ), is then straightforward.

We instantiate the for function by passing: 1) the translated type of v (i.e., �T �); 2) the translated lower and upper 
bounds (i.e., �e1 �ninit and �e2 �ninit); 3) the initial value of v , which is its value at the previous time tick (i.e., v(pre(t))); 
and 4) an anonymous lambda function which encodes the loop body. The lambda function encodes the loop body by taking 
the loop counter i (within the specified bounds) and the accumulated value of v , and by specifying that the value of v is 
constrained according to the list of guarded values inferred from S1 (i.e., � S �v ).

Table 7 presents the translation for the sequential composition of statements in ST. As discussed, when translating state-
ments, we aim to retrieve the list of guarded values for the context variable v . Due to our single-assignment assumption, 
it is not allowed to have v assigned for more than once in the function block body. Consequently, when given a sequen-
tial composition of two statements S1 and S2, exactly one of them will return the list of guarded values for the context 
variable v .

Translation rule: expressions Tables 8–10 present the translation rules for ST expressions, where we use ⊕1 to denote a 
unary (numerical, relational, or logical) operator, and ⊕2 for a binary operator. As we have seen so far, each translation of 
an expression requires a context of variable reference (i.e., init, ninit, or seq). We use ρ to denote the value of this context. 
We consider four categories of expressions: 1) variable referencing; 2) literal expressions; 3) standard function invocations; 
and 4) operations.
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Table 8
ST-to-PVS: variable referencing expressions.

ST expression PVS expression Side condition

Variable reference
v v(0) ρ = init

v ρ = seq
v(t) ρ = ninit and written(v)

v(pre(t)) ρ = ninit and ¬written(v)

Array indexing
v[ e ] v(0)[ �e�init ] ρ = init

v[ �e�seq ] ρ = seq
v(t)[ �e�ninit ] ρ = ninit and written(v)

v(pre(t))[ �e�ninit ] ρ = ninit and ¬written(v)

Referencing function block output
F.Q Q (0) ρ = init

Q ρ = seq
Q (t) ρ = ninit

Table 9
ST-to-PVS: literal and function invocation expressions.

ST expression PVS expression Side condition

Integer, real, or boolean literal
l l ρ �= seq

LAMBDA (t: tick): l ρ = seq
Standard function invocation
f (p1 := e1, p2 := e2, . . ., pn := en) f (�e1 �ρ, �e2 �ρ, . . ., �en �ρ) None

Table 10
ST-to-PVS: operation expressions.

ST expression PVS expression Side condition

Unary operation
⊕1 e ⊕1 �e�ρ None
Binary operation
e1 ⊕2 e2 �e1 �ρ ⊕2 �e2 �ρ None

where written(x) � x ∈ write(S) for any preceding statement S

In the case of variable referencing (Table 8), we may refer to a declared variable of a simple type or of an array type, or to 
an output variable of some function block that is invoked previously. The treatment of each kind of these variables is similar: 
depending on the given context ρ of the variable reference (init, ninit, or seq), we generate the references accordingly. In 
the case of array indexing, we propagate the variable reference context ρ to the translation of its specified index.

Furthermore, the sequential execution of the source ST code makes it possible to reuse the latest value of a variable that 
is assigned in a previous statement. To formalize this, we need to make a case distinction when the context ρ is ninit: if the 
variable v has not yet been written yet, then we write v(pre(t)) to denote its value from the previous time tick; otherwise, 
we should refer to its latest value at the current time tick (i.e., v(t)).

In the case of literal expressions (Table 9), integer literals (e.g., 2), real literals (e.g., 2.0), and Boolean literals (e.g.,
TRUE) can all be directly used in PVS. However, when the context of variable reference suggests that a timed sequence is 
expected (e.g., in the context of some function block invocation), then we use the lambda expression to create a constant 
timed sequence.

In the case of operations (Table 10), for all the unary and binary numerical expressions (e.g., 1 + 2), relational expres-
sions (e.g., EPS > 0), and logical expressions (e.g., e1 & e2), we can find the obvious corresponding operators in PVS. To 
translate the operands, we propagate the given context ρ (e.g., �e�ρ ). The case of translating the invocation of a standard 
function f is also straightforward: pass the translated argument values in the order that is defined in the corresponding 
standard function definition in PVS.

ST-to-PVS: applications of translation rules
Our example translation in Fig. 7, though informative, is nevertheless contrived. We provide two complete example 

translations that are applied to the HYSTERESIS and DELAY function blocks from Annex F [9] in Appendix A. First, Fig. 37
shows the formalized ST implementation for the HYSTERESIS block (Fig. 18). This example illustrates the generation of 
nested PVS tables, mapped from the nested IF-THEN-ELSE statement in the source ST code. Second, Fig. 38 shows the 
formalized ST implementation for the DELAY block (Fig. 22). This example illustrates the use of a loop, and the list of 
generated “guarded values” for local and output variables in the context of non-initial ticks.
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Fig. 8. A composite FB implementation in FBD and its formalizing predicate.

LIMITS_ALARM_IMPL (X,H, L,EPS,QH,Q,QL) : bool =
EXISTS (w1,w2,w3) :

div(EPS, λ(t1 : tick) : 2.0,w1)

∧ sub(H(L, E P S),w1,w2)

∧ add(L,w1,w3)

∧ HYSTERESIS_REQ(X,w2, w1,QH)

∧ HYSTERESIS_REQ(w3,X, w1,QL)
∧ disj(QH,QL,Q)

Fig. 9. Formalizing FBD implementation of the block LIMITS_ALARM in PVS.

3.1.5. Formalizing composite FB implementations: FBD
To illustrate the case of formalizing an FBD implementation supplied by IEC 61131-3, let us consider the following 

FBD of a composite FB and its formalizing predicate. Fig. 8 consists of four internal blocks, B1, B2, B3, and B4, that are 
already formalized (i.e., their formalizing predicates B1_REQ, . . . , B4_REQ exist). The high-level requirement (as opposed 
to the implementation supplied by IEC 61131-3) for each internal FB constrains its inputs and outputs, documented by 
tabular expressions (see Section 3.2). To describe the overall behaviour of the above composite FB, we take advantage of our 
formalization being compositional. In other words, we formalize a composite FB by existentially quantifying over the list of 
its inter-connectives (i.e., w1, w2 and w3), such that the conjunction of predicates that formalize the internal components 
hold.

As a more concrete example, consider the FBD implementation of the LIMITS_ALARM block that was introduced in 
Section 2.1 (Fig. 2). In Fig. 9, the predicate LIMITS_ALARM_IMPL formalizes the FBD implementation of LIMITS_ALARM (Sec-
tion 2.1). We observe that predicate LIMITS_ALARM_IMPL, as well as those for the internal components, all take a time 
instant t ∈ tick as a parameter. This is to account for the time-dependent behaviour, similar to how we formalized the 
standard function MOVE in the beginning of this section. Furthermore, the above predicates that formalize the internal com-
ponents, e.g., predicate HYSTERESIS_REQ_TAB, do not denote those translated from the ST implementation of IEC 61131-3. 
Instead, as one of our contributions, we provide high-level, input-output requirements that are not included in IEC 61131-3 
(to be discussed in the next section). Such formal, compositional requirement are developed for the purpose of formalizing 
and verifying sophisticated, composite FBs.

3.2. Formalizing requirements of function blocks

As stated, IEC 61131-3 supplies low-level, implementation-oriented ST and/or FBD descriptions for function blocks. For 
the purpose of verifying the correctness of the supplied implementation, it is necessary to obtain requirements for FBs that 
are both complete and disjoint. Tabular expressions (in PVS) are an excellent notation for describing such requirements. 
Our method for deriving the tabular, input-output requirement for each FB is to partition its input domain into equivalence 
classes, and for each such input condition, we consider what the corresponding output from the FB should be.

As an example, we consider the requirement for function block LIMITS_ALARM. The expected input-output behaviour is 
depicted in the following Fig. 10, and its tabular requirement (which constrains the relation between inputs X , H , L, EPS
and outputs Q , QH, QL) is captured in the three accompanying tables. When variable value X exceeds the high limit H , the 
high flag QH becomes TRUE. Symmetrically, when X goes below the low limit L, the low flag QL becomes TRUE. Both flags 
QH and QL are set to FALSE when X is in the exclusive range of (L + EPS, H − EPS). There exists a hysteresis band for the 
high limit inside which the value of QH remains unchanged: [H − EPS, H]. Symmetrically, there exists a hysteresis band for 
the low limit: [L, L + EPS]. Finally, the alarm output Q is set to TRUE if and only if either of the flags is set to TRUE.Q is 
set to FALSE otherwise. The input-output requirement is captured in the three function tables. We use NC to denote “No 
Change”, i.e., the value of variable QH is equal to the value at the previous time tick QH−1. Alternatively we can use the 
previous value in the condition rows. As a result, we can explicitly write down the current value of this variable in the last 
result column instead of using NC (see an example in Fig. 21).

We will discuss in Section 5.2.3 as to how our formalization process revealed the need for two possible missing assump-
tions for the LIMITS_ALARM block from IEC 61131-3:
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Fig. 10. Requirement of the block LIMITS_ALARM using tabular expressions.

1. Deadband sizes of high and low limits are positive: EPS > 0; and
2. Hysteresis zones of high and low limits are non-empty, disjoint, and ordered: L + EPS < H − EPS.

We incorporate these assumptions into the formalizing theory of LIMITS_ALARM in PVS as follows. For assumption 1, we 
use the subtype posreal, i.e., the set of positive real numbers, to declare the type of the time-dependent input variable EPS
(i.e., EPS: [tick → posreal]). For assumption 2, we define a higher-order dependent type dependent_high_limit_type for the 
type of high limit, which depends on values of the low limit L and the deadband size EPS. Then, we declare the high limit 
H accordingly (i.e., H : VAR dependent_high_limit_type).

We now present the PVS theory that formalizes the above intended requirement of the LIMITS_ALARM block. All input, 
output and internal variables are declared as time-dependent functions, taking the current time t as one of its parameters.

LIMITS_ALARM[(IMPORTING Time) delta_t : posreal]: THEORY

IMPORTING ClockTick[delta_t]
IMPORTING defined_operators[delta_t]
IMPORTING HYSTERESIS[delta_t]

timed_real : TYPE = [tick → real]

% proposed assumption (1): EPS > 0
timed_posreal : TYPE = [tick → posreal]

% proposed assumption (2): L + EPS < H - EPS <=> H - L > 2EPS
dependent_high_limit_type : TYPE =

[L : timed_real,EPS : timed_posreal →
{H : timed_real | FORALL (t : tick) : H(t) − L(t) > 2 × EPS(t)}]

t : VAR tick

% Input variables
X : VAR timed_real
L : VAR timed_real
H : VAR dependent_high_limit_type
EPS : VAR timed_posreal

% Output variables
QH : VAR pred[tick]
QL : VAR pred[tick]
Q : VAR pred[tick]
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% Internal variables
w1 : VAR [tick → posreal]
w2 : VAR [tick → real]
w3 : VAR [tick → real]
...

END LIMITS_ALARM

To formalize the intended behaviour of each output, we define a separate function that has a tabular structure. Each 
of these functions is useful from two perspectives: 1) it is used to define the requirements predicate of the corresponding 
output variable (see below); and 2) it will be used to generate the witness of output value when conducting the consistency 
or feasibility proof (Section 4.1).

f_QH(X,H,L,EPS)(t): RECURSIVE bool =
IF init(t) THEN FALSE
ELSE LET prev = F_QH(X,H,L,EPS)(pre(t)) IN
TABLE
%-------------------------------------------------------------%
| X(t) > H(L,EPS)(t) | TRUE ||
%-------------------------------------------------------------%
| X(t) >= sub(H(L,EPS)(t),EPS(t)) ∧ X(t) <= H(L,EPS)(t) | prev ||
%-------------------------------------------------------------%
| X(t) < sub(H(L,EPS)(t),EPS(t)) | FALSE ||
%-------------------------------------------------------------%
ENDTABLE

ENDIF
MEASURE rank(t)

f_QL(X,L,EPS)(t): RECURSIVE bool =
IF init(t) THEN FALSE
ELSE LET prev = F_QL(X,L,EPS)(pre(t)) IN
TABLE
%-----------------------------------------------%
| X(t) < L(t) | TRUE ||
%-----------------------------------------------%
| X(t) <= add(L(t),EPS(t)) ∧ X(t) >= L(t) | prev ||
%-----------------------------------------------%
| X(t) > add(L(t),EPS(t)) | FALSE ||
%-----------------------------------------------%
ENDTABLE

ENDIF
MEASURE rank(t)

f_Q(QH,QL)(t): bool =
TABLE
| QH(t) OR QL(t) | TRUE ||
| NOT QH(t) ∧ NOT QL(t) | FALSE ||
ENDTABLE

Then, each output variable of the LIMITS_ALARM block is formalized as a predicate by reusing the above functions.

P_QH(X,H,L,EPS,QH): bool =
FORALL (t:tick): QH(t) = f_QH(X,H,L,EPS)(t)

P_QL(X,L,EPS,QL): bool =
FORALL (t:tick): QL(t) = f_QL(X,L,EPS)(t)

P_Q(QH,QL,Q): bool =
FORALL (t:tick): Q(t) = f_Q(QH,QL)(t)
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Finally, to derive the overall requirement of the LIMITS_ALARM block, the above three predicates (corresponding to the 
tables in Fig. 10, p. 166) are composed using logical conjunctions (Section 3.2).

LIMITS_ALARM_REQ(H,X,L,EPS,QH,Q,QL): bool =
P_QH(X,H,L,EPS,QH) ∧ P_QL(X,L,EPS,QL) ∧ P_Q(QH,QL,Q)

For any given input and output trajectories (mapping from ticks to values), the requirements predicate LIMITS_ALARM_REQ
returns TRUE if they satisfy the above three output predicates; otherwise, it returns FALSE. This requirements predicate will 
later be used to verify the correctness of the FBD implementation of LIMITS_ALARM. This process can be generalized to 
verify other FBD implementations in IEC 61131-3.

Justification of our proposed requirements tables
Our proposed requirements tables for the LIMITS_ALARM block are by no means arbitrary and we justify them as follows.
Regarding the functionality of LIMITS_ALARM, the most authoritative source we could obtain is a one-line sentence from 

the standard [9, p. 190]: “This function block implements a high/low limit alarm with hysteresis on both outputs”. Despite 
the fact that this requirement is written using an informal, natural language, a reasonably obvious approach to formalize 
it is by using the requirements of its component HYSTERESIS blocks. Based upon our analysis of the HYSTERESIS block 
(Section 5.2.2), we impose an assumption of non-negative deadband size. If we do not make this assumption, then the 
hysteresis FB implements a “toggle” of the output value when the input signal is outside of the deadband. See Section 5.2.2
for a detailed explanation. As far as the hysteresis FB is concerned, we believe that practitioners would not expect this 
toggling behaviour. If it is required, a different, appropriately named FB could be used to produce the toggling behaviour. 
Furthermore, we also believe that engineers would not expect that at a single system state, the low and high alarms are 
tripped simultaneously. As a result, we impose another assumption, namely that the two hysteresis regions do not overlap 
(Section 5.2.3).

4. Verifying function blocks in PVS

We consider the ST and FBD descriptions supplied by IEC 61131-3 as implementations of FBs. For each FB, under the 
same proof environment of PVS, we formalize (Section 3.1) its supplied implementation and capture (Section 3.2) its input-
output requirement that is both complete and unambiguous. We now present the two kinds of verification we perform in 
PVS.

4.1. Verifying the correctness and consistency of an implementation

Given an implementation predicate I , our correctness theorem states that, if I holds for all possible inputs and outputs, 
then the corresponding requirement predicate R also holds. This corresponds to the proofs of correctness shown in Fig. 1. 
For example, to prove that the FBD implementation of block LIMITS_ALARM in Section 3.1 is correct with respect to its 
requirement in Section 3.2, we must prove the following in PVS:

∀H,X, L,EPS • ∀QH,Q,QL •
LIMITS_ALRM_IMPL(H,X, L,EPS,QH,Q,QL)

⇒ LIMITS_ALRM_REQ(H,X, L,EPS,QH,Q,QL) (1)

The PVS specification of correctness checking is formulated as follows:

LIMITS_ALARM_CORRECTNESS: THEOREM
LIMITS_ALARM_IMPL(H,X,L,EPS,QH,Q,QL) ⇒

LIMITS_ALARM_REQ(H,X,L,EPS,QH,Q,QL)

Furthermore, we also need to ensure that the implementation is consistent or feasible, i.e., for each input list, there 
exists at least one corresponding list of outputs, such that I holds. Otherwise, the implementation trivially satisfies any 
requirements. This is shown in Fig. 1 as proofs of consistency. In the case of LIMITS_ALARM, we must prove the following in 
PVS:

∀H, X, L,EPS • ∃QH, Q ,QL • LIMITS_ALRM_IMPL(H, X, L,EPS,QH, Q ,QL) (2)

The PVS specification of consistency checking is formulated as follows:
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LIMITS_ALARM_CONSISTENCY: THEOREM
FORALL (H,X,L,EPS):
EXISTS (QH,Q,QL):

LIMITS_ALARM_IMPL(H,X,L,EPS,QH,Q,QL)

4.2. Verifying the equivalence of implementations

In IEC 61131-3, the block LIMITS_ALARM is supplied with ST only. In theory, when both ST and FBD implementations are 
supplied for the same FB (e.g., STACK_INT), it may suffice to verify that each of the implementations is correct with respect 
to the requirement. However, as the behaviour of FBs is intended to be deterministic in most cases, it would be worth 
proving that the implementations (if they are given at the same level of abstraction) are equivalent, and generate scenarios, 
if any, where they are not. This is also labelled in Fig. 1 as proofs of equivalence.

In Section 3.1 we discussed how to obtain, for a given FB, a predicate for its FBD description (say FB_FBD_IMPL) and 
one for its ST description (say FB_ST_IMPL). Both predicates share the same input list i1, . . . , im and output list o1, . . . , on . 
Consequently, to verify that the two supplied implementations are equivalent, we must prove the following in PVS:

∀i1, . . . , im • ∀o1, . . . ,on •
FB_FBD_IMPL(i1, . . . , im,o1, . . . ,on)

≡ FB_ST_IMPL(i1, . . . , im,o1, . . . ,on) (3)

In principle, we aim to prove that the ST and FBD implementations of the same FB, if applicable, agree on their external, 
input-output behaviour. However, the standard allows stateless standard functions (e.g., MOVE) to be converted into stateful 
function blocks, by adding a pair of input EN and output ENO [9, p. 68], which affects the execution flow of the function at 
runtime via interrupts. This means that if one implementation uses the stateless version, while the other uses the stateful 
version, then their runtime implementations may not be provably equivalent (because the implementation that uses the 
stateful version is possible to be interrupted, which is not possible for the other). Consequently, in this case we are only 
able to prove that the behaviour of the implementation without interrupts conforms to (i.e., is a subset of) that of the 
implementation with possible interrupts, by replacing “≡” with “⇒” in Equation (3).

∀i1, . . . , im • ∀o1, . . . ,on •
FB_FBD_IMPL(i1, . . . , im,o1, . . . ,on)

⇒ FB_ST_IMPL(i1, . . . , im,o1, . . . ,on) (4)

As an example, consider the STACK_INT block. The ST and FBD implementations are supplied at different levels of ab-
straction: the FBD description is closer to the hardware level as it uses additional execution control variables (i.e., a pair of 
enable in/out variables, EN/ENO) to indicate system errors (Appendix E of IEC 61131-3). Consequently, as explained above, 
we only need to prove that the lower level FBD implementation conforms to the higher level ST implementation.

Although IEC 61131-3 (2003) had been in use for almost 10 years, while performing this verification on STACK_INT, we 
found that we could not prove the implication (4) without introducing an explicit negation FB, see Section 5.3.1. We believe 
this is a good example of how the precision of formality can help us find errors that manual inspection often overlooks. 
In all likelihood a practical implementation of this FB in a real project would eventually fail and the error would be found. 
However, finding errors early is something we all strive for.

5. Case study: standard IEC 61131-3 including Annex F (version 2.0, 2003)

To justify the value of our approach (Sections 3 and 4), we have formalized and verified all of the FBs from IEC 61131-3, 
as well as standard functions that are used in these function blocks. Our work so far has revealed a number of possible 
issues. For the purpose of this paper, we will discuss the issues we found, and our suggestions on how to deal with them. 
We place issues we found into three categories: ambiguous behaviour (Section 5.1), possible missing input assumptions 
(Section 5.2), and inconsistent implementations (Section 5.3).

Before discussing each found issue in detail, it is critical for us to remind the reader that: 1) we derive our own input-
output requirements table for each function block based on the description in the standard and our experience; and 2) we 
determine correctness based on these proposed requirements tables.

As is often the case, the mathematically precise requirements are not so much of interest in themselves, but rather 
that they facilitate very specific discussion on those requirements. Readers may disagree with our version of the required 
behaviour, but they are very clear as to what we say that required behaviour is. An inviolate assumption in our methodology 
is that we start with mathematically precise requirements.

5.1. Ambiguous behaviour

5.1.1. Pulse timer in timing diagrams
The block PULSE is a timer defined in IEC 61131-3, whose graphical declaration is shown on the LHS of Fig. 11. It takes 

two inputs (a Boolean condition IN and a time duration, PT) and produces two outputs (a Boolean value Q and a time 
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+------+
|PULSE |
| |

BOOL --|IN Q|-- BOOL
| |

TIME --|PT ET|-- TIME
| |
+------+

+--------+ ++ ++ +--------+
IN | | || || | |

--+ +-----++-++-------+ +---
t0 t1 t2 t3 t4 t5
+----+ +----+ +----+

Q | | | | | |
--+ +---------+ +------+ +-------
t0 t0+pt t2 t2+pt t4 t4+pt

PT +---+ + +---+
: / | /| / |

ET : / | / | / |
: / | / | / |
: / | / | / |
--+ +-----+ +------+ +---
t0 t1 t2 t4 t5

Fig. 11. Declaration of the timer PULSE and its definition in timing diagram [9].

Result
Condition Q

¬Q−1 ¬IN−1 ∧ IN 1
IN−1 ∨ ¬IN 0

Q−1 Held_For(Q, PT) 0
¬Held_For(Q, PT) 1

Result
Condition pulse_start_time
¬Q−1 ∧ Q t
Q−1 ∨ ¬Q NC

Result
Condition ET

Q t − pulse_start_time
¬Q ¬Held_For_ts(IN, PT, pulse_start_time) 0

Held_For_ts(IN, PT, pulse_start_time) IN PT
¬IN 0

Fig. 12. Requirement of PULSE timer using tabular expressions.

duration, ET). It acts as a pulse generator: as soon as the input condition IN is detected to hold, it generates a pulse to let 
output Q remain TRUE for a constant time duration, PT. The elapsed time that Q has remained TRUE can also be monitored 
via output ET. IEC 61131-3 presents a timing diagram as depicted on the RHS of Fig. 11, in which the horizontal time axis 
is labelled with time instants ti (i ∈ 0..5), to specify (an incomplete set of) the behaviour of block PULSE.

The above timing diagram suggests that when a rising edge of the input condition IN is detected at time t , another 
rising edge that occurs before time t + P T may not be detected, e.g., the rising edge occurring at t3 might be missed as 
t3 < t2 + P T .

The use of timing diagrams to specify behaviour is limited to a small number of use cases, and subtle or critical boundary 
cases are likely to be missing. We formalize the PULSE timer using tabular expressions that ensure both completeness and 
disjointness.

Most of the critical behaviours have been captured by the timing diagrams. However, while developing the tabular 
expressions we found that there are at least two scenarios that are not covered by the above timing diagram.

1. If a rising edge of condition IN occurred at t2 + PT , should there be a pulse generated to let output Q remain TRUE for 
another PT time units? If so, there would be two connected pulses: from t2 to t2 + P T and from t2 + PT to t2 + 2PT .

2. If the rising edge that occurred at t3 stays high until some time tk (t2 + PT ≤ tk ≤ t4), should the output ET be defaulted 
to 0 at time t2 + PT or at time tk?

We use the three tables in Fig. 12 to formalize the behaviour of the PULSE timer, where outputs Q and ET and the 
internal variable pulse_start_time are initialized to, respectively, FALSE, 0, and 0. The behaviour in these tables now answers 
the questions left open by the specific version of the timing diagram shown in Fig. 12 (“No”, and “t2 + PT”). Even if the 
questions are not obvious, if a developer suddenly wonders about these specific behaviour, the tabular expressions provide 
explicit answers, while the timing diagram cannot. The tables have their obvious equivalents in PVS. To make the timing 
behaviour precise, we define two auxiliary predicates Held_For and Held_For_ts which are based on the work presented 
in [18]:

Held_For(P: pred[tick],duration: posreal)(t: tick): bool =
EXISTS(t j: tick):

(t - t j >= duration) ∧ (FORALL (tn: tick | tn >= t j ∧ tn <= t): P(tn))

Held_For_ts(P: pred[tick],duration: posreal,ts: tick)(t: tick): bool =
(t-ts >= duration) ∧ (FORALL (tn: tick | tn >= ts & tn <= t): P(tn))
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The predicate Held_For(P, duration) holds when the input predicate P holds for at least duration units of time. The predicate 
Held_For_ts(P, duration, ts) is more restricted, insisting that the starting time of duration is ts. As a result, we make explicit 
assumptions to disambiguate the above two scenarios. Scenario 1 would match the condition row (in bold) in the upper-left 
table for output Q , where Q at the previous time tick holds (i.e., Q −1) and Q has already held for PT time units, so the 
problematic rising edge that occurred at t2 + PT would be missed. Due to our proposed solution to Scenario 1 (that the 
rising edge of IN at t2 + PT is missed), Scenario 2 would match the condition row (in bold) in the lower table for output ET, 
where Q at the current time tick does not hold (i.e., ¬Q ), and condition IN has not held for more than PT time units (as it 
became FALSE between t2 and t3), so the value of ET is defaulted back to 0.

As the PULSE timer is not supplied with an implementation, there are no correctness and consistency proofs to be con-
ducted. Nonetheless, obtaining a precise, complete, and disjoint requirement is valuable for future concrete implementations.

5.1.2. Implicit delay unit
PLC applications often use feedback loops: outputs of an FB are connected as inputs of either another FB, or the FB itself. 

IEC 61131-3 specifies feedback loops through either a connecting line or shared names of inputs and outputs. However, 
feedback values (or intermediate output values) cannot be computed instantaneously in reality.

The behaviour of the SR block [9, p. 77] may be derived from the following extracts from the standard:

• It shall be possible . . . to determine the order of execution of the elements . . . by selection of feedback variables to form an implicit 
loop. (p. 137, item 2)

• No element of a network shall be evaluated until the states of all of its inputs have been evaluated. (p. 136, item 1)
• Once the element with a feedback variable as output has been evaluated, the new value of the feedback variable shall be used until 

the next evaluation of the element. (p. 136, item 3)

The above first item describes the mechanism that is adopted by the SR block. Combining the latter two items implies that 
there is an implicit delay between the feedback variable value being produced and the time at which it is used as an input. 
Note, however, for the formal verification for FBs that contain feedback loops, we need to make the unit delay explicit.

Therefore, in our modelling framework of time, we introduce a unit delay block z−1 to formalize the above extracts 
from the standard, and to explicitly inform users that there will be a delay of one unit of time before the newly-evaluated 
feedback variable value can be used as an input. A unit delay block z−1 with its formalization is shown in Fig. 13:

Fig. 13. Declaration of the block Unit Delay and its formalization.

There is an explicit, one-tick delay between the input and output of block z−1, making it suitable for denoting feedback 
values as output values produced in the previous execution cycle. The type of i and o can be any defined type, e.g., Boolean 
type in the example of block SR, but have to be the same type.

To illustrate the use of block z−1, we consider the block SR that creates a set-dominant latch (a.k.a., flip-flop) in Fig. 14. 
The block SR takes as inputs a Boolean set flag S1 and a Boolean reset flag R , and returns a Boolean output Q 1. The value 
of Q 1 is fed back as another input of block SR itself. Value of Q 1 remains TRUE as long as the set flag S1 is enabled. Q 1 is 
reset to FALSE not only when the reset flag is enabled, but also when the set flag is disabled (so it cannot dominate the 
output result). Otherwise, Q 1 stays unchanged. There should be a delay between the value of Q 1 which is computed and 
passed to the next execution cycle. We formalize this by adding the explicit unit delay block z−1 and conjoining predicates 
for the internal blocks (as shown in Fig. 14). Blocks B1 (formalized by predicate NEG), B2 (CONJ), B3 (DISJ), and B4 (z−1) 
in Fig. 14 denote the FB of, respectively, logical negation, conjunction, disjunction, and delay. Arrows w1, w2, and w3 are 
internal connectives that are used to connect those internal blocks.

Adding an explicit unit delay block z−1 to formalize feedback loops led us to discharge the correctness and consistency 
theorems (Section 4) of the FBD implementation in Fig. 14. More precisely, the following theorems, as formulated in (5)
and (6), are discharged in PVS, in which SR_FBD_IMPL, SR_REQ denote the FBD implementation and the tabular requirement 
of block SR.

Fig. 14. FBD implementation of the block SR and its formalizing predicate.
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∀S1, R • ∀Q 1 • SR_FBD_IMPL(S1, R, Q 1) ⇒ SR_REQ(S1, R, Q 1) (5)

∀S1, R • ∃Q 1 • SR_FBD_IMPL(S1, R, Q 1) (6)

Our tabular expression for the requirement of the SR block is shown in Fig. 15:

Result
Condition Q1

S1 1
¬S1 R 0

¬R NC

Fig. 15. Requirement of the SR block using a tabular expression.

5.2. Possible missing input assumptions

In this section we discuss how we uncover issues from the standard that are related to missing input assumptions. First 
of all, we make a clear distinction between our intended use of TCCs and lemmas. On the one hand, we use TCCs to ensure 
that the requirements tables are “healthy” (i.e., complete, disjoint, and well-defined) and can thus be reused as components 
of other function block theories. For example, to formulate the requirements of the LIMITS_ALARM block (Section 3.2), we 
represent the two instances of the HYSTERESIS block by referencing its requirements table, with the obligation to prove that 
it is both complete and disjoint. As another example, consider the AVERAGE block in Section 5.2.5: to formulate any com-
posite function block that uses AVERAGE as a component, we are obliged to prove that its requirements table is well-defined 
(i.e., the denominator N is not equal to zero).

On the other hand, for any function block, we may use lemmas to express certain desired properties that are not di-
rectly expressed in its requirements table. We consider these lemmas as additional requirements that implementation(s) 
of the function block in question must also satisfy. For example, consider the DELAY block in Section 5.2.4: we use the 
IXIN_IXOUT_REL to assert that the output index IXOUT is always N samples behind the input index IXIN. The formulation of 
lemma IXIN_IXOUT_REL is not arbitrary: it is based on the (informal) requirements that the standards provides for the DELAY
block [9, p. 187]: “This function block implements an N-sample delay”. As a result, any unproven TCCs or lemmas suggest 
that it is not safe to reuse the function block in question, as there are issues (e.g., missing an explicit input assumption) 
with either its requirements table or its implementation(s).

Impact of unproven TCCs or lemmas. In our verification framework, each unproven lemma or table with unproven TCCs is 
not depended upon by theories of other functions. In particular, we do not reuse any unproven lemmas to prove properties 
of other function blocks. We achieve this by creating a “fixed” version of the FB implementation or requirements table, 
incorporated with our proposed solution, e.g., an explicit input assumption. In the case of an unproven lemma, we create 
a new lemma that is identical to the unproven one, except that it references the “fixed” version of FB implementation or 
requirements table, and it is thus provable. That is, for each “fixed” version of a function block, all the associated TCCs, 
lemmas, and theorems are proved.

For example, we have two versions of specifications for the HYSTERESIS block (Section 5.2.2): one with the non-negative-
hysteresis-band-size assumption, and the other one without. The unprovable TCC only affects the correctness of the version 
of HYSTERESIS without such an assumption, and we do not reference this version of HYSTERESIS elsewhere. On the other 
hand, the version of HYSTERESIS with an explicitly introduced assumption can be proved correct, and we thus can safely 
reference it in the context of the LIMITS_ALARM block.

As we carefully guided the PVS prover when conducting proofs, for all TCCs and lemmas that we failed to prove, we 
could: 1) trace back to the original FBs in the standard; 2) decide whether our requirements are incorrect or the supplied 
implementation is not consistent with the requirements; and 3) uncover issues that we report in this paper. As indicated 
above, all lemmas and TCCs of the fixed versions of FB theories are proved, and the proofs of all the final results do not 
make use of any unproven lemmas or TCCs. Furthermore, all proofs are available for inspection of correctness.

Compositionality. The introduction of input assumptions does not break the compositionality of our approach. When an FB 
in question cannot be proved as satisfying its input-output requirements, we attempt to trace back to its specification and 
identify the source of failure. For circumstances that lead to undesirable results (e.g., the toggling behaviour of a HYSTERESIS
block in Section 5.2.2), we propose to precisely character them as input assumptions (e.g., positive hysteresis deadband size). 
An alternative solution is that of defensive programming: users may modify the FB implementation from the standard, such 
that it always checks for conditions that will lead to abnormal behaviour, then take the appropriate actions (e.g., flag an 
error, reset the state, do nothing, etc.).

Input assumptions are useful in that they make those problematic scenarios explicit to users of the FBs, without the 
need for them to discover them from the source code. In PVS, we formalize input assumptions using predicate subtypes 
(e.g., posreal for the hysteresis deadband size in Section 5.2.2) or dependent types (non-overlapping hysteresis regions for 
the limits alarm in Section 3.2).

Consequently, TCCs that are specific to these input assumptions will be automatically generated by PVS. That is, adding 
input restrictions means that there are additional proof obligations to be discharged to make sure that the relevant FBs are 



L. Pang et al. / Science of Computer Programming 113 (2015) 149–190 173
+--------+
| CUTD |
| |

BOOL -->CU QU|-- BOOL
BOOL -->CD QD|-- BOOL
BOOL --|R |
BOOL --|LD |
INT --|PV CV|-- INT

| |
+--------+

FUNCTION_BLOCK CTUD
VAR_INPUT
CU, CD : BOOL R_EDGE; (* Value to be counted up/down *)
R : BOOL (* Reset *)
LD : BOOL (* Load value flag *)
PV : INT (* Preset value *)

END_VAR
VAR_OUTPUT
QU : BOOL (* Compare CV with PV for up counter *)
QD : BOOL (* Compare CV with 0 for down counter *)
CV : INT (* Current counted value *)

END_VAR
IF R THEN CV := 0 ;
ELSIF LD THEN CV := PV ;
ELSE
IF NOT (CU AND CD) THEN

IF CU AND (CV < PVmax)
THEN CV := CV + 1 ;
ELSIF CD AND (CV > PVmin)
THEN CV := CV - 1 ;
END IF ;

END IF ;
END IF ;
QU := (CV >= PV) ;
QD := (CV <= 0) ;

END_FUNCTION_BLOCK

Fig. 16. Declaration of the block CTUD and its ST implementation [9].

invoked with legitimate input values. However, this does not break the compositionality in our approach. For a composite 
FB, if any of its component FBs is supplied with input values that are not provably legitimate, then the correctness of that 
composite block cannot be proved, which is a desired outcome.

5.2.1. Limit on the counter blocks
IEC 61131-3 describes three types of counters. An up-down counter (CTUD) in IEC 61131-3 is composed of an up counter 

(CTU) and a down counter (CTD). The ST implementation and graphical declaration are provided in the standard as shown 
in Fig. 16.

The output counter value CV is incremented (using the up counter) if a rising edge is detected on an input condition CU, 
or CV is decremented (using the down counter) if a rising edge is detected on the input CD. Actions of increment and 
decrement are subject to, respectively, a high limit PVmax and a low limit PVmin. The value of CV is loaded to a preset 
value PV if a load flag LD is TRUE; and it is defaulted to 0 if a reset condition R is enabled. Two Boolean outputs are 
produced to reflect the change on CV: QU ≡ (CV > PV) and QD ≡ (CV <= 0). Note that the lines connected to CU and CD
inputs are right-arrowed. In the IEC 61131-3, it denotes the signals from a rising edge detector function block. Similarly, 
left-arrowed lines denote the signals from a falling edge detector function block. We have formalized and verified these two 
blocks in PVS.

As we attempted to formalize and verify the correctness of the ST implementation of block CTUD supplied by 
IEC 61131-3, we found two missing assumptions:

1. The relationship between the high and low limits is not stated. Let PVmin be 10 and PVmax be 1, then the counter 
can only increment when CV < 1, decrement when CV > 10 (disabled when 1 ≤ CV ≤ 10). This contradicts with our 
intuition about how low and high limits are used to constrain the behaviour of a counter. Consequently, we introduce 
a new assumption11: PVmin < PVmax.

2. The range of the preset value PV, with respect to the limits PVmin and PVmax, is not clear. If CV is loaded by the 
value of PV, such that PV > PVmax, the output QU can never be TRUE, as the counter increments when CV < PVmax. 
Similarly, if PV is such that PV < PVmin and PV = 1, the output QD can never be TRUE, as the counter decrements when 
CV > PVmin. As a result, we introduce another assumption: PVmin < PV < PVmax.

Our tabular requirement for the up-down counter that incorporates the missing assumption is shown in Fig. 17. Similarly, 
we added PV < PVmax and PVmin < PV as assumptions for, respectively, the up and down counters.

We now need to discuss how we arrived at our assumptions. We also need to consider the impact of adopting the ST 
code as is.

Unlike in the case of the LIMITS_ALARM block, in the standard there is no summary of what the intended functionality of 
the up-down counter (CUTD) is. Instead, the standard suggests [9, p. 78] that the ST implementation in its entirety represents 

11 If the less intuitive interpretation is intended, we fix the assumption accordingly.



174 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190
Result
Condition CV

R 0
¬R LD PV

¬LD CU ∧ CD NC
CU∧¬CD CV−1 < PVmax CV−1+1

CV−1 ≥ PVmax NC
¬CU∧CD CV−1 > PVmin CV−1-1

CV−1 ≤ PVmin NC
¬CU ∧ ¬CD NC
assume: PVmin < PV < PVmax

Fig. 17. Tabular requirement of the block CTUD.

the requirements of CUTD: “The operation of these function blocks [e.g., CUTD] shall be as specified in the corresponding 
function block bodies [i.e., ST code]”. Consequently, the only authoritative source we can rely on for the purpose of analysis 
is the ST code itself (RHS in Fig. 16).

Inspecting the variable declaration and implementation body of the ST code, we make the following observations:

1. Since outputs QU and QD are declared as variables, as opposed to constants, their values are expected to vary according 
to changes of the state (i.e., CV and PV). More precisely, the last two lines of the implementation body indicate that 
QU ≡ (CV > PV) ∧ QD ≡ (CV ≤ 0) is an intended invariant.

2. The choice of variable names PVmax and PVmin suggest that they are, respectively, the upper bound and lower bound 
for the value of PV.

3. The if–then–else statement, executed when ¬R ∧ ¬LD, suggests that the value of PVmax is used as an upper bound 
to prevents increments on the counter value CV from overflow, and similarly for PVmin to prevent decrements on CV
from underflow. More precisely, the condition PVmin ≤ CV ≤ PVmax is an intended invariant, and the counter block is 
effectively disabled (i.e., value of CV remains unchanged) when this invariant is violated.

Our observations above are arguably consistent with ones made by any experienced engineer or programmer. Therefore, any 
violation of them may suggest a possible issue.

Our first proposed assumption PVmin < PVmax is intended to guard the truth of observation 2 above. Our common 
perception should allow us to assume that for the same monitored quantity (e.g., PV), its upper bound is strictly larger 
than its lower bound, for otherwise it is nearly impossible for the monitored quantity to fall “within the boundaries” (i.e., 
PVmax < PVmin ⇒ (PVmin ≤ P V ≤ PVmax ≡ FALSE)). Even if one may argue that for this particular example, the value PV
is meant to be chosen from either the interval [PVmin, PVmax] or the interval [PVmax, PVmin], depending on how PVmin
and PVmax are related at runtime. However, this is even more problematic because according to observation 3 above, when 
PVmax < PVmin, choosing a value of PV from interval [PVmax, PVmin] will effectively disable the counter block.

Our second proposed assumption PVmin < PV < PVmax is justified by observation 1 above that PV should be chosen 
within its defined boundaries. Without such assumption, say PV is always chosen such that PV > PVmax, then our obser-
vations that QU ≡ (CV > PV), and that CV ≤ PVmax, imply that QU declared as a variable will act like a constant FALSE. 
A similar argument applies to the case of PV < PVmin.

Therefore, we think it is more justifiable to impose the two assumptions than not to do so. Nonetheless, the existing ST 
code in the standard does not prevent users of the CUTD block from violating these assumptions, in which case the counter 
block may, as explained above, become completely disabled and/or always output QU and QD as FALSE.

Again, this amply demonstrates the value of our approach: it makes these two input details (subtle yet non-negligible 
as they greatly impact the resulting behaviour) precise and explicit for users to decide. If the ST code is used as is, users 
may inadvertently disable the counter simply by inputting values that violate our suggested invariant. No error would be 
generated. We believe that this kind of control over functionality should always be explicit.

5.2.2. Deadband size of the HYSTERESIS block
The HYSTERESIS block implements a Boolean hysteresis: the output value depends not only on the current input values, 

but also the output value in the past. Its declaration (shown on the LHS in Fig. 18) requires three real-valued input numbers: 
XIN1 is typically read from a sensor, XIN2 specifies its set point, and EPS indicates that the deadband (above and below the 
set point) within which the Boolean output signal value Q should remain unchanged.

We formalize the requirement of the HYSTERESIS block in Fig. 19, with the assumption that the deadband size is non-
negative. The shaded area in Fig. 19 denotes the hysteresis deadband (with a size of 2 ×EPS). If the current sensor value XIN1
is such that XIN1 < XIN2 − EPS, then output Q becomes FALSE. Similarly, if it is the case that XIN1 > XIN2 + EPS, then Q be-
comes TRUE. For the stability of Q ’s value, if the sensor value lies within the deadband (i.e., XIN2 − EPS ≤ XIN1 ≤ XIN2 + EPS), 
then output Q remains unchanged (a case of no change).

For the behaviour specified in Fig. 19, it is necessary to have the assumption about the value of EPS being non-negative. 
Otherwise, the two intervals XIN1 > (XIN2 + EPS) and XIN1 < (XIN2 − EPS) may overlap (i.e., the two constraints are not 
disjoint) when EPS < 0, and an unprovable proof obligation (TCC of Disjointness) is generated in PVS (which we omit here). 
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+------------+
| HYSTERESIS |
| |

REAL --|XIN1 Q|-- BOOL
REAL --|XIN2 |
REAL --|EPS |

| |
+------------+

FUNCTION_BLOCK HYSTERESIS
(* Boolean hysteresis on difference *)
(* of REAL inputs, XIN1 - XIN2 *)
VAR_INPUT XIN1, XIN2, EPS : REAL; END_VAR
VAR_OUTPUT Q : BOOL := 0; END_VAR
IF Q THEN IF XIN1 < (XIN2 - EPS) THEN Q := 0; END_IF ;
ELSIF XIN1 > (XIN2 + EPS) THEN Q := 1 ;
END_IF ;

END_FUNCTION_BLOCK

Fig. 18. Declaration of the block HYSTERESIS and its ST implementation [9].

Fig. 19. Requirement of the block HYSTERESIS: with the assumption EPS ≥ 0.

Result
Condition Q

¬Q−1 XIN1 > (XIN2 + EPS) 1
XIN1 ≤ (XIN2 + EPS) NC

Q−1 XIN1 ≥ (XIN2 − EPS) NC
XIN1 < (XIN2 − EPS) 0

Fig. 20. ST implementation of block HYSTERESIS in tabular expressions: with no assumption on EPS.

Nonetheless, in practice, subject to the oscillation on the sensor value XIN1, the value of input EPS should be positive (and 
sufficiently large) to create a deadband for stabilizing the value of output Q. Therefore, in our PVS models, when proving 
the correctness of HYSTERESIS and blocks that use it (e.g., the LIMITS_ALARM block discussed in Section 5.2.3), we adopt a 
stronger assumption EPS > 0 than that for Fig. 19.

We will relax such an assumption of positive deadband size later in this section (in Fig. 21), by considering the behaviour 
of the HYSTERESIS with a negative deadband size.

For the purpose of verification, we translate the ST implementation (on the RHS in Fig. 18) into a PVS predicate that has 
a tabular structure12 in Fig. 20. In this complete and disjoint tabular representation of the ST code, there is no assumption 
about the value of input EPS (i.e., whether or not it is non-negative).

However, the behaviour of the ST implementation (Fig. 20) does not conform to that in Fig. 19. The implementation 
supplied by the standard actually allows a toggling behaviour on the value of output Q. In the case of a negative value 
for EPS, the value of output Q alternates between FALSE and TRUE (or 0 and 1) when XIN2 is within the headband. Let’s 
consider a concrete example. Say EPS = −2, XIN1 = 1, and XIN2 = 2, then by executing the ST code (RHS in Fig. 18 and 
Fig. 20) multiple times, we obtain alternating (or toggling) results (of 0 and 1) for Q.

To understand this toggling behaviour more clearly, we provide an extended tabular requirement that incorporates the 
case of negative EPS (Fig. 21), where the two rows that represent the toggling behaviour are set in boldface.

It may be that developers actually use the toggling feature provided by the functionality in the standard. However, this 
feature is definitely not what most practitioners would expect from a hysteresis FB. As we said earlier, if we intend to 
include such behaviour, the behaviour must be explicitly clear. In this particular case, we strongly believe that the toggling 
behaviour should be implemented in a different FB, not hidden within a hysteresis FB that changes its behaviour depending 
on whether or not the hysteresis value is positive or negative. The value of our approach is that it made this hidden 
behaviour explicit, so that we can make decisions on whether or not to include it.

12 This tabular structure has a straightforward counterpart in PVS.
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Result
Condition Q

EPS ≥ 0 XIN1 > (XIN2 + EPS) 1
(XIN2 − EPS) ≤ XIN1 ≤ (XIN2 + EPS) Q−1 1

¬Q−1 0
XIN1 < (XIN2 − EPS) 0

EPS < 0 XIN1 ≥ (XIN2 − EPS) 1
(XIN2 + EPS) < XIN1 < (XIN2 − EPS) Q−1 0

¬Q−1 1
XIN1 ≤ (XIN2 + EPS) 0

Fig. 21. Requirement of the block HYSTERESIS: with no assumption on EPS.

5.2.3. High/low limits of LIMITS_ALARM block
The function block LIMITS_ALARM (with two internal blocks HIGH_ALARM and LOW_ALARM) has been used as a run-

ning example in this paper: its declaration in Section 2.1, its FBD implementation formalized in PVS in Section 3.1.5, its 
tabular requirement in Section 3.2, and its verification conditions in Section 4. In this section we discuss the two missing 
assumptions of this block.

1. Similar to the case of the HYSTERESIS block (Section 5.2.2), we impose an assumption EPS > 0 (i.e., positive hysteresis 
deadband size) to ensure that the two hysteresis zones [L, L +EPS] and [H −EPS, H] are computed in the right directions 
and non-empty.

2. We impose another assumption H − EPS > L + EPS, or equivalently H − L > 2EPS, to separate two hysteresis zones. We 
reckon that the intention of having both high and low limits is to have two disjoint hysteresis zones. Otherwise, if 
the two zones overlap, then the high and low alarms may be tripped simultaneously, which would falsify the system 
property that at any time only the high limit or low limit can be tripped.

During the proof of overall correctness, we introduce three lemmas, each corresponding to the correctness of an output 
variable. This exemplifies the decomposition of the proof for the goal theorem into smaller ones.

OUTPUT_QH_CORRECTNESS_CHECKING: LEMMA
LIMITS_ALARM_IMPL(H,X,L,EPS,QH,Q,QL) ⇒ f_QH(X,H,L,EPS,QH)

OUTPUT_QL_CORRECTNESS_CHECKING: LEMMA
LIMITS_ALARM_IMPL(H,X,L,EPS,QH,Q,QL) ⇒ f_QL(X,L,EPS,QL)

OUTPUT_Q_CORRECTNESS_CHECKING: LEMMA
LIMITS_ALARM_IMPL(H,X,L,EPS,QH,Q,QL) ⇒ f_Q(QH,QL,Q)

Having introduced the dependent type of dependent_high_limit_type (Section 3.2), we are able to prove the invariant 
property, that high alarm and low alarm can not be tripped at the same time, as a theorem PROPERTY0:

PROPERTY0: THEOREM
LIMITS_ALARM_IMPL(X,H,L,EPS,QH,Q,QL)

⇒ FORALL (t: tick): NOT (QH(t) ∧ QL(t))

With our tabular requirement that incorporates the above two assumptions, we proved that the ST implementation 
supplied by IEC 61131-3 is both correct and consistent (Section 4). The proof process involved predicates for the 5 pre-
defined functions and FBs, 3 lemmas for implementation correctness, 1 theorem for implementation feasibility, 1 theorem 
for implementation correctness, and about 140 PVS proof commands.

5.2.4. Initialization failure of the DELAY block
The DELAY block (declared on the LHS of Fig. 22) generates an N-sample delay between the input XIN and the output 

XOUT. That is, the value of XOUT corresponds to the value of the last Nth XIN. The delay may be disabled, i.e., XOUT = XIN, 
by setting a Boolean input flag RUN to FALSE.

More precisely, we formulate the requirement of the DELAY block using the tabular expressions in Fig. 23. The upper 
table in Fig. 23 specifies last_disabled the latest moment in time when the input flag RUN is set to FALSE. The lower table 
in Fig. 23 documents the relation between the inputs (i.e., N, XIN, and RUN) and the output (i.e., XOUT). When the delay is 
disabled (i.e., RUN is FALSE), the value of XOUT is set to that of XIN (i.e., no delay is occurring). Otherwise, when the delay is 
enabled, we differentiate between two cases: whether or not RUN is set to TRUE for a time period of at least N ticks. First, 
if the delay has been enabled for sufficiently long, the value of XOUT is set to that of XIN N ticks behind. Second, before the 
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+------------+
| DELAY |
| |

BOOL --|RUN XOUT|-- REAL
REAL --|XIN |
INT --|N |

| |
+------------+

FUNCTION_BLOCK DELAY (* N-sample delay *)
VAR_INPUT
RUN : BOOL ; (* 1 = run, 0 = reset *)
XIN : REAL ;
N : INT ; (* 0 <= N < 128 or manufacturer- *)

END_VAR (* specified maximum value *)
VAR_OUTPUT XOUT : REAL; END_VAR (* Delayed output *)
VAR X : ARRAY [0..127] OF REAL ;(* N-Element queue with FIFO discipline *)

I, IXIN, IXOUT : INT := 0 ;
END_VAR
IF RUN THEN IXIN := MOD(IXIN + 1, 128) ; X[IXIN] := XIN ;

IXOUT := MOD(IXOUT + 1, 128) ; XOUT := X[IXOUT];
ELSE XOUT := XIN ; IXIN := N ; IXOUT := 0;

FOR I := 0 TO N DO X[I] := XIN; END_FOR;
END_IF ;

END_FUNCTION_BLOCK

Fig. 22. Declaration of the block DELAY and its ST implementation [9].

value of delayed XIN is ready, the value of XOUT is set to that of XIN at time (i.e., last_disabled) when the DELAY block was 
last disabled.

The ST implementation of the DELAY block (shown on the RHS of Fig. 22) uses a circular array X to maintain a sliding 
window of size N, as new values of the sample XIN are read. Then, the output XOUT corresponds to the cell in array X that 
is N-position behind the current sample XIN. Two auxiliary variables, IXIN and IXOUT, are used to store indices of cells that 
store, respectively, XIN and XOUT. When the input flag RUN is set to TRUE, indicating that the N-sample delay should be in 
effect, values of both IXIN and IXOUT are incremented accordingly to slide the window.13 Otherwise, values of IXIN, IXOUT, 
and their in-between cells are reset.

Inspecting its ST implementation, the intended usage of the DELAY block requires RUN being disabled in order to properly 
set the two indices. As an example, consider the following use case: 1) disable RUN initially (t = 0) to properly separate the 
two indices apart; and 2) enable RUN from then on (t > 0). For phase 2), there are two cases to consider. Before N samples 
have been collected, the output value should equal to that of the input when RUN was last disabled. After N samples have 
been buffered, the proper delay effect should be observed: output value equals to that of the last Nth input.

However, we discovered that the supplied ST implementation does not prevent users from enabling RUN initially, in 
which case the delay effect will never occur, even after N samples have been collected. More precisely, we were unable to 
prove the following property, which justifies itself by formalizing the informal requirements of the DELAY block [9, p. 187]: 
“This function block implements an N-sample delay”, meaning that the value of output should equal that of the input 
N-samples ago.

IXIN_IXOUT_REL: LEMMA
MOD(f_IXOUT(RUN)(t) + N, 128) = f_IXIN(RUN,N)(t)

Recursive functions f _IXOUT and f _IXIN return the current value of, respectively, IXOUT and IXIN. Lemma IXIN_IXOUT_REL
states that, in the context of a circular array of size 128, IXOUT is N always samples behind IXIN. The proof is based upon an 
induction on time t using the induction scheme time_induction (see Section 2.4). By reformatting the generated unprovable 
PVS sequent, we obtained an unprovable predicate: init(t) ⇒ mod(0 + N, 128) = 0. That is, the initial distance between cells 
referenced by IXIN and IXOUT should be N , but the initialization in the original implementation in the standard failed to 
satisfy this constraint.

From the ST implementation in Fig. 22, both IXIN and IXOUT are initialized to 0. This means that initially they point 
to same the cell in array X . As the DELAY block remains enabled (i.e., input RUN set to TRUE), both IXIN and IXOUT are 
incremented and will thus always point to the same cell. Consequently, there is no effect of an N-sample delay.

We propose to solve this issue by initializing IXIN to N instead of 0, such that cells referenced by IXIN and IXOUT are N
samples apart. As a result, we are able to prove that the revised implementation satisfies the lemma IXIN_IXOUT_REL.

Moreover, the value of N may be set to 0, which means there should be 0-sample delay in effect. In this case, both 
IXIN and IXOUT will, consistently, always point to the same cell in array X . However, allowing such a boundary value for N
can have dangerous consequence, e.g., the client block PID (Section 5.2.6) uses the DELAY block as one of its components. 
As a result, we consider the input of N = 0 to be an unacceptable case and redefine the type of N by excluding value 0: 
{1, 2, . . . , 128}.

Finally, based on the above reasoning, we formalize the complete tabular requirement for the DELAY block (Fig. 23).
Once we have added the lemma IXIN_IXOUT_REL to enforce an invariant not included in the original ST, we clearly have 

to ask ourselves whether the addition of the lemma is justified. Similar to the case of the LIMITS_ALARM block, the most 

13 This circular operation is implemented by a division modulo operator mod.



178 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190
Result
Condition last_disabled

t = 0 0
t > 0 RUN NC

¬RUN t

Result
Condition XOUT

¬RUN XIN
RUN Held_For(RUN, N·δ) XIN−N

¬Held_For(RUN, N·δ) XIN−rank(t−last_disabled)

Fig. 23. Requirement of the block DELAY.

+------------+
| AVERAGE |
| |

BOOL --|RUN XOUT|-- REAL
REAL --|XIN |
INT --|N |

| |
+------------+

FUNCTION_BLOCK AVERAGE
VAR_INPUT
RUN : BOOL ; (* 1 = run, 0 = reset *)
XIN : REAL ; (* Input variable *)
N : INT ; (* 0 <= N < 128 or manufacturer *)

END_VAR (* specified maximum value *)
VAR_OUTPUT XOUT : REAL ; END_VAR (* Averaged output *)
VAR SUM : REAL := 0.0; (* Running sum *)

FIFO : DELAY ; (* N-Element FIFO *)
END_VAR
SUM := SUM - FIFO.XOUT ;
FIFO (RUN := RUN , XIN := XIN, N := N) ;
SUM := SUM + FIFO.XOUT ;
IF RUN THEN XOUT := SUM/N ;
ELSE SUM := N*XIN ; XOUT := XIN ;
END_IF ;

END_FUNCTION_BLOCK

Fig. 24. Declaration of the block AVERAGE and its ST implementation [9].

Result
Condition last_disabled

RUN NC
¬RUN t

Result
Condition XOUT

¬RUN XIN

RUN Held_For(RUN, N·δ)
XIN + ∑N−1

i=1 XIN−i

N¬Held_For(RUN, N·δ) ¬RUN−1 XIN−1

RUN−1
XIN + ∑#new_vals

i=1 XIN−i + ∑#old_vals
i=1 XIN−rank(t−last_disabled)

N
#new_vals = rank(t - last_disabled) - 1

#old_vals = N - #new_vals - 1

Fig. 25. Requirement of the block AVERAGE.

authoritative source regarding the functionality of DELAY we could obtain from the standard is a one-line sentence [9, 
p. 187] which says that the value of the output should equal that of the input N-samples ago. As the lemma IXIN_IXOUT_REL
only makes this informal statement formal, we believe our use of it to verify the correctness of the ST code is justified.

Furthermore, when the lemma IXIN_IXOUT_REL failed to prove, we were able to trace back to the original ST code, and 
confirm that the ST code did not always match the informal statement of its behaviour. More precisely, we found the use 
case where RUN is always enabled, keeping the output and input indices always synchronized on their values, and thus 
causing the desired delay to never occur. As an example, consider that input N is set to 5 for the DELAY block, meaning 
that there should be a 5-sample delay occurring (after the first 5 samples have been buffered). However, the ST code 
does not prevent the user from enabling RUN right from the beginning, and the consequence is that the delay effect will 
never be observed, even after 5 samples have been collected. We consider this to be non-compliance with its informal 
requirements [9, p. 187].

5.2.5. Division by zero of the AVERAGE block
The AVERAGE block (whose declaration is shown on the LHS in Fig. 24) computes a running average XOUT over the last 

N values of the input sample XIN. The ST implementation of AVERAGE (shown on the RHS in Fig. 24) indicates that it is a 
composite FB. It references an instance of the DELAY block (Section 5.2.4), storing the latest N values of the input XIN, to 
maintain an internal sliding window of size N. An internal variable SUM is used to store the running average, updated by 
subtracting the oldest value (i.e., output value from the DELAY instance) and adding the current value of XIN. Furthermore, 
the output XOUT may be calculated differently depending upon the value of a Boolean input flag RUN. If RUN is TRUE, then 
the value of XOUT represents the running average SUM/N as expected. Otherwise, it is reset to the current value of the 
input XIN.

Based on our understanding of the ST implementation, we formulate the requirement of the AVERAGE block in Fig. 25. 
Similar to the case of the DELAY block (Section 5.2.4), the value of XOUT is specified using last_disabled (i.e., the time when 
RUN was last set to FALSE) and the Held_For (Section 5.1.1) timing operator. There are four cases to consider:
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1. If RUN is FALSE, then XOUT is set to the current value of XIN.
2. If RUN remains TRUE for a time period of at least N ticks, then XOUT is set to the average of the most recent N values 

of the input sample XIN.
3. If RUN has just become TRUE at the current instant, then XOUT is set to the value of XIN when RUN was last stopped 

(i.e., XIN−1).
4. If RUN has not remained TRUE for sufficiently long, then XOUT is set to the average over: 1) samples taken since after 

the moment in which RUN was last FALSE (i.e., instant last_disabled); and 2) a number of copies of the value of XIN
at instant last_disabled (i.e., XIN−rank(t−last_disabled)

14). The obvious constraint is that is that the total number of samples 
from 1) and 2) equals N.
As an example, consider the following scenario, where currently t = 6 and RUN has become and remained TRUE since 
when t = 4:

In the above scenario, the resulting average XOUT should be

XIN + (XIN−1 + XIN−2) + XIN−3 × 2

5

where XIN−1 and XIN−2 denote values of XIN when, respectively, t = 5 and t = 4. Say the sliding window size is 5, so 
we need to count two copies of the value of XIN at instant last_disabled (i.e., XIN−3).

However, the range of N (i.e., {0, 1, 2, . . . , 128}) includes the possibility of zero. This means that when RUN is TRUE and 
the value of N happens to be set zero, the value of the running average will be undefined due to a division by zero. This 
issue is reflected by an unprovable PVS proof obligation:

% Subtype TCC generated (at line 72, column 31) for n
% expected type nznum
% unfinished
Average_impl_st_TCC1: OBLIGATION
FORALL (run: pred[tick[delta_t]], n: DelayUnits[delta_t], t: tick[delta_t]):

run(t) AND NOT init(t) ⇒ n /= 0;

The above proof obligation is generated when the implementation predicate is type-checked. It states that when input RUN
is TRUE and the current tick is not the initial tick, the value of N can not be zero. However, this sequent is unprovable. We 
propose to solve this issue by constraining the type of N such that the value of zero is excluded: {1, 2, . . . , 128}.

Are there other options for solving the issue of possible division by zero? The ST code could be modified so that it 
defensively handles this issue by checking for the value of N being zero, and either flagging an error or returning some 
default result. However, we think it is better to explicitly state this input assumption and thus warn the intended users of 
the AVERAGE block that they need to cope with this possibility.

5.2.6. Division by zero of the PID block
The PID (proportional-integral-derivative) block, whose declaration is shown on the LHS in Fig. 26, implements the classi-

cal three-term controller for closed-loop feedback control. The output signal from the PID, based upon its internal three-term 
computation, is used in many industrial applications where stable control is required using the feedback of the input process 
value.

At each current time instant t, the PID controller computes an “error” value as the difference between values of a 
measured process (PV) variable and a desired set point (SP). The controller then outputs a control signal (XOUT) as the 
result of a weighted sum of three terms: 1) the proportional term (depending on the current error); 2) the integral term 
(depending on errors accumulated from past); and 3) the derivative term (predicting error in the future). The computation 
also depends on other inputs constants: KP (proportionality constant), TR (reset time), TD (derivative time), and CYCLE
(sampling period). At the top level, we formalize the requirements of the PID block as a one-line equation, resembling the 
last statement of its ST implementation (shown on the RHS in Fig. 26):

14 Here rank(t − last_disabled) denotes the number of ticks occurring between last_disabled and now.
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+------------+
| PID |
| |

BOOL --|AUTO XOUT|-- REAL
REAL --|PV |
REAL --|SP |
REAL --|X0 |
REAL --|KP |
REAL --|TR |
REAL --|TD |
TIME --|CYCLE |

| |
+------------+

FUNCTION_BLOCK PID
VAR_INPUT
AUTO : BOOL ; (* 0 - manual , 1 - automatic *)
PV : REAL ; (* Process variable *)
SP : REAL ; (* Set point *)
X0 : REAL ; (* Manual output adjustment - *)

(* Typically from transfer station *)
KP : REAL ; (* Proportionality constant *)
TR : REAL ; (* Reset time *)
TD : REAL ; (* Derivative time constant *)
CYCLE: TIME ; (* Sampling period *)

END_VAR
VAR_OUTPUT XOUT : REAL; END_VAR
VAR ERROR : REAL ; (* PV - SP *)

ITERM : INTEGRAL ; (* FB for integral term *)
DTERM : DERIVATIVE ; (* FB for derivative term *)

END_VAR
ERROR := PV - SP ;
(*** Adjust ITERM so that XOUT := X0 when AUTO = 0 ***)
ITERM (RUN := AUTO, R1 := NOT AUTO, XIN := ERROR,

X0 := TR * (X0 - ERROR), CYCLE := CYCLE) ;
DTERM (RUN := AUTO, XIN := ERROR, CYCLE := CYCLE) ;
XOUT := KP * (ERROR + ITERM.XOUT/TR + DTERM.XOUT*TD) ;

END_FUNCTION_BLOCK

Fig. 26. Declaration of the block PID and its ST implementation [9].

+-----------+
| INTEGRAL |
| |

BOOL---|RUN Q|---BOOL
BOOL---|R1 |
REAL---|XIN XOUT|---REAL
REAL---|X0 |
TIME---|CYCLE |

| |
+-----------+

VAR_INPUT
RUN : BOOL ; (* 1 = integrate, 0 = hold *)
R1 : BOOL ; (* Overriding reset *)
XIN : REAL ; (* Input variable *)
X0 : REAL ; (* Initial value *)
CYCLE: TIME ; (* Sampling period *)

END_VAR
VAR_OUTPUT
Q : BOOL ; (* NOT R1 *)
XOUT : REAL ; (* Integrated output *)

END_VAR

Fig. 27. Declarations of the block INTEGRAL [9].

Result
Condition Q

R1 0
¬R1 1

Result
Condition XOUT

R1 X0
¬R1 RUN XOUT−1 + XIN ∗ CYCLE

¬RUN XOUT−1

Fig. 28. Requirement of the block INTEGRAL.

XOUT = KP × ( (PV − SP) + ITERM.XOUT

TR
+ DTERM.XOUT × TD )15

where ITERM and DTERM are instances of, respectively, the INTEGRAL (Fig. 27 and Fig. 28) block and the DERIVATIVE (Fig. 29
and Fig. 30) block. Indeed, formalizing the requirements of these two functional units is also our contribution. As compo-
nents of the composite PID block, these two FBs are used to compute, respectively, the integral and derivative terms. We 
write ITERM.XOUT and DETERM.XOUT to denote output values resulting from their last invocations.

The INTEGRAL block (Fig. 27 and Fig. 28) implements the integral of values of input XIN over time. The strategy of 
implementation is an approximation using partitions with right endpoints (with an input sampling period CYCLE). The 
integral result XOUT is reset to a preset value X0 if the Boolean input flag R1 is enabled. The integral is calculated if another 
input flag RUN is also enabled; otherwise, no new partitions are added (i.e., XOUT remains unchanged). Another output Q is 
set to TRUE while the integral is not reset; otherwise, Q is set to FALSE.

The DERIVATIVE block (Fig. 29 and Fig. 30) computes the differentiation of values of input XIN with respect to time. The 
rate of change is computed on the basis of: 1) an input sampling period CYCLE; and 2) values of input XIN at present and at 
the previous three clock ticks (i.e., XIN and XIN−i , i ∈ {1, 2, 3}). The derivative result XOUT is reset to 0.0 if a Boolean flag 
RUN is disabled.

As indicated from the ST implementation of PID (Fig. 26) and tabular requirements of INTEGRAL and DERIVATIVE (Fig. 27
to 30), an input Boolean flag AUTO is set to distinguish cases in the computation. If AUTO is set TRUE, the controller attempts 

15 Also, we write x−n to denote the previous value of variable x at the last nth tick.
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+------------+
| DERIVATIVE |
| |

BOOL---|RUN |
REAL---|XIN XOUT|---REAL
TIME---|CYCLE |

| |
+------------+

VAR_INPUT
RUN : BOOL ; (* 0 = reset *)
XIN : REAL ; (* Input to be differentiated *)
CYCLE : TIME ; (* Sampling period *)

END_VAR
VAR_OUTPUT
XOUT : REAL ; (* Differentiated output *)

END_VAR

Fig. 29. Declarations of the block DERIVATIVE [9].

Result

Condition XOUT

R1 3.0×(XIN−XIN−3) + (XIN−1−XIN−2)

10.0×CYCLE

¬R1 0.0

Fig. 30. Requirement of the block DERIVATIVE.

+------------+
| DIFFEQ |
| |

BOOL --|RUN XOUT|-- REAL
REAL --|XIN |
REAL --|A |
INT --|M |
REAL --|B |
INT --|N |

| |
+------------+

FUNCTION_BLOCK DIFFEQ
VAR_INPUT

RUN : BOOL ; (* 1 = run, 0 = reset *)
XIN : REAL ;
A : ARRAY[1..127] OF REAL ; (* Output coefficients *)
M : INT ; (* Length of output history *)
B : ARRAY[0..127] OF REAL ; (* Input coefficients *)
N : INT ; (* Length of input history *)

END_VAR
VAR_OUTPUT XOUT : REAL := 0.0 ; END_VAR
VAR (* NOTE : Manufacturer may specify other array sizes *)

XI : ARRAY [0..127] OF REAL; (* Input history *)
XO : ARRAY [0..127] OF REAL; (* Output history *)
I : INT ;

END_VAR
XO[0] := XOUT ; XI[0] := XIN ;
XOUT := B[0] * XIN ;
IF RUN THEN

FOR I := M TO 1 BY -1 DO
XOUT := XOUT + A[I] * XO[I] ; XO[I] := XO[I-1];

END_FOR;
FOR I := N TO 1 BY -1 DO
XOUT := XOUT + B[I] * XI[I] ; XI[I] := XI[I-1];

END_FOR;
ELSE

FOR I := 1 TO M DO XO[I] := 0.0; END_FOR;
FOR I := 1 TO N DO XI[I] := 0.0; END_FOR;

END_IF ;
END_FUNCTION_BLOCK

Fig. 31. Declaration of the block DIFFEQ and its ST implementation [9].

to output XOUT closer to the desired set point value. Otherwise, another input X0, typically suppled by a transfer station, is 
used for a manual output adjustment.

However, observing the ST implementation of the PID block, the integral term is calculated through a division (of the 
output value XOUT from the FB instance ITERM) by the reset time TR. The type of TR, the set of real numbers, includes the 
possibility of zero that will lead to an undefined integral term. Similar to the case of the AVERAGE block (Section 5.2.5), this 
issue is reflected by an unprovable proof sequent generated by PVS, requiring that the value of TR can not be zero. As a 
result, our proposed solution is to redefine the data type for TR to exclude the value of zero. This serves the same purpose 
as an assumption that TR not be equal to zero.

5.2.7. Inconsistent length setting of the DIFFEQ block
The DIFFEQ block (whose declaration is shown on the LHS in Fig. 3116) implements the difference equation, an invariant 

on the present and past input and output values. The output XOUT represents the weighted sum of values drawn from three 
categories: 1) the current value of input XIN; 2) the previous N values of XIN; and 3) the previous M values of XOUT. More 
precisely:

16 The textual comments in the standard are in fact mistakenly placed to annotate the variables of input and output histories and coefficients, but since 
it does not affect the semantic verification, the corrected version is presented for readability.
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Result

Condition XOUT

RUN B0 · XIN + ∑N
i=1 Bi · XIN−i +

∑M
j=1 A j · XOUT− j

¬RUN B0 · XIN

Fig. 32. Requirements of the block DIFFEQ.

+-----------+
| STACK_INT |
| |

BOOL --|PUSH EMPTY|-- BOOL
BOOL --|POP OFLO|-- BOOL
BOOL --|R1 OUT|-- INT
INT --|IN |
INT --|N |

| |
+-----------+

FUNCTION_BLOCK STACK_INT
VAR_INPUT PUSH, POP: BOOL R_EDGE ; (* Basic stack operations *)

R1 : BOOL ; (* Over-riding reset *)
IN : INT ; (* Input to be pushed *)
N : INT ; (* Maximum depth after reset *)

END_VAR
VAR_OUTPUT EMPTY : BOOL := 1 ; (* Stack empty *)

OFLO : BOOL := 0 ; (* Stack overflow *)
OUT : INT := 0 ; (* Top of stack data *)

END_VAR
VAR STK : ARRAY[0..127] OF INT; (* Internal stack *)

NI : INT :=128 ; (* Storage for N upon reset *)
PTR : INT := -1 ; (* Stack pointer *)

END_VAR
(* Function Block body *)
END_FUNCTION_BLOCK

Fig. 33. Declaration of the block STACK_INT [9].

XOUT(t) = B0 · XIN(t) +
N∑

i=1

Bi · XIN(t − i) +
M∑

j=1

A j · XOUT(t − j)

where A and B coefficients are inputs to the DIFFEQ block. Based on this formula, we formalize the requirement of the 
DIFFEQ block accordingly in Fig. 32. When the Boolean input flag RUN is set to FALSE, the value of XOUT is calculated by 
B0 · XIN(t), just as if the input and output histories were empty.

The sum function (i.e.,
∑

) is implemented using a for-loop in the ST implementation (shown on the RHS in Fig. 31). 
When the input flag RUN is set to TRUE, two for-loops are used to compute the weighted sum of the (present and past) 
input and output values using coefficients stored in, respectively, the input array B and array A. Otherwise, another two 
for-loops are used to reset the input and output histories as all 0’s.

However, observing the ST implementation, the type of input history length N (i.e., INT) is inconsistent with the length 
of input coefficients array, i.e., 128. More precisely, an issue of out-of-bound array indices would occur if N ≤ 0 or N > 127. 
A similar issue also applies to the type of output history M and the length of the output coefficients array. Consequently, 
the implementation predicate in PVS cannot be type-checked. We propose to solve this problem by constraining the types 
of M and N: from INT to the interval between 1 and 127.

Moreover, lengths of the coefficient arrays A and B depend upon values of, respectively, M and N . To specify such 
constraints, we use dependent types in PVS:

M, N: subrange(1,127)
A: VAR ARRAY[subrange(0,M) -> real]
B: VAR ARRAY[subrange(0,N) -> real]

What other options are there for dealing with the issue of possible array index out of bound? Our reasoning was similar 
to that for the AVERAGE and PID blocks (Section 5.2.5 and Section 5.2.6). As accessing an area of memory that is outside 
the defined domain (i.e., the input history array) is dangerous, it should definitely be avoided. Again, depending on the 
specific application context of users, the check on a valid length of the input history array may be performed by either the 
implementor or the user of DIFFEQ. We have made that explicit by typing the variables appropriately.

5.3. Inconsistent implementations

5.3.1. Missing internal component of the STACK_INT block
The STACK_INT block implements a last-in-first-out (LIFO) data structure for storing integers. As illustrated in Fig. 33, it 

has five inputs (PUSH, POP, R1, IN, and N) and three outputs (OUT, EMPTY and OFLO). It may perform 1) a push operation 
(set by both the Boolean flag PUSH and the integer value IN), subject to a limit N on its maximum depth; 2) a pop operation 
(set by the Boolean flag POP); or 3) a reset operation (set by both the Boolean flag R1 and the new maximum depth N). It 
outputs: 1) an integer value OUT, depending upon which operation was just performed; 2) a Boolean value EMPTY reporting 
if the current stack has become empty; and 3) a Boolean value OFLO indicating if the operation performed has caused a 
stack overflow.
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IF R1 THEN
OFLO := 0; EMPTY := 1; PTR := -1;
NI := LIMIT (MN:=1,IN:=N,MX:=128); OUT := 0;

ELSIF POP & NOT EMPTY THEN
OFLO := 0; PTR := PTR-1; EMPTY := PTR < 0;
IF EMPTY THEN OUT := 0;
ELSE OUT := STK[PTR];
END_IF ;

ELSIF PUSH & NOT OFLO THEN
EMPTY := 0; PTR := PTR+1; OFLO := (PTR = NI);
IF NOT OFLO THEN OUT := IN ; STK[PTR] := IN;
ELSE OUT := 0;
END_IF ;

END_IF ;

MAIN:
R1--+-->>RESET

| +-+
+-----------------------------o|&|--<RETURN>
| +-+ +--------------------o| |
+--o|&| | +--o| |

POP-----| |--+-->>POP_STK | +-+
EMPTY--o| | | +-+ |

+-+ +-----------o|&|--+-->>PUSH_STK
R1-----------------------o| |
PUSH----------------------| |
OFLO---------------------o| |

+-+

Fig. 34. ST and FBD implementations of the block STACK_INT [9].

PUSH_STK:
+---------+ +-------+ +-------+
| := | | + | | = |

1--|EN ENO|--------------|EN ENO|--------------|EN ENO|--
0--| |--EMPTY 1--| |-----PTR------|G |--+--OFLO

+---------+ +--| | NI--| | |
PTR-----------------------+ +-------+ +-------+ |

+------------------------------------------+--------------+
| | +-------+
| +---------+ | | SEL |
| | := | +---|G |-----OUT
+------|EN ENO| +------|IN0 |

IN--+-------| |--STK[PTR] | 0--|IN1 |
| +---------+ | +-------+
+----------------------------------------+

Fig. 35. PUSH_STK part of implementation of block STACK_INT in FBD [9].

PUSH_STK_REVISED:
+---------+ +-------+ +-------+ +-------+
| := | | + | | = | | NOT |

PUSH_STK--|EN ENO|--------------|EN ENO|--------------|EN ENO|--+------------|EN |
0--| |--EMPTY 1--| |-----PTR------|G |--|--OFLO--+---| |-----+

+---------+ +--| | NI--| | | | | | |
PTR-----------------------+ +-------+ +-------+ | | +-------+ |

+---------------------------------------------------------|--------|-----------------+
| +-----------------|--------+
| | +--------------+
| | | +-------+
| +---------+ | | | SEL |
| | := | | +---|EN |
+------|EN ENO| +------|G |-----OUT

IN--+-------| |--STK[PTR] +------|IN0 |
| +---------+ | 0--|IN1 |
+----------------------------------------+ +-------+

Fig. 36. PUSH_STK part of the FBD implementation of block STACK_INT: a negation block added.

IEC 61131-3 supplies both ST and FBD implementations for the STACK_INT block. Fig. 34 lists the complete ST imple-
mentation (on the LHS) and the MAIN part of the FBD implementation (on the RHS). For the FBD implementation, there are 
four separate parts connected with each other. The MAIN part is connected with three other sub-parts: RESET, POP_STK 
and PUSH_STK. Conditions for connecting these sub-parts correspond to those of the “if–then–else” statements in the ST 
implementation. The control of execution flow is transferred from the MAIN to each sub-part using the “jumps-to” notation 
(analogous to the standard go-to statement), i.e., -->>RESET, -->>POP_STK, and -->>PUSH_STK. The jumped-to loca-
tions are defined using labels, e.g., PUSH_STK in Fig. 35. We formulate this “jumps-to” mechanism in an easy to understand 
and straightforward manner: by defining a Boolean flag for each possible entry point.

Of particular interest is the PUSH_STK part of the FBD implementation (shown in Fig. 35), which is built up from 
four components: MOVE (:=), ADDITION (+), EQUATION (=) and SELECTION (SEL). Enabling input (EN) and output (ENO) are 
Boolean flags used to constrain the data flow in the FBD. The MOVE block, if enabled, passes on the input value as the 
output. The ADDITION block outputs the result of adding two input numbers. The EQUATION block outputs TRUE if two input 
numbers are equal. The SELECTION block selects one of the two input values based upon an input Boolean flag.

We found two issues in the STACK_INT block: 1) non-equivalent ST and FBD implementations; and 2) a missing FB in the 
FBD implementation.
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Issue 1: Non-Equivalent Implementations. The ST and FBD implementations are actually not specified at the same level of 
abstraction. The use of EN/ENO constrains a specific (sequential) order of executing internal blocks in the FBD implemen-
tation. However, there is no such constraint in the ST implementation (as we parallelize assignment whenever possible). 
Consequently, we only attempt to prove that the implementation predicate of the FBD implementation implies that of the 
ST implementation in (7).

∀ PUSH,POP,R1, IN,N • ∀ OUT,EMPTY,OFLO •
STACK_INT_FBD_IMPL(PUSH,POP,R1, IN,N,OUT,EMPTY,OFLO)

⇒ STACK_INT_ST_IMPL(PUSH,POP,R1, IN,N,OUT,EMPTY,OFLO) (7)

Issue 2: Missing FB in the FBD implementation. However, we failed to prove Equation (7) and the following unprovable proof 
sequent was generated in PVS.17

STACK_INT_fbd_implies_st_original.3.2.2.1 :
[-1] ...
.
.
.

[-13] COND init(t) -> STK(PTR(t)) = 0,
OFLO(t) -> STK(PTR(t)) = INP(t),
ELSE -> STK(PTR(t)) = STK(PTR(pre(t)))

ENDCOND
|-------

[1] NOT R1(t) ∧ NOT (POP(t) ∧ NOT EMPTY(pre(t)))
∧ PUSH(t) ∧ NOT OFLO(pre(t)) ∧ NOT OFLO(t)
IMPLIES STK(PTR(t)) = INP(t)

[2] init(t)

As introduced in Section 2.3, this proof sequent can be discharged by proving that the conjunction of antecedents implies 
the disjunction of consequents. Variables in the sequent above are skolem constants (i.e., arbitrary constants of the corre-
sponding types) that are used to eliminate quantifiers. The COND construct is a multi-way extension to the polymorphic 
IF–THEN–ELSE construct in PVS. t, PTR, INP, and PUSH are all arbitrary (yet type-correct) constants. At the tth tick (Sec-
tion 2.3) of time, an input request PUSH is made to push an integer INP onto a stack STK , and the push operation moves 
the internal stack pointer to a new position PTR.

In the above sequent, the antecedent is inferred from the behaviour of the FBD implementation (Fig. 35), and the con-
sequence from that of the ST implementation (LHS in Fig. 34). Inspecting the sequent, we identified a missing negation 
from the antecedent. From the consequence, we observe that the push operation is performed and the pointer is updated 
accordingly (i.e., STK(PTR(t)) = INP(t)) when the stack would not overflow (i.e., ¬OFLO(t)). On the other hand, from the an-
tecedent, the same push operation is not associated with the wrong guard (i.e., OFLO(t)), meaning that the push operation 
is performed when the stack is already full.

Similarly, by inspecting the FBD and ST code, we found that there is a missing negation block NOT between the EQUATION
and the lower MOVE block (Fig. 35). That is, output OFLO from the EQUATION block (i.e., whether or not there is a stack 
overflow) should be negated so that it can be passed as the enabling condition of the lower MOVE block.

With the revised FBD implementation for PUSH_STK (illustrated in Fig. 36 with highlighted modifications), we are 
able to prove Equation (7). We also proved that both the ST and FBD implementations are consistent (Section 4.1). For the 
correctness theorem, as the logical implication is transitive, we only need to prove that the more abstract ST implementation 
conforms to the requirement:

∀ PUSH,POP,R1, IN,N • ∀ OUT,EMPTY,OFLO •
STACK_INT_ST_IMPL(PUSH,POP,R1, IN,N,OUT,EMPTY,OFLO)

⇒ STACK_INT_REQ(PUSH,POP,R1, IN,N,OUT,EMPTY,OFLO) (8)

Finally, we provide the complete requirement of the STACK_INT block in tabular expressions in the Appendix B. A table 
is created for each output variable: EMPTY (Fig. 42), OFLO (Fig. 43), and OUT (Fig. 44). In fact, we found that the state of 
internal variables is necessary for us to define the behaviour of the stack: NI (Fig. 39), PTR (Fig. 40), and STK(PTR) (Fig. 41).

17 For clarity, we omit the irrelevant lines in this proof sequent.
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We had a dilemma here regarding these inconsistent implementations. The obvious alternative is to fix the ST implemen-
tation for STACK_INT, making it agree with the behaviour of the FBD implementation. However, we would then have two 
implementations that consistently exhibit dangerous behaviour (e.g., pushing an item onto the stack only when it is already 
overflowed). Therefore, we think our proposed solution of fixing the problematic behaviour of the FBD implementation is 
more reasonable than the alternative.

6. Related work

There are many articles on formalizing and verifying PLC programs specified by programming languages covered in 
IEC 61131-3, such as sequential function charts (SFCs). Some approaches do this using model checking: e.g., to formalize a 
subset of the language of instruction lists (ILs) using timed automata, and to verify real-time properties in Uppaal [25]; to 
automatically transform SFC programs into the synchronous data flow language of Lustre, amenable to mechanized support 
for checking properties [26]; to translate ST and FBD into a synchronized data-flow language SIGNAL to compile and analyze 
the verification of specifications [27]; to transform FBD specifications to Uppaal formal models to verify safety applications 
in the industrial automation domain [28]; to provide the formal operational semantics of ILs which is encoded into the 
symbolic model checker Cadence SMV, and to verify rich behavioural properties written in linear temporal logic (LTL) [29]; 
and to provide the formal verification of a safety procedure in a nuclear power plant (NPP) in which a verified Coloured 
Petri Net (CPN) model is derived by reinterpretation from the FBD description [30]; to translate the algorithms of ladder 
diagrams (LDs) and timed FBs into finite state automata in which some properties are verified in SMV [31]; There is also an 
integration of SMV and Uppaal to handle, respectively, untimed and timed SFC programs [32].

Some other approaches adopt the verification environment of a theorem prover: e.g., to check the correctness of SFC 
programs, automatically generated from a graphical front-end, in Coq [33]; and to formalize PLC programs using higher-order 
logic and to discharge safety properties in HOL [34]. These works are similar to ours in that PLC programs are formalized and 
supported for mechanized verifications of implementations. An algebra approach for PLC programs verification is presented 
in [35]. In [36], a trace function method (TFM) based approach is presented to solve the same problem as ours.

Our work is inspired by [37] in that the overall system behaviour is defined by taking the conjunction of those of 
internal components (circuits in [37] or FBs in our case). Our proposed solutions to the timing issues of the PULSE timer are 
consistent with [38]. However, our approach is novel in that 1) we also obtain tabular requirements to be checked against, 
instead of writing properties directly for the chosen theorem prover or model checker; and 2) our formalization makes it 
easier to comprehend and to reason about properties of disjointness and completeness.

The related work is motivated by the lack of formal semantics for the programming notations defined in the standard, 
and attempts to remove ambiguities. However, the issues we found are not reported in the related work. We situate our 
work from three aspects: 1) extent of case study; 2) value of results; and 3) practical implication.

Extent of case study. Our approach is able to handle all ST and FBD programs that are listed in [9], including its Annex F, 
whereas other work (e.g., [25,27,29,31]) focuses on limited language constructs or example FBs.

Value of results. To our knowledge, there is only a limited number of papers that illustrate the proposed verification ap-
proach via a case study, but none of them conduct a case study to the same extent as ours, let alone categorize the 
uncovered issues. In this paper, our results are based on the formalization and proofs of all FBs listed in the standard and 
its Annex F, whereas others (e.g., [32,33]) validate their approach via only a limited number of example blocks.

Practical implication. Our experiments are conducted on a mature theorem prover, and of a practical timing theory that 
are tailored to the execution context of FBs, whereas some related work does not even have tool support (e.g., [36]). Our 
results show that with the assistance of function tables and PVS, verification can be conducted in an industrial context with 
manageable mathematical artifacts (e.g., background theories, specifications, theorems, proofs, etc.). Nonetheless, there are 
existing works (e.g., [26–29,39,31,34]) that prove certain desired properties of FBs, similar to the additional requirements 
which we formulate as lemmas. More specifically: 1) work in [29] verifies some behavioural properties written in linear 
temporal logic; 2) work in [28] verifies the FBs against several safety requirements expressed as invariant properties; 3) 
work in [39] proves properties using CTL temporal logic based model checking of safety (i.e., boundness), liveness, and 
fairness; and 4) [32] proves SFC programs against a given set of requirements. However, none of those attempts to provide 
input-output requirements that are provably complete and disjoint.

7. Conclusion and future work

Many industrial control systems, especially safety-critical systems, require a high degree of confidence in the safety of 
the system. For those systems that are based upon PLCs, IEC 61131-3 provides several standard programming languages to 
describe the behaviour of the implemented function blocks (FBs). Since FBs have been growing in popularity, we present an 
approach to formalizing and verifying FBs using tabular expressions in the Prototype Verification System (PVS) environment. 
For STs, we provide a list of translation patterns. For the purpose of our verification, our rules of ST-to-PVS translation are 
designed to handle only the syntactic constructs of the ST language that are exploited in Annex F. That is, constructs that are 
supported by the ST language but not used in Annex F of the standard [9] (e.g., CASE statement, WHILE and REPEAT loops, 
etc.) are not currently handled by our translation rules. As mentioned earlier, our translation is still very useful since the 
Annex F example function blocks are commonly used in industry. As future work, we intend to extend our translation rules
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to cover the remaining programming constructs of the ST language, so as to be able to verify FBs using those constructs. 
For FBDs, we formalize each basic FB as a predicate, allowing for deriving the semantics of composite FBs via logical 
compositions. More importantly, for demonstrating how we can argue the correctness of the ST and FBD implementations, 
we provide a black-box input-output requirement specification for each FB in the form of tabular expressions. Finally, as a 
demonstration of the applicability and value of our methodology, we formally verified the consistency and correctness of 
the whole FB library in IEC 61131-3 2003 and its informative annex in PVS.

Using our approach, we identified several kinds of potential issues in the FBs in the IEC 61131-3 standard and in the 
informative annex (Annex F) of the 2003 version: ambiguous block behaviour, missing assumptions, initialization failure, 
division by zero, mismatched variable types, and erroneous implementations. We provided our suggested solutions for each 
of these issues to demonstrate that the methodology can help us identify inconsistencies, ambiguities, missing information 
and even technical errors, that may be difficult or too time consuming to find through manual analysis or by simply exam-
ining the FBs in order to understand their behaviour. As indicated, the primary purpose of this work was to demonstrate 
that this type of formal approach can work on real industrial examples, and that the results are both useful and based on 
sound principles. As a side benefit, if methodologies like this move into accepted practice, and applied to published libraries 
of functions and FBs, the FBs in international standards such as IEC 61131-3 could be reused safely in PLC-based control 
system development, and hardware manufacturers’ implementations of the FBs could be tested against the black-box re-
quirement specifications of the FBs. This would strengthen the benefits of being in compliance with such a standard, for 
developers and manufacturers alike.

In future work, we will extend our list of ST-to-PVS translation patterns to cover more syntactic features. We will also 
adapt, and possibly extend, the approach for verifying FBs described in another FB related standard, IEC 61499 that fits well 
with distributed control systems.
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Appendix A. Example ST-to-PVS translations for Section 3.1.4

A.1. The HYSTERESIS function block

The ST implementation for the HYSTERESIS block is presented in Fig. 18.

HYSTERESIS [(IMPORTING Time) delta_t: posreal] : THEORY
BEGIN
IMPORTING ClockTick[delta_t]
XIN1 : VAR [tick -> real]
XIN2 : VAR [tick -> real]
EPS : VAR [tick -> bool]
Q : VAR [tick -> bool]
HYSTERESIS_st_impl (XIN1, XIN2, EPS, Q): bool =
FORALL (t: tick):
IF init(t) THEN

Q(0) = FALSE
ELSE

Q(t) = TABLE
| Q(pre(t)) | TABLE

| XIN1(t) < (XIN2(t) - EPS(t)) | FALSE ||
| NOT XIN1(t) < (XIN2(t) - EPS(t)) | Q(pre(t)) ||
ENDTABLE ||

| NOT Q(pre(t)) | TABLE
| XIN1(t) > (XIN2(t) + EPS(t)) | TRUE ||
| NOT XIN1(t) > (XIN2(t) + EPS(t)) | Q(pre(t)) ||
ENDTABLE ||

ENDTABLE
ENDIF

END HYSTERESIS

Fig. 37. Example ST-to-PVS translation: the HYSTERESIS block.



L. Pang et al. / Science of Computer Programming 113 (2015) 149–190 187
A.2. The DELAY function block

The ST implementation for the DELAY block is presented in Fig. 22.

DELAY [(IMPORTING Time) delta_t: posreal] : THEORY
BEGIN
IMPORTING ClockTick[delta_t]
IMPORTING structures@for_iterate
RUN : VAR [tick -> bool]
XIN : VAR [tick -> real]
N : VAR [tick -> int]
XOUT : VAR [tick -> real]
DELAY_st_impl (RUN, XIN, N, XOUT): bool =
EXISTS (X: [tick -> ARRAY[subrange(0, 127) -> real]],

I: [tick -> int], IXIN: [tick -> int], IXOUT: [tick -> int]):
FORALL (t: tick):
IF init(t) THEN

I(0) = 0 AND IXIN(0) = 0 AND IXOUT(0) = 0
ELSE

X(t) = TABLE
| RUN(t) | X(pre(t)) WITH [(IXIN(t)) := XIN(t)] ||
| NOT RUN(t) | for(0, N(t), X(pre(t)),

LAMBDA (i : subrange(0, N(t)),
X_t: ARRAY[subrange(0, 127) -> real]):

X_t WITH [(i) := XIN(t)]) ||
ENDTABLE

AND
IXIN(t) = TABLE

| RUN(t) | mod(IXIN(t) +1, 128) ||
| NOT RUN(t) | N(t) ||

ENDTABLE
AND
IXOUT(t) = TABLE

| RUN(t) | mod(IXOUT(t) +1, 128) ||
| NOT RUN(t) | 0 ||
ENDTABLE

AND
XOUT(t) = TABLE

| RUN(t) | X(t)(IXOUT(t)) ||
| NOT RUN(t) | XIN(t) ||

ENDTABLE
ENDIF

END DELAY

Fig. 38. Example ST-to-PVS translation: the DELAY block.

Appendix B. Tabular requirement of the STACK_INT block from Section 5.3.1

To define the requirements of the STACK_INT block, we consider its three output variables (EMPTY, OFLO, and OUT) and 
three internal variables (NI, PTR, and STK). The stack is represented using a zero-based array STK with a preset size NI. 
A pointer PTR (of STK) references the last item pushed onto the stack.

B.1. Internal variables

The value of NI restricts the maximum capacity of the stack. Its value may be set upon a reset operation, where an 
internal function LIMIT is used to return a value N, bounded by some preset (lower and upper) limits. Its value stays 
unchanged until another reset operation is requested.

Since indices of the array representation of the stack start with 0, the initial value of the pointer value PTR (for an empty 
stack) is set to −1. The pointer position may shift to the left or to the right when, respectively, a pop operation (from a 
non-empty stack) or a push operation (not resulting in a stack overflow) is performed.

For the array representation STK of stack, we are only interested in querying the value stored at index PTR. When a valid 
push operation occurs (not resulting in a stack overflow), the value of STK(PTR) is set to that of the input IN.
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Result

Condition NI

R1 LIMIT(1,N,128)

¬R1 NC

Fig. 39. Requirement for internal NI of the block STACK_INT.

Result

Condition PTR

R1 −1

¬R1 POP ∧ ¬EMPTY−1 PTR−1 − 1

¬POP ∨ EMPTY−1 PUSH ∧ ¬OFLO−1 PTR−1 + 1

¬PUSH ∨ OFLO−1 NC

Fig. 40. Requirement for internal PTR of the block STACK_INT.

Result

Condition STK(PTR)

¬ R1 ∧ ¬ (POP ∧ ¬ EMPTY−1) ∧ PUSH ∧ ¬ OFLO−1 ∧ ¬ OFLO IN

R1 ∨ (POP ∧ ¬ EMPTY−1) ∨ ¬ PUSH ∨ OFLO−1 ∨ OFLO NC

Fig. 41. Requirement for internal STK of the block STACK_INT.

Result

Condition EMPTY

R1 1

¬R1 POP ∧ ¬EMPTY−1 PTR < 0 1

PTR ≥ 0 0

¬POP ∨ EMPTY−1 PUSH ∧ ¬OFLO−1 0

¬PUSH ∨ OFLO−1 NC

Fig. 42. Requirement for output EMPTY of the block STACK_INT.

Result

Condition OFLO

R1 0

¬R1 POP ∧ ¬EMPTY−1 0

¬POP ∨ EMPTY−1 PUSH ∧ ¬OFLO−1 PTR = NI 1

PTR �= NI 0

¬PUSH ∨ OFLO−1 NC

Fig. 43. Requirement for output OFLO of the block STACK_INT.

B.2. Output variables

The output EMPTY is a Boolean flag indicating if the current stack is empty. The current stack may be reinitialized (to be 
an empty stack) by a reset operation (by enabling another Boolean flag R1). When a push operation occurs, as long as there 
was not previously a stack overflow (i.e., ¬OFLO−1), then the stack remains (or becomes) non-empty (i.e., ¬EMPTY). When 
a pop operation occurs, if the stack was previously left with only one item, then the stack becomes empty (by setting the 
internal pointer PTR to −1); otherwise, when more than one items were previously left, then the stack remains non-empty.

The output OFLO is a Boolean flag indicating if the current operation has resulted in a stack overflow. Obviously, a stack 
overflow can occur only when the stack previously reached its maximum capacity NI18 and a push operation is performed. 

18 The internal pointer variable starts at 0, so when it reaches NI −1, the stack is full.
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Result

Condition OUT

R1 0

¬R1 POP ∧ ¬EMPTY−1 EMPTY 0

¬EMPTY STK(PTR)

¬POP ∨ EMPTY−1 PUSH ∧ ¬OFLO−1 ¬OFLO IN

OFLO 0

¬PUSH ∨ OFLO−1 NC

Fig. 44. Requirement for output OUT of block STACK_INT.

Once there is a stack overflow, the value of OFLO holds until a reset operation is requested. Otherwise, the stack remains in 
its normal state (i.e., ¬OFLO).

The output OUT indicates the top of the stack. The value of OUT is set to 0 when either 1) the stack is reinitialized to be 
empty; 2) the stack is currently empty; or 3) the current push operation results in a stack overflow. Otherwise, popping from 
a non-empty stack (with more than one item) results in OUT being set to where the current PTR points to (i.e., STK(PTR)); 
pushing onto a stack results in OUT being set to the value just added to the stack (i.e., input IN).
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