
J Autom Reasoning
DOI 10.1007/s10817-017-9415-7

Translation of IEC 61131-3 Function Block Diagrams to
PVS for Formal Verification with Real-Time Nuclear
Application

Josh Newell1 · Linna Pang1 · David Tremaine1 ·
Alan Wassyng2 · Mark Lawford2

Received: 5 December 2016 / Accepted: 16 May 2017
© Springer Science+Business Media Dordrecht 2017

Abstract The trip computers for the two reactor shutdown systems of the Ontario Power
Generation (OPG)DarlingtonNuclear Power Generating Station are being refurbished due to
hardware obsolescence. For one of the systems, the general purpose computer originally used
is being replaced by a programmable logic controller (PLC). The trip computer application
software has been rewritten using function block diagrams (FBDs), a commonly used PLC
programming language defined in the IEC 61131-3 standard. The replacement project’s
quality assurance program requires that formal verification be performed to compare the
FBDs against a formal software requirements specification written using tabular expressions
(TEs). The PVS theorem proving tool is used in formal verification. Custom tools developed
for OPG are used to translate TEs and FBDs into PVS code. In this paper, we present
a method to rigorously translate the graphical FBD language to a mathematical model in
PVS using an abstract syntax to represent the FBD constructs. We use an example from the
replacement project to demonstrate the use of the model to translate a FBD module into a
PVS specification. We then extend that example to demonstrate the method’s applicability
to a Simulink-based design.

B Josh Newell
newelljoeng@gmail.com

Linna Pang
lpang@swi.com

David Tremaine
tremaine@swi.com

Alan Wassyng
wassyng@mcmaster.ca

Mark Lawford
lawford@mcmaster.ca

1 Systemware Innovation Corporation, Suite 1800, 2300 Yonge Street, Toronto, ON M4P 1E4,
Canada

2 McMaster Centre for Software Certification, McMaster University, 1280 Main Street West,
Hamilton, ON L8S 4K1, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-017-9415-7&domain=pdf
http://orcid.org/0000-0002-0245-8803

J. Newell et al.

Keywords Safety critical systems · IEC 61131-3 · Function block diagrams · Formal
specification · PVS · Tabular expressions · Simulink

1 Introduction

Many industrial, safety-critical control systems leverage programmable technologies for their
flexibility and scalability.1 The use of programmable technologies for safety-critical design
is now commonplace in nuclear, aerospace and automotive applications, and formal methods
can play an important role in ensuring that those applications are safe. In the aviation domain,
DO-178C [3] advocates the use of formal methods to create mathematical models for the
specification and analysis of system behaviour. In the nuclear industry, IEEE 7-4.3.2 [5]
lists acceptance criteria for mission- or safety-critical systems that practitioners need to
comply with. In the context of formal methods, two important criteria are: (1) the software
requirements are both precise and complete; and (2) the software implementation is correct
with respect to specified behaviour. In the Canadian nuclear industry, CE-1001-STD [8]
governs the software engineering of safety critical applications. It prescribes not only the
formal specification of requirements and design, but also the formal proof of correctness
of implementation against requirements. Traditionally, CE-1001-STD has been applied to
general purpose computer languages. It is now being applied to the application-oriented
language paradigm of programmable logic controllers (PLCs). PLCs provide a higher level
of abstraction for the programmer via a set of built-in hierarchical function blocks (FBs) that
are safety certified for use in critical applications.

The Ontario Power Generation (OPG) Darlington Nuclear Generating Station (DNGS) in
Ontario, Canada uses two diverse, computerised special safety systems for emergency shut-
down of the reactor. These are referred to as Shutdown System One and Two (i.e., SDS1 and
SDS2). They were completed in the early 1990s and are based on an arrangement of real-time
general purpose computers. Each SDS has three redundant trip computers (TCs) in a 2-out-
of-3 voting configuration. The TCs are categorized as safety critical and were engineered in
compliancewith CE-1001-STD,which defines a comprehensive set of development, verifica-
tion and validation processes. Formal requirements and a design specificationwere developed
and documented using tabular expressions (TEs) [17]. Code was implemented from the TE-
based design using general purpose computer languages (diverse between SDS1 and SDS2).
In addition to various review and overlapping testing processes, formal proof of correctness
of design and code was performed using a theorem prover, Prototype Verification System
PVS [12].

Currently, SDS1 and SDS2 are being refurbished to extend the nuclear plant’s life and both
hardware platforms are being replaced. A safety-certified PLC compliant with IEC 61131-
3 [4] was selected for the SDS1 TC replacement. As with the original project, the software
requirements are specified using TEs, but the software design is now specified in a function
block diagram (FBD) language using built-in IEC 61131-3 FBs provided by a PLC vendor.2,3

1 This paper is an extension of [11] and contains a more extensive example that includes timer functions, a
strategy for discharging consistency proofs in PVS, and an application of the methodology, using the same
example, with Simulink.
2 A small portion of the software design is written using structured text (ST), but that is not relevant to the
subject of this paper.
3 The use of IEC 61131-3 compliant built-in FBs was based on a formal specification and subsequent verifi-
cation of their behaviour; one of many PLC qualification activities.

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

Fig. 1 Framework Diagram

Using the PLC platform, the detailed design automatically generates executable code. PVS
is used to formally verify the FBD-based design against the TE-based requirements.

PVS provides an integrated environment with mechanized support for the syntax and
semantics of TEs and (higher-order) predicates. Based on [13], an approachwas developed for
the replacement project to support the formal verification of FBDs. The process is as follows:
(1) the translation of real-time requirements, described in TEs, to PVS is accomplished using
tools developed and qualified for OPG; (2) the TC design, described in a collection of FBDs,
is translated into PVS; and (3) formal proofs for systematic design verification are automated
using PVS.

Step (2) of the process is the subject of this paper and is based on our experience with
the replacement project. An abstract syntax is created to represent the constructs of a FBD
and rigorous translation rules are defined for the general translation of FBDs into PVS
specifications.

Figure 1 summarizes the overall verification process and contributions. As shown on the
left, the real-time requirements are documented using tabular expressions. The design is
written in a FBD language that is compliant with IEC 61131-3. In the center of the diagram,
we highlight our main contributions within a dashed rectangle. We define an abstract syntax
for FBDs using a FBDdesign as input.With values from the abstract syntax as input,we define
an attribute map and labelled directed graph to represent relationships in the FBD. Given an
attribute map and graph, we define an additional data structure, block groups, to reduce the
complexity of PVS translation. Shown on the right side of Fig. 1, the FBD specification
is produced from our methodology whereas the requirements are separately specified in
PVS. Based on [13], our methodology also produces the consistency theorems4 for FBDs,
which are verified in PVS. Sect. 6 discusses a strategy, using a data-flow lemma, to reduce
the verification effort needed to discharge consistency theorems for a FBD implementation.
The correctness theorems are manually specified and verified in PVS. The strategy used to
discharge a correctness proof is discussed in Sect. 7. An example of the method’s use and
effectiveness is provided from the SDS1 TC project. The example consists of a FBD design

4 A FBD design is consistent if for every input it produces an expected output. Otherwise, a FBD design
trivially satisfies any requirement.

123

J. Newell et al.

Fig. 2 Tabular Expression of c_PressureTrip

containing both logical and temporal functions. This example is then repeated using Simulink
in place of FBDs to demonstrate wider applicability of the method.

2 Preliminaries

2.1 Tabular Expressions

Tabular expressions [17] (a.k.a., function tables) are a proven and effective approach for
describing conditionals and relations, and thus are ideal for documenting many system
requirements. They are arguably easier to comprehend and to maintain than conven-
tional mathematical expressions. Formal semantics for tabular expressions have been
well-developed in [7] and are useful for inspections, testing and verification [20,21]. Tabular
expressions (TEs) partition the input domain into condition rows in the left column(s), while
rows in the right column(s), inside double borders, denote the corresponding output results.
Horizontal tabular expressions (HCTs), as one of the table types, were used on the original
SDS1 project and continue to be used on the replacement project for specifying software
requirements. We may interpret the tabular structure as a list of “if-then-else” statements.
Each row defines the input circumstances (being logically conjuncted) under which the out-
put is bound to a particular result value. The completeness and disjointness of TEs can be
reasoned about in PVS. As an example, in Figs. 2, 3 and 4 we consider the c_PressureTrip
requirement, which will be used as a running example. It involves a trip based on high pres-
sure, and trip conditioning based on reactor power and operator input from two pushbuttons.
The function c_PressureTrip determines the pressure trip value using the trip conditioning
status (f_PrsCond) and the process variablem_Presssure compared against the setpoint value
k_PrsSP.5 We present the detailed discussion in Sect. 7.1.

2.2 IEC 61131-3 FBDs

To unify the syntax and semantics of PLC programming languages, the International Elec-
trotechnical Committee (IEC) first published IEC 61131-3 in 1993; its latest version was
published in 2013 [4]. The FBD is a graphical language used to describe functions between
input and output variables by interconnecting built-in and custom FBs. The DNGS SDS1 trip
computer uses built-in IEC 61131-3 FBs as the foundation of the formal software design.
The methodology outlined in [13,14], used as a basis for this paper, provides an approach
for formally verifying built-in IEC 61131-3 FBs. It also generalizes the approach for verify-
ing generic FBDs using tabular expressions (Sect. 2.1) and the PVS specification language.

5 The prefixes in this section refer to monitored variables (m_...), controlled variables (c_...), enumerations
(e_...), constants (k_...) and functions (f_...).

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

Fig. 3 Tabular Expression of f_PrsCond

Fig. 4 Tabular Expression of f_CondX(f_CondX andm_CondX are place holders, respectively, for f_CondON,
f_CondOFF, m_CondON and m_CondOFF.)

Figures 5 and 6 present an example FBD design (seeded with an error) for the requirement
described in Figs. 2, 3 and 4, which is further discussed in Sect. 7.2.

2.3 PVS Grammar

The PVS specification language [12] is based on classical higher-order logic equipped with
dependent and subtyping mechanisms. PVS has a powerful interactive prover to perform
sequent-style deductions. It is used in both academia and industry to analyze formal software
specifications and verify the correctness of software against its requirements. We rely on
the syntax and semantic mechanisms implemented in PVS to perform systematic design
verification on SDS1. To provide a formal translation to PVS, we select a subset of the PVS
grammar as a target language for FBD specifications.

3 FBD Abstract Syntax

We propose an abstract mathematical model to represent various FBD components. We
consider FBDs as a named collection of variables and networks. In practice, a FBD may
consist of several networks used to specify the data-flow and transitions between variables
and internal FBs.We allow for negated statements as well as feedback connections to support

123

J. Newell et al.

Fig. 5 FBD Design for PressureTrip (There are eight internal FBs: subtraction (SUB), less than or equal
to (LE), greater than or equal to (GE), less than (LT), logical disjunction (OR), logical conjunction (AND),
on-delay timer (TON) and logical negation (NOT).)

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

Fig. 6 FBD Design for Pushbutton

typical programming practices. In addition, the variable set includes interface properties and
a named instance for each internal FB.6

Using basic mathematical constructs, we define recursive and terminal components of a
FBD.We use the following notations: “×” for Cartesian product, “+” for disjoint union, “{ }”
for set, “〈 〉” for sequence, “:” for type definition and “→” for function. We begin by defining
the following types: I DENT is an identifier type that has decidable equality; N AME is a
type representing text-based labels;CONN : t ype = {direct, f eedback} is an enumerated
type for direct and feedback connections; CLS : type = {input, output, extern, local, wire,
constant} is an enumerated type containing six tokens for FBD variable classification; and
I N I T : t ype = I DENTinit + ε is an initial value that is either a value represented by an
identifier or is empty.

FBD = I DENT f bd × V ARS × {NTWK } (1)

V ARS = {DECL} (2)

DECL = V AR + (I DENTblk × N AMEblk × {V AR}) (3)

V AR = I DENTvar × I DENTtype × CLS × I N I T (4)

NTWK = I DENTntwk × {ST M} (5)

ST M = ELEM × CONN × ELEM (6)

ELEM = ST MV + NEG (7)

ST MV = I DENTvar + (I DENTblk × I DENTport) (8)

NEG = ST MV (9)

The abstract syntax is a recursive data structure, defined by Eqs. (1)–(9), with an entry value
of FBD. A FBD consists of an identifier accompanied by a variable collection and a set
of networks. The variable collection V ARS is defined by a set of declarations; DECL is
either a variable declaration or a block declaration. A variable declaration V AR consists of
a variable identifier, a type identifier, and a classification. The second variant of DECL is
a block declaration consisting of a block identifier (necessary to uniquely identify a given

6 Concrete examples are available to assist the reader with the translation rules (Sects. 3, 4 and 5) at http://
www.swi.com/research/NFM2016.

123

http://www.swi.com/research/NFM2016
http://www.swi.com/research/NFM2016

J. Newell et al.

instance) and a block name, and a set of variable declarations that describes the interface of
the block. The variable names for the interface are referred to as interface variable identifiers
I DENTport . A network NTWK contains an identifer for the network and a set of statements.
A statement consists of a two variable elements and a connector. A variable element ELEM
consists of two variants, ST MV and NEG. NEG is a recursive reference to ST MV and
represents a negated interface connection. ST MV has two variants. The first represents a
FBD variable identifier and the second is a block identifier and an interface variable identifier.
Statements represent the connections between variables and blocks.

The abstract syntax is used to generate statements that correspond to FBD components. To
produce a graph that models connections between FBD variables and FBs, it is necessary to
exclude or rewrite some statements representable in the abstract syntax. Variable-to-variable
statements do not represent valid FBD elements and are excluded. Block-to-block statements
in the abstract syntax are syntatic sugar that are rewritten. These statements are transformed to
a block-to-variable and variable-to-block statements before producing the graph. The variable
introduced is refered to as an interconnector, which is necessary for formalization in PVS.

4 FBD Graph Model

In this section we summarize our formalization technique using the abstract syntax (Sect. 3).
We use an attribute map and labelled directed graph to represent interconnections in a FBD
network. The labels in the graph contain the indices corresponding to those in the attribute
map. These are used to retrieve properties for blocks, variables and connections. Given the
abstract syntax, we use V ARS and NTWK to construct the attribute map and NTWK to
construct the graph. We use variable identifiers I DENTvar for the indices.

4.1 Attribute Map

The attributemap is an associative structure that relates indices to properties for FBDvariables
and interface variables. It is created to separate attributes from identifiers. The map is used
in conjunction with the graph to retrieve properties for nodes and edges in a FBD network.

MAP = 〈(I N DXvar → AT T Rvar) + (I N DX f b → AT T R f b)〉 (10)

I N DXvar = I DENTvar (11)

I N DX f b = I DENTblk × I DENTport (12)

AT T Rvar = I DENTtype × CLS × I N I T (13)

AT T R f b = N AMEblk × I DENTtype × CLS (14)

The attribute map (Eqs. (10)–(14)) is a sequence of functions from indices to attributes as
described by MAP . The map has two possible functional variants. The first function maps
the index of a FBD variable to its attributes AT T Rvar : FBD variable type, classification and
initial value. The second index is a block identifier and one of its interface variables. The
second function maps an index I N DX f b to the attributes AT T R f b: block name, interface
variable type, and interface variable classification. For a given FBD network, a map is defined
to store each FBD, interface and interconnector variable.

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

4.2 Graph Model

A directed graph is mathematically defined as a pair of nodes N , and edges E . Formally, a
graph is defined by Eqs. (15) and (16). From the abstract syntax, we construct a graph for
each FBD network.

G = (N , E) (15)

E ⊆ N × N (16)

Lnode = I DENTvar + I DENTblk (17)

Ledge = I DENTport × B × B (18)

A labelled graph consists of a node and edge labelling function (i.e., lnode : N → Lnode

and ledge : E → Ledge) that is used to map nodes and edges with their respective labels.
We select labels, for the node and edge respectively, as described by Eqs. (17) and (18).
Lnode is either a variable identifier (i.e., I DENTvar) or a block identifier. Ledge contains an
interface variable identifier, a boolean flag identifying the edge as a feedback and a boolean
flag identifying the negation of an interface connection.

4.3 Block Groups

Given an attribute map and graph for a FBD network, we define an additional data structure
that reduces the complexity of our PVS translation by restructuring the data to a format
similar to the target expression. The block group data structure (Eqs. (19)–(22)) is motivated
by the PVS predicate expression for composite FBDs. In a composite FBD, the predicate for
each internal block consists of the internal block name and its associated arguments.

Block groups require two structures defined by I Oblk and GRPblk that depend on the
secondary structures I N DXblk and ARG. I N DXblk consists of a block identifier and block
name. ARG associates a FBD variable identifier to an interface variable identifier, with
booleanflags for feedback andnegation. FBarguments are ordered using the interface variable
element index from an attribute map.

I N DXblk = I DENTblk × I DENTname (19)

ARG = I DENTvar × I DENTvar × B × B (20)

I Oblk = I N DXblk × ARG (21)

GRPblk = I N DXblk × 〈ARG〉 (22)

fio : MAP → G → N → {I Oblk} (23)

fgroup : MAP → {I Oblk} → 〈GRPblk〉 (24)

We present two functions that describe the process for constructing block group values in
Eqs. (23) and (24). These functions implement the logic to group and order various elements.
Function fio constructs I Oblk values from an attribute map, graph and block node. The
attribute map retrieves properties for nodes and edges in the graph. Values constructed from
variable nodes are not valid. I Oblk consists of inputs or outputs for a block. Function fgroup
constructs GRPblk values from a set of I Oblk values by extracting inputs or outputs and
grouping the block identifier and block name. The resulting GRPblk set is ordered using
MAP , as are individual ARG sequences.

123

J. Newell et al.

5 PVS Translation

We summarize our contributions for translating our mathematical model to PVS expressions.
Based on [14], the resulting expression is a predicate with input and output arguments exis-
tentially quantified over all its internal FBs. An example of this translation can be found in
Fig. 8.

5.1 Identifying Predicate Arguments

The graph maps interconnections between variables and blocks. From this relationship, we
determine whether variables are either inputs or outputs in a given FBD network. It is pos-
sible the determination differs from the classification property in the attribute map since the
classification does not represent the use of a variable in a given network. For example, if
a local variable is set at the end of network 1 and is used as input in network 2, then it is
consistent with its use as an output of network 1 and an input of network 2. Thus, it is not
sufficient to rely on the classification value of local from the attribute map.

From graph theory, the degree of a node is the number of incident edges to and from
a node. Since the graph is directed, we are able to determine the input degree (i.e., deg+)
and output degree (i.e., deg−) of a node based on the position of the node in the ordered
product of an edge. To find input variables, the graph is searched for all nodes that have an
input degree of zero, and nodes that satisfy the variable predicate Pvar (i.e., nodes that are
FBD variables and not blocks). This is precisely described by inference rule (25), which is
implemented by our translation process.

n : N Pvar (n) deg+(n) = 0
Pinput (n)

(25)

∀(e : E) : ¬Pf back(e) n : N Pvar (n) deg−(n) = 0

Poutput (n)
(26)

An output variable is defined as a terminal node in a data-flow. If an output variable is
used as feedback in a FBD, then it will have an edge with a feedback property set to True,
thus the output degree will be non-zero. These edges represent inputs from the previous
cycle and satisfy the predicate Pf back . To correctly identify output variables, feedback edges
are excluded, which causes the output degree to become zero for terminal nodes. This is
precisely described by inference rule (26).Using rules (25) and (26)we construct the predicate
arguments and resolve the type for each using the attribute map. This information also allows
us to construct the expression used in the consistency theorem from [14].

5.2 Identifying Existential Variables

The next step of the predicate formalization is the existential quantification expression of all
interconnections between internal blocks. The determination of interconnectors is performed
using a similar search predicate from inference rule (26). Feedback edges are excluded to
avoid identifying output variables as interconnectors. As a result, the input and output degree
of a node should not be zero (i.e., each node has at least one input and one output). This is
described by inference rule (27), which is implemented by our translation process.

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

∀(e : E) : ¬Pfback(e) n : N Pvar(n) deg−(n) �= 0 deg+(n) �= 0
Pinternal(n)

(27)

Using rule (27), we construct the existential quantification expression over all internal
blocks using the attribute map to resolve types. This is the initial component necessary to
specify the predicate expression for a composite FBD.

5.3 Function Block Composition

The last step of the composite FBD formalization is a PVS expression consisting of all
internal FBs composed by logical conjunction. To define this, we consider several functional
structures that produce PVS expressions.

A fold is a higher order function that takes a binary function as input to reduce a recursive
data structure to a terminal value.We define a function fexpr in Eq. (28) that translates a block
grouping (i.e., GRPblk) to a PVS application expression.7 Considering fgroup , an ordered
list of Expr elements is produced using the function defined by the function fexprl from
Eq. (29).

fexpr : GRPblk → Expr (28)

fexprl = map(fexpr , fgroup) (29)

Mexpr = (Expr, fand) (30)

fand : Expr → Expr → Expr (31)

f pexpr = fold(fand , fexprl) (32)

To specify a binary function for the fold, we define amonoid in Eq. (30), with a signature in
Eq. (31). fand constructs an “Expr AND Expr” value from the two Expr inputs. Each Expr
input is a PVS application expression for a given composite block. Using the ordered list of
Expr elements, and the binary function from the monoid Mexpr , the completed conjunctive
expression is defined by the function f pexpr in Eq. (32).

6 Proof Strategy for the Consistency Theorem

The consistency theorem is an obligation to show that for a FBD implementation an expected
output exists for all legitimate inputs. In this section, we propose a method to automatically
discharge the consistency theorem for each FBD specification in PVS. This method involves
producing a data-flow expression (Sect. 6.1), a data-flow equivalence lemma and two proofs
that discharge the lemma and the consistency theorem (Sect. 6.2).

6.1 Data-Flow Expressions

A basic FBD is an abstraction component that consists of built-in operators (e.g., logical
operators). A composite FBD contains, as components, basic FBDs and other pre-developed
composite FBDs. For a basic or composite FBD, a data-flow expression is a time-dependent

7 The application expression consists of the block name applied with ordered arguments. An example of a
PVS application expression is MOVE(input, output) where MOVE is the block name, and input and output
are the arguments.

123

J. Newell et al.

function that sequences the data-flow expressions for each internal FB. This requires that a
data-flow expression exists for each internal FB in a FBD. For the case where the internal
FB is a composite FBD, the data-flow expression produced from this method is used. For the
case where the internal FB is a basic FBD, a data-flow expression is predefined in PVS as
a function. For a basic built-in FB (i.e., a FB based on logical operators), the specification
effort is minimal since the logical FB will have a data-flow expression that is equivalent to
the PVS built-in operator. For example, a logical conjunction FB has a data-flow expression
that is equivalent to the & operator in PVS. If the built-in FB has more complex behaviour,
then a PVS specification will be independently produced that contains a data-flow definition.
For example, a timer block TON requires a time-dependent recursive function forQ and ET.8

A comprehensive list of built-in IEC-61131-3 FBs currently specified in PVS can be found
in [14].

To construct the data-flow expression for a given output we reorganize components from
Sect. 4. To obtain the sequence of internal FB data-flow expressions, we perform a depth-first
search (DFS) on the graph starting from the output node and collect all following interconnec-
tor nodes. If an interconnector node has a feedback edge and the input is not the node from the
DFS, then this interconnector node is replaced with a sub-sequence of interconnector nodes.
If g is the Graph and o is an output, then the DFS function returns a sequence of values of the
form: DFS(g, o) = (o, 〈w j , . . . , (wk, 〈wn, . . . , wm〉), . . . , wi 〉). Each of the sub-sequences
corresponds to a recursive PVS function that is used to represent the data-flow expression for
an interconnector variable used as feedback. Using the Block Groups described in Sect. 4.3,
the corresponding data-flow name and input arguments can be retrieved by matching the out-
put variable to a node from the collected sequence. For every node collected in this sequence
the data-flow expression is paired together with the node name. In this form, the sequences
are folded into a PVS let expression where the alias functions are the data-flow expressions
for the interconnector node. The final expression is the data-flow expression for the output,
or interconnector variable with feedback as input.

The consistency theorem has a generic solution for composite FBDs. The strategy required
to solve the theorem is to skolemize the input variables and instantiate the output variables
using data-flow expressions for each output. The main body of the predicate requires further
instantiation for each interconnector variable using a data-flow expression. The final proof
sequent can be discharged using a brute force strategy that repeatedly performs expansion
and simplification until the built-in FB specifications are discharged. This technique begins
to perform poorly as the size and nesting level of a composite FBD increases. During the
preliminary stages of the SDS1 Trip Computer Replacement Project, we discovered the
limitation of this technique when specifying large FBDs that produced multiple outputs and
contained over 19 FBs with 4 layers of nesting. A solution to this issue required us to use
a FB lemma equating the predicate definition to data-flow expressions used for the outputs.
We name this FBD property the data-flow equivalence lemma. The data-flow equivalence
lemma is a statement that the predicate, universally quantified over all inputs and outputs, is
equivalent to the conjunction of all data-flows equated to the output variables. This allows us
to recursively use pre-verified lemmas for each FB and avoids the need to expand the internal
definitions. The general form of the lemma is:

∀(i1, . . . , im) : ∀(o1, . . . , on) : FBDpred(i1, . . . , im, o1, . . . , on)

8 Timer TON (On-delay) is commonly used as a component of safety-critical systems. It monitors the input
condition IN and sets the output Q as True whenever IN remains enabled for longer than a period of some
input length PT. If the input in has been enabled for some time t < PT, then the timer sets the output ET (i.e.,
elapsed time) with value t ; otherwise, it sets ET with value PT.

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

⇐⇒ (o1 = FBDd f1(i1, . . . , im) ∧ . . . ∧ on = FBDd fn (i1, . . . , im)) (33)

where ik , k = 1, . . . ,m, are FBD inputs, ol , l = 1, . . . , n, are FBD outputs, FBDpred is the
predicate definition and FBDd fl is a data-flow expression for output ol , l = 1, . . . , n.

6.2 Data-Flow Expression Equivalence and Consistency Proofs

The proofs for both the data-flow equivalence lemma and the consistency theorem depend
on the composition of a given FBD. PVS does not have sufficient support for n-ary relations.
This limitation makes it difficult to specify a generic strategy to discharge a proof consisting
of arbitrary n-ary input and output. For example, PVS cannot support a general n-ary theorem
and strategy that encompasses network 00002 (7 inputs and 1 output) and 00003 (4 inputs
and 1 output) from Fig. 5. As a result, we generate a proof script for both the data-flow
equivalence lemma and consistency theorem that use the techniques outlined below.

The data-flow equivalence lemma consists of a predicate universally quantified over all
inputs and outputs. The initial step is to skolemize the universal quantification. Secondly, the
equivalence relation is split into two propositions resulting in two proof branches. The first
proof branch is of the form:

FBDpred(i1, . . . , im, o1, . . . , on)

o1 = FBDd f1(i1, . . . , im) ∧ · · · ∧ on = FBDd fn (i1, . . . , im)

By expanding FBDpred , the existential quantification is skolemized over all interconnector
variables,wp , p = 1, . . . , j , and the logical conjunction is flattened. The form of the sequent
is now:

FBpred1 (i1, . . . , im , w1, . . . , w j , o1, . . . , on), . . . , FBpredn (i1, . . . , im , w1, . . . , w j , o1, . . . , on)

o1 = FBDd f1 (i1, . . . , im) ∧ · · · ∧ on = FBDd fn (i1, . . . , im)

In this form, the data-flow lemma can be used for each block and can be instantiated with
the appropriate variables. The propositions in the antecedent are replaced with the respective
data-flow definitions. With the form of this sequent, it is now appropriate to use a brute force
strategy. The splitting action will result in a branch comparing an individual output data-flow
to the data-flow of each internal FB. Since each output data-flow consists of a composition of
block data-flows, this proofwill complete without the aforementioned performance concerns.
The second proof branch is of the form:

o1 = FBDd f1(i1, . . . , im), . . . , on = FBDd fn (i1, . . . , im)

FBDpred(i1, . . . , im, o1, . . . , on)

By expanding FBDpred , the existential quantification is instantiated using data-flow expres-
sions for each interconnector variable:

o1 = FBDd f1 (i1, . . . , im), . . . , on = FBDd fn (i, . . . , im)

FBpred1 (i1, . . . , im , fd f w1 , . . . , fd f w j , . . . , o1, . . . , on) ∧ · · · ∧ FBpredn (i1, . . . , im , fd f w1 , . . . , fd f w j , . . . , o1, . . . , on)

We can now use the data-flow lemma for each block, by instantiating it with the appropriate
variables and replacing the propositions in the succedent with the respective data-flow def-
initions. The proof can be completed using a brute force strategy. The splitting action will
result in a branch comparing the data-flow for each block to all individual output data-flows.
Since each output data-flow consists of a composition of block data-flows, this proof will
mitigate the performance concern.

123

J. Newell et al.

The consistency theorem can be proved using a strategy that includes the data-flow equiv-
alence lemma. The theorem form as follows:

∀(i1, . . . , im) : ∃(o1, . . . , on) : FBDpred(i1, . . . , im, o1, . . . , on)

Introducing the data-flow equivalence lemma, the sequent appears as:

∀(i1, . . . , im) : ∀(o1, . . . , on) : FBDpred (i1, . . . , im , o1, . . . , on) ⇐⇒
∧

i

(oi = FBDd fi (i1, . . . , im))

∀(i1, . . . , im) : ∃(o1, . . . , on) : FBDpred (i1, . . . , im , o1, . . . , on)

Skolemizing the succedent and instantiating the antecedent eliminates quantification over
inputs. Both the succedent and antecedent are now quantified in such a way that requires
instantiation. Instantiating each output with its corresponding data-flow expression results in
a sequent as follows:

FBDpred (i1, . . . , im ,FBDd f1 , . . . ,FBDd fn) ⇐⇒
∧

i

(FBDd fi (i1, . . . , im) = FBDd fi (i1, . . . , im))

FBDpred (i1, . . . , im ,FBDd f1 , . . . ,FBDd fn)

Replacing FBDpred(i1, . . . , im,FBDd f1 , . . . ,FBDd fn) in the succedent with the term in the
succedent results in:

∧

i

(FBDd fi (i1, . . . , im) = FBDd fi (i1, . . . , im))

This final form is trivially proved by splitting the expression.

7 Nuclear Industry Case Study

The DNGS SDS1 TCs monitor a diverse set of nuclear and process parameter sensors that
cover all critical design basis accident scenarios. In the case of anomalous behaviour, the TCs
respond via control logic to signal a reactor trip. Signals from three redundant SDS1 TCs are
connected to 2-out-of-3 voting logic that ultimately initiates a reactor trip.9 The SDS1 TC
software requirements are formalized using TEs and the software is designed using FBDs.
First, we present a simplified example of verifying a parameter trip requirement. Second,
we demonstrate the application of our formal translation rules and discuss the verification
results from applying PVS.

7.1 Parameter Trip Setpoint Requirements

In this example, we consider the requirements of a generalized parameter trip. The TC is
designed to provide coverage of a pressure inputm_Pressure. The parameter will not trip if it
has been conditioned out. There are two possiblemechanisms for conditioning the parameter:
low reactor power and operator input through two pushbuttons.

TheTE as shown in Fig. 2, Sect. 2.1 specifies that c_PressureTrip generates a trip response,
if the pressure input (m_Pressure) is above or equal to the setpoint (k_PrsSP) if the parameter
is not conditioned out. It will not generate a trip response if the pressure input is below or
equal to the setpoint minus the deadband value. The deadband value is assumed to be positive
(or else the tabular expression is ill-formed), and much smaller in value than the absolute

9 SDS2 uses diverse sensors and technologies to cause a reactor trip if SDS1 were to fail.

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

value of the setpoint (or else it affects behaviour rather than simply reducing noise). The value
of c_PressureTrip does not change at all if the pressure input is in the deadband region. A
trip response will not be generated if the parameter has been conditioned out. Note that, since
the function value may be left unchanged, an initial value must be provided. In keeping with
the safety priority of the system, the initial value in this case would be tripped (represented
as True).

The TE as shown in Fig. 3, Sect. 2.1 specifies that f_PrsCond will be conditioned out,
if the operator has requested conditioning (f_CondON is debounced and f_CondOff is not
debounced) and there is low estimated power. It will not perform conditioning if f_CondOFF
has been debounced or if either pushbutton is stuck. This logic protects the system from
erroneous pushbutton combinations and ensures conditioning only occurs during operator
request at low power.

The TE as shown in Fig. 4, Sect. 2.1 specifies a generic requirement for both the condition
ON and condition OFF pushbuttons. The requirement is derived from a TE presented in [15],
which describes the behaviour of a pushbutton as a time delay function with a debounce
and stuck state. When the pushbutton is not pressed, the resulting state is considered not
debounced. The definition makes use of the Held for operator [14] as described by Eq. (34).
For simplicity, the proposed example does not include timing tolerances. We approximate
continuous time, as a type tick, defined as a discrete series of equally-distributed clock ticks
with an arbitrarily small positive interval δ: tick = {tn : R≥0 | δ ∈ R>0∧(∃n : N•tn = n×δ)}.
The infix operator, P Held For (d), states that a monitored boolean condition P will be
sustained over a positive time duration d . More precisely,

∃(t j : tick) : (t − t j ≥ d) ∧ (∀(tn : tick | tn ≥ t j ∧ tn ≤ t) : P(tn)) (34)

7.2 Design and Formal Translation

An example design (Fig. 5, Sect. 2.2) uses several built-in IEC 61131-3 FBs to specify the
functional behaviour. The design is decomposed into three networks to specify the function-
ality of the pushbuttons, conditioning and trip logic respectively. As an example, we select
Network 00003 since it uses a feedback connection for the hysteresis effect. It is important
to note that the target PLC treats “de-energised” (false = 0) as the safe state, therefore
c_PressureTrip = false in the design domain is equivalent to c_PressureTrip =
True in the requirements domain. The example also includes built-in timer blocks used to
implement the pushbutton behaviour in Fig. 6. ET outputs are left unconnected since they
are not used. The idealized behaviour of the pushbutton is described in [15], which uses a
time-dependent last_enabled function to calculate the rising edge.

For this example, we use the prototype translator to demonstrate our translation rules.
Mapping this diagram to an abstract syntax is performed by preparing an ASCII input file and
using a simple parser.We have implemented a function tomodify block-to-block connections
by introducing an additional “wire” variable. These variables are added to an attribute map
and are used in the labels of a graph, as illustrated in Fig. 7. A graph and attribute map is
produced for each network. A top level PVS expression for the FBD will use the expressions
generated from each graph.

The translation rules are further applied and the resulting PVS code is illustrated in Fig. 8.
Using the input and output identification rules from Eqs. (25) and (26), inputs and outputs
of the graph in Fig. 7 are respectively: k_PrsSP, k_DeadBand, m_Pressure, f_PrsCond and
c_PressureTrip. k_PrsSP and k_DeadBand are not included as arguments. These variables are
constant values represented in PVS by a constant function. The existential identification rule

123

J. Newell et al.

Fig. 7 Labelled Directed Graph for Network 3: c_PressureTrip

from Eq. (27) yields the internal variables:wire0,wire1,wire2,wire4 and PrsSenTrip. Lastly,
the conjunction of internal blocks SUB,GE, LE, OR10 and AND completes the expression as
shown.11

The translation rules for the data-flow expressions are applied and the resulting PVS
code for an interconnector variable is illustrated in Fig. 9. Using the techniques described
in Sect. 6.1, data-flow expressions for each FB are sequently composed and assigned to the
interconnector variables. Thefinal expression is the data-flowexpression for theFBconnected
to the output variable. Since a feedback connection is used, the data-flow expression is defined
as a recursive function with a measure function, rank(t), that specifies the ordering relation
over the time sequence. This function is then used to discharge the data-flow equivalence
lemma and the consistency theorem as described in Sect. 6.2.

7.3 Verification

CE-1001-STD [8] specifies a set of complementary and overlapping verification processes,
one of them being systematic design verification (SDV). The objective of SDV is to verify that
all functions in the design are equivalent to their corresponding functions in the requirements
using mathematical techniques or rigorous argument. SDV uses a specialization of the four
variable model [16] to confirm the satisfaction of Eq. (35).

OUT ◦ SOF ◦ I N � REQ (35)

For the purposes of our example, REQ is the TE from Figs. 2, 3 and 4 and other supporting
information (not shown) that defines the monitored and controlled variables, the constants,
and the enumerated types. SOF is the FBD from Figs. 5 and 6, and other supporting infor-
mation (not shown) that defines the input and output variables and constants used. IN and
OUT are functions that translate monitored variables to input variables and output variables
to controlled variables, respectively (an example of such a translation for c_PressureTrip is
shown in Sect. 7.2). Our verification was performed in PVS using built-in table constructor
(cond) to specify the requirements [21]. We then created a PVS specification containing a

10 The underscore (..._) is used for generated names that conflict with PVS keywords.
11 The FBD is formalized over a discrete time series of equally distributed samplings, i.e., ticks. The pre
operator returns the previous time sample.

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

Fig. 8 Generated PVS for Network 3: PressureTrip

theorem in the form of Eq. (35). The requirements and design specify behaviour using recur-
sion, which requires the proof to begin with the time_induction scheme from the ClockTick
theory. The formulae are expanded until the comparison is performed on low level operators.
For the Held for and TON operators, a pre-verified lemma is used to discharge the sequents
as was done in [15].

After further reduction, we discovered an unprovable sequent that prevented us from dis-
charging the proof. Upon investigation, we recognize the design failed to add a negation
between the GE and AND blocks in Network 00003 of Fig. 5 (the seeded error mentioned in
Sect. 2.2). This is a clear demonstration of how formal verification detects subtle design flaws
that could potentially result in unintended behaviour. The application of the approach12 for
SDV on the DNGS SDS1 TC replacement project helped identify design pattern inconsisten-

12 The approach was qualified by trial use, inspection and acceptance testing.

123

J. Newell et al.

Fig. 9 Generated PVS for Network 00003: PressureTrip

cies that led to an improved FBD-based design approach, uncovered inconsistencies in TEs
that led to a more precise requirements specification, and identified an omitted conversion in
the FBD for performing an average power calculation. PVS was used to verify all FBDs in
the design, which accounted for 80% of the overall SDV effort. Our approach was used to
automatically discharge 70% of the proof obligations. The most complicated FBD, a module
with 20 FBs and 39 variables, and modules with real-time properties, required some user
interaction with PVS to discharge the proof.

8 Simulink Model of a Nuclear Industrial Example

The method described in this paper was created for specific application to IEC 61131-3
compliant FBDs and the PLC digital computers they are used to program. Looking beyond
tomore general application,we repeated the example given inSect. 7, this timeusingSimulink
as the graphical design language. Designs created using Simulink can be translated into a
general purpose programming language applicable to various target platforms.

Figures 10, 11, 12, 13 and 14 depict a Simulink design (model) of the c_PressureTrip
requirements using TEs (Sect. 2.1). The Simulink structure and primitives are as close to the
FBD design as possible, but some changes were necessary due to language differences. The
respective changes replace the dashed-line with a a unit delay (i.e., z1) for feedback loops,
and the built-in TON/TOF blocks with the timing delay blocks for debounce/stuck behaviour.

The method, unchanged, was applied to the Simulink design to create an attribute map,
labelled directed graphs for each Simulink module, block groups and finally the PVS code.
This PVS representation of the design was then fed, along with the PVS representation from
the TEs, to the PVS prover. All proofs were discharged successfully.

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

Fig. 10 Simulink Model for c_PressureTrip

Fig. 11 Simulink Model for 2 Pushbuttons

Fig. 12 Simulink Model for Pushbutton Design

9 Related Work

IEC 61131-3 provides definitions for five PLC languages13 and various research work has
produced formalization and verification of PLC programs. In terms of the formal verification

13 Functionblockdiagram (FBD), structured text (ST), instruction list (IL), ladder diagram (LD) and sequential
function chart (SFC).

123

J. Newell et al.

Fig. 13 Simulink Model for PrsSenTrip

Fig. 14 Simulink Model for f_PrsCond

of PLC programs written in these languages, there are typically two main approaches to
prove or disprove the correctness of a design with respect to a certain formal requirements
specification or required property: model checking and theorem proving. We summarize the
most relevant works to this paper in Table 1 in terms of: the main verification approach,
the set of supported IEC 61131-3 languages, industrial scalability, supporting front-end and
verification tool.

In the case of model checking, Németh and Bartha [10] provides the formal verification
of a safety procedure in a nuclear power plant (NPP) in which a verified Coloured Petri
Net (CPN) model is derived by reinterpretation from the FBD description. Soliman et al.
[18] transforms FBD descriptions to its logically equivalent Uppaal models that perform
the verification of safety applications in the industrial automation domain. Jimenez-Fraustro
and Rutten [6] translates ST and FBD into a synchronized data-flow language SIGNAL to
compile and reason about the verification of specifications. Darvas et al. [2] presents two
complementary solutions for the formal verification of safety-critical PLC programs (written
in ID, IL and FBD) based on model checking and equivalence checking. Nellen et al. [9]
proposes twoCEGAR-based techniques for the reachability analysis for SFC-based chemical

123

Translation of IEC 61131-3 Function Block Diagrams to PVS for…

Table 1 Summary of Related Work

References IEC 61131-3 Language(s) Scalability Front-end Tool(s)

Theorem proving

[1] SFC, IL, LD, and FBD Small Yes Coq

[19] SFC, ST and FBD Small No HOL

[11] FBD Large Yes PVS

Model checking

[10] FBD Small No Design/CPN

[18] FBD Small No Uppaal

[6] ST and FBD Small No SIGNAL

[2] IL, ID and FBD Large Yes nuXmv and UPPAAL

[9] SFC Medium No SpaceEx

plants. In the case of theorem proving, Blech and Biha [1] uses Coq to check the correctness
of SFC programs, which is automatically generated from a graphical front-end. Völker and
Krämer [19] formalizes PLC programs using higher-order logic and uses HOL to discharge
safety properties.

In the case of model checking, there is difficulty scaling up to industrial-size applications.
In theorem proving, complex formalisms can be handled, but the process of proofs is not fully
automated and adds additional overhead to industrial scale applications. Thus, the strengths
and weaknesses for model checking and theorem proving are complementary. To balance this
issue, our technique has been successfully used in an on-going nuclear industrial application,
and it is novel in that: (1) we translate a FBD design to a formal PVS model; (2) the resulting
PVS model can be verified against TE-based requirements input to PVS; and (3) we propose
a method to prove the consistency theorem for a FBD in PVS.

10 Conclusion and Future Work

In an earlier version of this paper [11], we extended the work presented in [13] with an
industrial-scaled methodology for the systematic translation of FBD designs compliant with
IEC 61131-3 into the PVS formal specification language. The approach was developed for
OPG and is in current use as part of the verification of the DNGS SDS1 TCs. In combination
with PVS, this work has proven effective in uncovering subtle inconsistencies in applying
design patterns, inconsistencies in the real-time requirements documented using TEs, and
non-conformance between a more complex FBD design and its real-time requirements. In
this revision of the paper, we propose a proof strategy to reduce the effort required to produce
and discharge the consistency theorem for a FBD design example. As an extension, we
demonstrate applicability to a Simulink-based design using the same example.

As on-going and future work, we first aim to improve our translation rules using oper-
ational semantics to verify the transformation itself and FBD well-formedness conditions
to provide more precision for potential tool designers. Secondly, we are currently imple-
menting proof scripts to increase the level of automation, which has potential application
in other industrial domains, e.g., aerospace. Thirdly, we intend to apply the methodology
to generate specifications in Coq to make use of custom tactics and use the environment to

123

J. Newell et al.

certify the translation process. Lastly, we plan to extend our formalization technique to other
IEC 61131-3 compliant languages, e.g., Structured Text (ST).

Acknowledgements We would like to thank OPG for their permitting us to describe the work related to
the DNGS TC replacement project. The methodology and tools described herein are the property of OPG.
Particularly, we thank Ivan Dimitrov, Section Manager, Safety Related Computers, Computers and Control
Design, andMike Viola, SDS Replacement Project Manager, for their valued oversight and assistance. Special
thanks to Lucian Patcas for his thorough review.

References

1. Blech, J.O., Biha, S.O.: On formal reasoning on the semantics of PLC using Coq. CoRR abs/1301.3047
(2013)

2. Darvas, D., Majzik, I., Blanco Viñuela, E.: Formal Verification of Safety PLC Based Control Software,
pp. 508–522. Springer, Cham (2016)

3. DO-178C: SoftwareConsiderations inAirborne Systems andEquipmentCertification. SpecialCommittee
205 of RTCA (2011)

4. IEC: 61131-3 Ed. 3.0 en:2013: Programmable Controllers—Part 3: Programming Languages. Interna-
tional Electrotechnical Commission (2013)

5. IEEE 7-4.3.2: Standard for Digital Computers in Safety Systems of Nuclear Power Generating Stations
(Revision of IEEE Std 7-4.3.2-2003). The Institute of Electrical and Electronics Engineers (IEEE) (2010)

6. Jimenez-Fraustro, F., Rutten, E.: A synchronous model of IEC 61131 PLC languages in SIGNAL. In:
Euromicro Conference On Real-Time Systems, pp. 135–142 (2001)

7. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions. Sci. Comput. Program.
75(11), 980–1000 (2010)

8. Joannou, P., Harauz, J., Viola, M., Cirjanic, R., Chan, D., Whittall, R., Tremaine, D., Moum, G.: Stan-
dard for Software Engineering of Safety Critical Software Revised for Application Oriented Language.
CANDU Computer Systems Engineering Centre of Excellence Standard CE-1001-STD Rev. 3 (2014)

9. Nellen, J., Driessen, K., Neuhäußer, M., Ábrahám, E., Wolters, B.: Two CEGAR-based approaches for
the safety verification of PLC-controlled plants. Inf. Syst. Front. 18(5), 927–952 (2016)

10. Németh, E., Bartha, T.: Formal verification of safety functions by reinterpretation of functional block
based specifications. In: Formal Methods for Industrial Critical Systems. Springer, pp. 199–214 (2009)

11. Newell, J., Pang, L., Tremaine, D., Wassyng, A., Lawford, M.: Formal translation of IEC 61131-3 func-
tion block diagrams to PVS with nuclear application. In: NASA Formal Methods—8th International
Symposium, NFM 2016, Minneapolis, MN, USA, June 7–9, 2016, Proceedings. pp. 206–220 (2016)

12. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: International Conference
on Automated Deduction. LNCS, vol. 607, pp. 748–752 (1992)

13. Pang, L.: An Engineering Methodology for the Formal Verification of Function Block Based Systems.
Ph.D. thesis, McMaster University, Department of Computing and Software (2015)

14. Pang, L., Wang, C., Lawford, M., Wassyng, A.: Formal verification of function blocks applied to IEC
61131-3. Sci. Comput. Program. 113, 149–190 (2015)

15. Pang, L., Wang, C., Lawford, M., Wassyng, A., Newell, J., Chow, V., Tremaine, D.: Formal verification of
real-time function blocks using PVS. In: Proceedings 4th International Workshop on Engineering Safety
and Security Systems, ESSS 2015, Oslo, Norway, June 22, 2015, pp. 65–79 (2015)

16. Parnas, D.L.,Madey, J.: Functional documents for computer systems. Sci. Comput. Program. 25(1), 41–61
(1995)

17. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured programs. IEEE Trans.
Softw. Eng. 20, 948–976 (1994)

18. Soliman, D., Thramboulidis, K., Frey, G.: Transformation of function block diagrams to Uppaal timed
automata for the verification of safety applications. Annu. Rev. Control. 36, 338–345 (2012)

19. Völker, N., Krämer, B.J.: Automated verification of function block-based industrial control systems. Sci.
Comput. Program. 42(1), 101–113 (2002)

20. Wassyng, A., Janicki, R.: Tabular expressions in software engineering. In: International Conference on
Software & System Engineering and their Applications, vol. 4, pp. 1–46 (2003)

21. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of formal methods in an
industrial project. In: FME 2003: Formal Methods, LNCS, vol. 2805, pp. 133–153. Springer, Berlin,
Heidelberg (2003)

123

	Translation of IEC 61131-3 Function Block Diagrams to PVS for Formal Verification with Real-Time Nuclear Application
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Tabular Expressions
	2.2 IEC 61131-3 FBDs
	2.3 PVS Grammar

	3 FBD Abstract Syntax
	4 FBD Graph Model
	4.1 Attribute Map
	4.2 Graph Model
	4.3 Block Groups

	5 PVS Translation
	5.1 Identifying Predicate Arguments
	5.2 Identifying Existential Variables
	5.3 Function Block Composition

	6 Proof Strategy for the Consistency Theorem
	6.1 Data-Flow Expressions
	6.2 Data-Flow Expression Equivalence and Consistency Proofs

	7 Nuclear Industry Case Study
	7.1 Parameter Trip Setpoint Requirements
	7.2 Design and Formal Translation
	7.3 Verification

	8 Simulink Model of a Nuclear Industrial Example
	9 Related Work
	10 Conclusion and Future Work
	Acknowledgements
	References

