
1322 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

Hierarchical Interface-Based Supervisory
Control—Part I: Serial Case

Ryan J. Leduc, Member, IEEE, Bertil A. Brandin, Member, IEEE, Mark Lawford, Member, IEEE, and
W. M. Wonham, Life Fellow, IEEE

Abstract—In this paper, we present a hierarchical method that
decomposes a system into two subsystems, and restricts the inter-
action of the subsystems by means of an interface. We present def-
initions for two types of interfaces [represented as discrete-event
systems (DESs)], and define a set of interface consistency proper-
ties that can be used to verify if a DES is nonblocking and control-
lable. Each clause of the definitions can be verified using only one of
the two subsystems; thus, the complete system model never needs
to be constructed, offering potentially significant savings in com-
putational effort. Additionally, the development of clean interfaces
facilitates reuse of the component subsystems. Finally, we examine
a simple example to illustrate the method.

Index Terms—Automata, discrete-event systems (DESs), formal
methods, hierarchical systems, interfaces.

I. INTRODUCTION

I N THE AREA of discrete-event systems (DESs), two
common tasks are to verify that a composite system, based

on a cartesian product of subsystems, is: i) nonblocking and ii)
controllable. The main obstacle to performing these tasks is the
combinatorial explosion of the product state space. Although
many methods have been developed to deal with this problem,
large-scale systems are still problematic, particularly for ver-
ification of nonblocking. In this paper, our goal is to develop
an architecture for DES that supports a scalable method for the
design and verification of nonblocking supervisory controllers.

For inspiration, we first turn to digital logic circuits. Com-
plexity is routinely managed by designers of microprocessors
for personal computers. These circuits are hierarchical in na-
ture, and are designed by using interfaces to limit the interac-
tion between different levels of the hierarchy. A complex system
is designed by first creating basic components, then adding an
interface that encapsulates the behavior of the component, and
provides an abstract model of the component’s operation with a
well-defined method of interacting with the component. These
components are combined to create a new, more complex, com-
ponent, with its own interface. At each step in the process, a
component is treated as a black box, and the designer only uti-
lizes the component’s interface. At no time is the designer al-

Manuscript received August 27, 2003. Recommended by Associate Editor R.
Boel.

R. J. Leduc and M. Lawford are with the Department of Computing and
Software, McMaster University, Hamilton, ON L8S 4K1, Canada (e-mail:
leduc@mcmaster.ca; lawford@mcmaster.ca).

B. A. Brandin is with Siemens Medical Solutions Health Services, Milano
20126, Italy (e-mail: bertil.brandin@siemens.com).

W. M. Wonham is with the Department of Electrical and Computer En-
gineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
wonham@control.utoronto.ca).

Digital Object Identifier 10.1109/TAC.2005.854586

lowed to modify the inner workings of a component or to “look
below” the interface. This keeps the complexity at each level
manageable. Although designing a single-level (“flat”) circuit
might generally be more efficient in terms of timing delay and
number of gates used, it would not be a practical or efficient de-
sign approach for large circuits as the amount of detail would
become prohibitive.

In software program design, similar ideas are at work. To deal
with the complexity of large scale systems, software engineers
have long advocated the decomposition of software into mod-
ules (components) that interact via well-defined interfaces (e.g.,
[1] and [2]). This approach is referred to as information hiding.
Some of its advantages are given here.

• Limits complexity by hiding unnecessary detail behind
interfaces.

• Promotes independent development as once the module
interfaces are defined, each module can be designed sep-
arately.

• Provides a high degree of changeability by encapsu-
lating the behavior of a module. The implementation of
a module can be changed without affecting the modules
that use it since they are not permitted to reflect the inner
details or interact with the internals of the module.

• Provides a high degree of comprehensibility. Because
information is localized in modules and unnecessary de-
tails are hidden by the interface, it is much easier to un-
derstand a module.

• Provides a well defined hierarchical structure. This
structure guarantees that we can remove the upper
levels of our hierarchy, and what is left can be reused in
another application.

Both the black box methodology of circuits and the informa-
tion hiding approach of software, manage the complexity of de-
signing large scale systems by restricting the design to render it
easier to analyze, maintain and conceptualize. Our goal in this
paper is to develop a similar architectural approach for DES. The
method utilizes well defined interfaces between components that
are themselves DES. These “interface DES” provide a structure
allowing local checks to guarantee global properties such as con-
trollability and nonblocking. In order to achieve our ultimate goal
of scalability,we restrict thepermissible systemarchitecturesand
sacrifice global maximal permissiveness to obtain a (generally)
suboptimal solution, but one that is more tractable.

A. Literature Review

Researchers in supervisory control have recently begun to
advocate interface based architectural solutions to dealing

0018-9286/$20.00 © 2005 IEEE

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART I: SERIAL CASE 1323

with complexity [3], [4]. These approaches develop interfaces
between components to provide structure that guarantees global
properties such as controllability [4] or nonblocking [3]. In
this paper, we present an interface-based hierarchical method,
called hierarchical interface-based supervisory control (HISC),
to verify if a system is nonblocking and controllable. Early
results of this work can be found in [3], [5]. While, in general,
the method can decompose the system into multiple “parallel”
subsystems (see [6] and [7]), for the purposes of this paper
(Part I of II) we restrict our attention to the special case where
the system is split into two subsystems that interact via a single
interface DES. The most significant feature that distinguishes
this work from [4] is the results on nonblocking.

In [8], interface automata are used to model software
components and verify their compatibility. This work has
independently derived conditions for software component
interface compatibility that are similar to the interface consis-
tency properties presented in Section III-A. In [8], automata
representing component interfaces are directly composed to
produce the interface of the new composite component and a
refinement relation is developed to aid in refining a compo-
nent interface specification into an implementation. There is
no explicit concept of control, though implicitly component
inputs are considered uncontrollable and the component out-
puts are effectively controllable. In contrast we propose an
interface automaton that mediates communication between the
components in order to decompose the verification of global
nonblocking and controllability into “local” checks on each of
the components and their interface.

Related work by Fabian et al. [9], [10] applied object-oriented
concepts in the design of DES control software, and extended
supervisory control theory to the nondeterministic supervisors
which that approach required. Later, Shayman et al. [11] intro-
duced the concept of control and observation masks to encap-
sulate process logic. These approaches have two disadvantages
relative to interface based supervisory control: i) they do not ad-
dress issues related to nonblocking and ii) they require a more
complex mathematical setting than the deterministic automata
with synchronous product operator that is commonly employed
in supervisory control theory. By using interface DES to regu-
late subsystem interaction, we are able to impose architecture
without change to the standard DES setting.

One of the earliest and most useful methods designed to
handle the combinatorial explosion of the product state space
that results from systems composed of interacting subsystems
is modular control [12]–[15]. This method involves designing
multiple supervisors as opposed to a centralized supervisor,
each supervisor implementing a portion of the control spec-
ification. While the method scales well in practice for the
verification of controllability (see e.g., [16] and [17]), verifying
nonblocking of the closed loop system is still a problem.

In decentralized control [18]–[23], local supervisors, with
only partial observations of the plant, are designed as a group
to implement a global specification. While this is an effective
method to design distributed controllers, it still requires the
computation of the synchronous product of all of the plant
subcomponents (the composite plant) and thus offers no com-
putational savings over a centralized solution.

One way to improve the scalability of modular and decentral-
ized schemes is to exploit the existing architecture of the system.
In [24], the concept of a specification that is separable over the
component subsystems is introduced and shown to be necessary
and sufficient for a decentralized control scheme to exist that
optimally meets the specification. The work does not consider
nonblocking supervision. These results are extended to a more
general architecture in [25] that deals with nonblocking by de-
tecting potential blocking states locally and then backtracking
globally to determine their reachability. The structure associ-
ated with the event sets of subsystems is exploited in [14] to
obtain a reduction in complexity for the nonconflicting check
of modular control. Similarly the standard controllability defi-
nition has been refined and localized in [26] to check on a per
subplant basis only those uncontrollable events that can occur
locally.

Another approach is embodied by vector DES (VDES) [12],
[27], [28] and Petri nets (PNs) [29]–[31]. These state based
methods make use of the algebraic regularity inherent in cer-
tain systems. They are used when the state of the system can be
represented as a vector of integers, whose components are incre-
mented or decremented by events. These methods are primarily
useful for systems with a high degree of regularity that lend
themselves to vector representation. However, the VDES/PN
models are not well adapted to the synthesis or verification of
nonblocking controllers without first converting the models to
automata by means of the reachability graph [32].

A promising approach is the development of a multilevel
hierarchy. In order to aid in classification, we make a distinc-
tion between structural multilevel hierarchies with explicit
mechanisms (modeling constructs) to facilitate hierarchy (e.g.,
[33]–[36]) as opposed to aggregate (bottom up) multilevel
hierarchies which we will discuss later. In structural multilevel
hierarchies, plants and supervisors are modeled as multilevel
structures similar to automata, except that certain states at a
given level can be expanded into a more detailed lower level
model. Although [35] allowed a system to be represented
hierarchically using cartesian products (AND superstates)
or disjoint unions (OR superstates), AND states had to be
converted to OR states using the synchronous product before
computations could be effectively performed. Similarly, [34]
was restricted to using only OR states. Both approaches could
verify controllability, but did not address nonblocking. Re-
cently, these limitations have been overcome by Ma et al. [36]
who, with the use of binary decision diagrams (BDDs) [37],
has been able to verify controllability and nonblocking for a
system on the order of states.

The next approach of interest is the model aggregation
methods [38]–[47]. In these approaches, aggregate models are
derived from low-level models by using either state-based or
language-based aggregation methods. Although this approach
can be effective in constructing high-level models with reduced
state–spaces, they have some drawbacks.

• In hierarchical methods such as [46], [47], and [43],
there is no direct connection between control actions at
the high-level, and at lower levels. To create an imple-
mentation, a control action at the high-level may need

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

1324 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

to be “interpreted” as equivalent control action(s) at the
low-level.

• Aggregate models must be constructed sequentially
from the bottom up, starting from the lowest level;
thus, a given level cannot be constructed and verified in
parallel with the levels below it, making a distributed
design process difficult.

• The DES methods provide necessary and sufficient
conditions for checking controllability, and in many
cases nonblocking, using the aggregate models. While
this is desirable, it causes the individual levels to be
tightly coupled; a change made to the lowest level may
require that all aggregate models and results have to
be re-evaluated. In contrast, the sufficient conditions
of interface based supervisory control that we develop
allow us to design and verify levels independently,
ensuring that a change to one level of the hierarchy
will not impact the others. This independence comes
at the cost of possible false negatives forcing an overly
conservative design.

We also note the related work in hybrid systems of Moor et
al. [48] who have developed a multilevel aggregation approach
inspired by [46], [47]. This new approach is different as they use
an input–output structure to represent both time and event driven
system dynamics, allowing them to verify both controllability
and nonblocking results.

In contrast to the majority of approaches which apply math-
ematical techniques to produce aggregate models of an existing
system, our method of restricting component interaction to well
defined interfaces provides a design heuristic to guarantee scal-
ability by construction.

The last approach we discuss is the use of symbolic methods
to represent the transition structures underlying DES [49].
Zhang et al. [50], [51] have recently developed algorithms
that use integer decision diagrams (an extension of BDDs) to
verify centralized DES systems on the order of states.
That work builds on results of symbolic model checking [52],
[53] that have successfully used BDDs to handle systems of
similar size. The ability of such symbolic methods to handle
large state spaces is highly dependent upon finding a variable
ordering for the data structures that can exploit the system’s
regularity. In [50] and [51], it was found that the symbolic
methods were most effective when the interconnection matrix
of system components was diagonalizable (i.e., interaction of
subsystems was limited to “adjacent” components). By forcing
the interaction of subsystems to pass through interface DES,
our interface based supervisory control should have the effect
of limiting component interaction in just the right way to allow
the effective application of symbolic techniques.

Finally, we note that the interface DES that support our
system architecture differ from the “interface processes” em-
ployed in compositional model checking [54]. In the latter, an
interface process is an aggregate model that is used as a re-
placement for a particular subsystem to produce a reduced-state
model that facilitates verification. For example, let
be subsystem models and be the temporal logic formula of
interest. In order to verify that by compositional

model checking, might be replaced by an aggregate “inter-
face process” such that if then .

In the following sections, we first describe the general set-
ting and provide preliminary definitions. We then present a set
of (local) consistency requirements that the interface and sub-
systems must satisfy to guarantee global nonblocking and con-
trollability. We then provide a small illustrative example.

II. DES PRELIMINARIES

Ramadge–Wonham supervisory control [55], [56], [12] pro-
vides a theoretical framework for the control of DESs, systems
that are discrete in space and time. For a detailed exposition of
DES, see [12]. Here, we present a summary of the terminology
that we use in this paper.

Let be a finite set of distinct symbols (events), and be
the set of all finite sequences of events, including , the empty
string. Let be a language over . A string is a
prefix of (written) if , for some .
The prefix closure of a language (denoted) is defined
as

for some

Let denote the power set of . For language , the
eligibility operator is defined as below.
Let . Then

A DES automaton is represented as a 5-tuple

where is the state set, is the event set, the partial function
is the transition function, is the initial state,

and is the set of marker states. We will also use the nota-
tion as a shorthand for the event set that DES is defined
over. This is an easy way to refer to the alphabet given in the
5-tuple definition of , particularly in situations when it is not
explicitly stated (for example, in the case of a DES created by
the synchronous product operator below). The function is ex-
tended to in the natural way. The notation

means that is defined for at state .
For DES , the language generated is denoted by , and

is defined to be

The marked behavior of , is defined as follows:

Let , and . For ,
and , we define the natural projection
according to:

if
if

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART I: SERIAL CASE 1325

The synchronous product of languages and , denoted
, is defined to be

where is the inverse image func-
tion of (see, e.g., [12]).

The synchronous product of DES
and ,

denoted , is defined to be a reachable DES with the
properties1

and event set

For DES, the two main properties we want to check are non-
blocking and controllability.

Definition 1: A DES is said to be nonblocking if the fol-
lowing is true:

To control the plant, we define a supervisor. As this paper fo-
cuses on verification and not synthesis, we will use the terms su-
pervisor and specification interchangeably as we require that all
specifications be controllable. The supervisors are represented
as automata and defined as follows:

In this paper, we will use the synchronous product operator to
specify the closed-loop behavior as this makes data entry easier
and less error prone, particularly when using a graphical editor
to specify and display the supervisor. This means that the be-
havior of a plant under the control
of a supervisor S is

We now present a formal definition for controllability. We
adopt the standard partition splitting our alphabet
into uncontrollable and controllable events. We then need to
define the event set , the natural projections and , and
languages and as follows:

Definition 2: A supervisor is controllable for a plant if

or, equivalently

1We are overloading the k operator here by using it for both languages and
DES, but this should not cause confusion as the choice of arguments will make
the meaning clear.

Fig. 1. Interface block diagram.

III. SERIAL CASE SETTING

With the serial case of hierarchical interface-based super-
visory control, we propose essentially a master–slave system,
where a high-level subsystem sends a command to a low-level
subsystem, which then performs the indicated task and sends
back a reply. Fig. 1 shows conceptually the structure of the
system.

To allow the system to be designed, maintained and verified
on a component-wise basis, we impose an interface between
the two subsystems that limits their interaction and knowledge
of each other. The goal is to be able to work with each sub-
system individually, requiring no information about the other
subsystem beyond that provided by the interface.

To capture the restriction of the flow of information imposed
by the interface, we split the alphabet of the system into four
pairwise disjoint alphabets: , and . The events in

are called high-level events and the events in low-level
events as these events appear only in the high-level and low-level
models, respectively.

The alphabets and are called collectively interface
events. These events are common to both levels of the hier-
archy and represent communication between the two subsys-
tems. Events in are request events and represent commands
sent from the high-level subsystem to the low-level subsystem.
The events in are answer events and represent the low-
level’s responses to the request events (high-level commands).
Fig. 1 shows conceptually the flow of information in our setting.

In the remainder of this section, we will first define two types
of interfaces, and then some useful terminology and notation.

A. Interface Definitions

In this section, we present two interface definitions: star in-
terfaces and command-pair interfaces. As we will see later, star
interfaces are a special case of command-pair interfaces.

We start by describing a star interface as it has a regular struc-
ture and is thus easy to construct. To define a star interface, the
designer selects a set of request events, and then for each request
event, the designer defines a set of answer events. In essence, the
designer defines a map . For

is the set of possible answers (referred to as

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

1326 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

Fig. 2. Star interface.

Fig. 3. Example command-pair interface.

the answer set) the low-level subsystem could provide after re-
ceiving request . We also add the constraints that the low-level
subsystem must provide at least one response for each request
it receives, and that does not contain any unused events. Fi-
nally, we see in Fig. 2 how a star interface, with , is
expressed as a DES. The required structure is given by DES .
We also require that the event set of be set to .

We now define command-pair interfaces which were de-
signed as a generalization of star interfaces. A key difference
is that the “star” shape is no longer required. A command-pair
interface still always has a request event followed by an answer
event, but it can now contain additional state information.
For example, in Fig. 2 all possible request events are defined
at the initial state. When an answer event has occurred, it
always returns the star interface to the initial state, and thus the
same choice of potential request events. With a command-pair
interface we can have a DES structure as illustrated in Fig. 3.
Request events and might represent the regular behavior
of the system, while and represent breakdown and repair
of the system. A command-pair interface allows the flexibility
of only having the repair event eligible after a breakdown.

For the remainder of this work, when we refer to an interface
we will mean explicitly a command-pair interface, and we will
use the two synonymously. We define a command-pair interface
as follows.

Definition 3: A DES is a
command-pair interface if the following conditions are satis-
fied:

A) ;
B) .

Fig. 4. Two-tiered structure of system.

Note ’s event set is restricted to request and answer events
and that the two sets must be disjoint. Taken together, points
A) and B) imply that request event transitions are only defined
at marker states and that there are no answer events defined
at marker states. Point A) says that in the language of , a
request event always occurs first and then request and answer
events alternate. Finally, point B) implies that the marked lan-
guage of consists of the empty string, and strings that end
in an answer event. We observe that star interfaces are a special
case of command-pair interfaces.

B. Terminology and Notation

We now present some terminology and notation that will be
useful in simplifying proofs. For our setting, we assume the
high-level subsystem is modeled by DES (defined over
event set), the low-level subsystem by DES
(defined over event set), and the interface by DES

. Also, the term high-level will mean the DES , and
the term low-level the DES . The overall structure of
the system is displayed in Fig. 4.

We next assume that the alphabet partition is specified by
and define the flat system as below.

By flat system, we refer to the equivalent DES that would rep-
resent our system if we ignored the interface structure

To simplify the notation in proofs, we introduce the following
event sets, natural projections, and useful languages:

Whereas the representation of the system as given in Fig. 4
(called the serial subsystem based form) is useful for verifying
nonblocking as it simplifies the notation, it ignores the distinc-
tion between plants and supervisors. For controllability, we need
to split the subsystems into their plant and supervisor compo-
nents. We will do so as shown in Fig. 5.

We next define the high-level plant to be , and the high-
level supervisor to be (both defined over event set).
Similarly, the low-level plant and supervisor are and

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART I: SERIAL CASE 1327

Fig. 5. Plant and supervisior subplant decomposition.

(defined over event set). To be consistent with the serial
subsystem-based form, we define the following identities for
the high and low-level subsystems as below. We will refer to
this new representation as the serial system general form as the
original representation can be recovered from applying these
identities

We now define our flat supervisor and plant as well as some
useful languages as follows:

IV. SERIAL INTERFACE CONSISTENCY, NONBLOCKING, AND

CONTROLLABLE

In this section, we present the interface properties that our
system must satisfy to ensure that it interacts with the interface
correctly, as well as the nonblocking and controllability require-
ments each level must satisfy. Together they provide a set of
local conditions that can be evaluated using at most one level of
our hierarchy at a time. We then present several useful proposi-
tions for nonblocking, followed by our main nonblocking result.
This is followed by controllability propositions and our main
controllability result.

A. Definitions

Our first definition is the serial level-wise nonblocking defi-
nition. It requires that each level be individually nonblocking.

Definition 4: The system composed of DES , and
, is said to be serial level-wise nonblocking with respect to

the alphabet partition , if the following
conditions are satisfied:

I) ;
II) .

The next definition states that the system is serial level-wise
controllable if, for the given distributed supervisor, the high-
level supervisor is controllable for the high-level plant combined
with the interface (by III) and that the low-level supervisor syn-
chronized with the interface is controllable for the low-level
plant (by II). At first glance, it may appear that the language
is unnecessary in III and could be removed, but doing so would
be too restrictive. This can be seen from the example in Sec-
tion V where not only is the high-level supervisor by itself un-
controllable for the high-level plant, the supremal controllable
sublanguage would be the empty set.

Definition 5: The system composed of plant components
, supervisors , and interface , is said to

be serial level-wise controllable with respect to the alphabet
partition , if the following conditions
are satisfied.

I) The alphabet of and is , the alphabet of
and is , and the alphabet of is .

II) .
III) .

Finally, we present the serial interface consistency definition.
It defines the interface properties that our system must satisfy to
ensure that it interacts with the interface correctly. It limits the
information each level can have about the other, and what as-
sumptions they can make about each other. We will then briefly
discuss each property.

Definition 6: The system composed of DES , and
, is serial interface consistent with respect to the alphabet

partition , if the following properties
are satisfied.

Multilevel Properties
1) The event set of is , and the event set of

is .
2) is a command-pair interface.
High-Level Properties
3) .
Low-Level Properties
4) .
5)

where .
6) .

Prop 1) This property asserts that the high and low-levels
can only share request and answer events. This
is an information hiding statement. It restricts the
high-level subsystem from knowing (and directly
affecting) internal details about the low-level sub-
system (i.e., to be able to view/disable low-level
events) and vice versa.

Prop 2) This property states that DES satisfies the defi-
nition of a command-pair interface.

Prop 3) This property asserts that the high-level subsystem
must always accept an answer event if the

event is eligible in the interface. In other words, the
high-level subsystem is forbidden to assume more

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

1328 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

about when an answer event can occur than what is
provided by the interface.

Prop 4) This property asserts that the low-level subsystem
must always accept a request event if the

event is eligible in the interface. In other words, the
low-level subsystem is forbidden to assume more
about when a request event can occur than what is
provided by the interface.

Prop 5) This property asserts that immediately after a re-
quest event (some) has occurred (and be-
fore it is followed by any low-level events), there
exist one or more paths via strings in to each an-
swer event (i.e., all , assuming that
we are dealing with a star interface) that says
can follow the request event. However, as soon as
a single low-level event has occurred, one or more
answer events may no longer be reachable.

Prop 6) This property asserts that every string marked by the
interface and accepted by the low-level subsystem,
can be extended by a low-level string to a string
marked by the low-level (both and).

B. Nonblocking Propositions and Theorem

We will now present Propositions 1)–5), followed by our
main nonblocking result. The following propositions perform
two tasks: they break down the main theorem into a more man-
ageable size, as well as provide useful results that can be reused
in future work.

Our first proposition is the low-level nonblocking proposition.
It asserts that the low-level is not dependent on high-level events
to reach a marker state.

Proposition 1: If the system composed of DES ,
and is serial level-wise nonblocking and serial in-
terface consistent with respect to the alphabet partition

, then

Proof: See the proof in [7].
Our next proposition is the low-level linkage proposition. It

asserts that if the high-level can be driven to a marker state, the
low-level can be brought to a marker state by a string containing
events that are ignored by the high-level.

Proposition 2: If the system composed of DES ,
and is serial level-wise nonblocking and serial in-
terface consistent with respect to the alphabet partition

, then

Proof: See the proof in [7].
We group the next three “construction” propositions together,

as each builds upon the previous one. Our first proposition is
the one-step construction proposition. It asserts that we can use
string as a basis to construct string by adding low-level
events so that the low-level subsystem will accept the request
and answer event contained in . As these events are common
to both levels, they must agree on their occurrence.

Proposition 3: If the system composed of DES ,
and is serial level-wise nonblocking and serial in-
terface consistent with respect to the alphabet partition

, then

Proof: See the proof in [7].
Our next proposition is the inductive construction proposi-

tion. This proposition is different from Proposition 3) as that
proposition only handled the case that the string contains ex-
actly one answer event (i.e., only one command-pair), while this
proposition allows to contain one or more answer events (i.e.,
multiple command-pairs).

Proposition 4: If the system composed of DES
, and is serial level-wise nonblocking and serial

interface consistent with respect to the alphabet partition
, then

Proof: See the Appendix.
The last proposition of the three is the general construction

proposition. This proposition is more general than Proposition
4) as it handles the case that string does not contain answer
events or does not end in an answer event. It makes use of
Proposition 4) to handle the other cases.

Proposition 5: If the system composed of DES ,
and is serial level-wise nonblocking and serial in-
terface consistent with respect to the alphabet partition

, then

Proof: See the Appendix.
We now present our main result for this section. In essence,

the theorem says that if the high-level and low-level are indi-
vidually nonblocking, and the system is serial interface consis-
tent, then the nonblocking property will be preserved by the syn-
chronous product operation.

Theorem 1: If the system composed of DES , and
isserial level-wisenonblockingandserial interfaceconsistent

with respect to the alphabet partition ,
then

Proof: Assume system is serial level-wise nonblocking
and serial interface consistent. (1)

As is automatic, it suffices to show
.

Let (2)
We will now show this implies

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART I: SERIAL CASE 1329

It is sufficient to show

As [by (1)] and by Proposition 1 we can
conclude:

As [by (3)], we can apply Point I of the level-wise
nonblocking definition, and conclude

(4)

We next note that: (5)

As , (4) and (5) implies that:
and thus . (6)

As , we can use (5) to conclude

Noting that , we can use the same logic
as (6) and conclude that: .

Combining with (6), we have:
Thus, take and we have

and (7)

Since [by (3)] and by Proposition 5 (take
to be string in proposition) we can conclude

We then take and we have
, as required.

C. Controllability Propositions and Theorem

We will now present two supporting propositions, followed
by our main controllability result. Our first proposition asserts
that if the system is serial level-wise controllable, then and

are together controllable for the system’s flat plant.
Proposition 6: If the system composed of plant components

, supervisors , and interface , is serial level-
wise controllable with respect to the alphabet partition

, then

Proof: See proof in [7].
The last proposition asserts that if the system is serial level-

wise controllable, then is controllable for our flat plant when
it is already under the control of the interface.

Proposition 7: If the system composed of plant components
, supervisors , and interface , is serial level-

wise controllable with respect to the alphabet partition
, then

Proof: See the proof in [7].
We now present our main result for this section. In essence,

it asserts that if the system is serial level-wise controllable, then
controllability can be checked for each level separately in order
to determine that the system’s flat supervisor is controllable for
the system’s flat plant.

Theorem 2: If the system composed of plant components
, supervisors , and interface , is serial level-

wise controllable with respect to the alphabet partition
, then

Proof: Assume the system is serial level-wise
controllable. (1)

Let and
. (2)

From (2), we have
(3)

We also have (4)
It suffices to show that .
From (3), we have .
By Proposition 6), we can conclude: (5)
Using (4) and (5), we have .

.
As [by (3)], Proposition 7) implies:

.
Combining with (5), we have , as required.

TheHISCapproachachieves its computationaladvantage over
the standard monolithic approach by transforming the problem
from verifying properties for a single large system (nonblocking
and controllability), to a series of local verifications (using the
structure of the system) on two smaller systems that together rep-
resent the original system. If these conditions fail, we modify the
two systems until the local conditions are satisfied. In essence,
we test that the two smaller systems are nonblocking and con-
trollable and then we provide conditions that guarantee that these
properties are closed under the synchronous product.

The advantage of this can be seen immediately when we con-
sider the case that each of the two subsystems has on the order
of states, the limit with our personal current computing re-
sources of monolithic automata based algorithms.2 This means
that we can now handle a system on the order of states with
the same computing resources.

2By automata-based algorithms, we mean algorithms that extensionally repre-
sent the states and transitions of the DES, as opposed to using symbolic methods
as in [50] and [51].

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

1330 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

Fig. 6. Block diagram of plant.

Of course, this increased scalability comes with a price:
A more restrictive architecture and, thus, the possible loss of
global maximal permissiveness. We feel the tradeoff is worth-
while due to the increase in scalability and the other benefits of
our approach. In particular, restricting the flow of information
and localizing behavior into components has great benefits
in terms of maintainability and reusability. This means that
changes to one component won’t affect the others, and that once
the interface is defined each component can be designed and
verified separately. For instance, a low-level can be designed
and verified once and be used with any high-level that satisfies
the interface conditions. This would allow vendors to create
preverified libraries. As similar information-hiding approaches
are standard practice in hardware and software design, we are
confident that our approach will prove to be valuable.

In [6], we generalize the HISC setting to the parallel case.
In the parallel case, we allow low-levels. We will defer
a formal complexity analysis on the HISC method until [6], as
the serial case is the special case of .

V. SIMPLE MANUFACTURING EXAMPLE

We now present a simple manufacturing example to illustrate
the method for the serial case. The example presented was in-
spired in part by the examples given in [35] and [57]. A larger
example making use of the parallel extension of the theory will
be presented in [6].

In the following sections, we will describe our problem set-
ting, and then present the original plant components. We will
then assign them to a particular level of our hierarchy, aug-
menting if necessary the low-level plant models so that they
work better with an interface. We will then define the interface,
supervisors, and finally present the complete system. We will
conclude by demonstrating that the flat system is nonblocking
and that the flat supervisor is controllable for the flat plant.

A. Description of Manufacturing Unit

As shown in Fig. 6, the manufacturing unit is composed of
three cells connected by a conveyor belt. In front of each cell, is
a part acquisition unit that automatically stops a part and holds it
until it is given a release command. Parts enter the system at the
far left and exit at the far right. After the item exits the conveyor
system, it goes to a packaging machine.

The associated plant models can be seen in Fig. 7, namely At-
tach Case to Assembly, Polish Part, Attach Part to Assembly,
Packaging System, and Path Flow Model. Table I defines ab-
breviations used for the event labels in the figures. For example,
event str ptA, which occurs in Cell 2 of Fig. 6 and the Attach
Part to Assembly subplant in Fig. 7, corresponds to the cell
starting work on a type A part.

B. Defining Infrastructure

The first step in the process is to decide which plant models be-
long to the high-level subsystem, and which to the low-level sub-
system.ThedivisionwehavechosencanbeseeninFig.7.Wehave
added plant model Define New Events which introduces events
attch ptA,attch ptB,finA attch, andfinB attch.Theseeventspro-
vide a more versatile means to interact with cell 2.

We define our interface to be the DES shown in Fig. 7.
We define the alphabet partition as
follows:

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART I: SERIAL CASE 1331

Fig. 7. Complete system definition.

C. Designing Supervisors

Now, that we have defined our interface, we design the
low-level supervisors that will provide the functionality for the
request events, and give meaning to the answer events. The
idea is for the low-level to offer well-defined “services” to the
high-level.

For cell one, we want the sequence dip acid-polish to be re-
peated twice, after a start pol event occurs. The supervisor is
shown in Fig. 7, and is labeled Polishing Sequence. For cell
two, we have to provide supervisors so that the cell reacts ap-
propriately when events attch ptA and attch ptB occur. We also
must guarantee that answer events finA attch and finB attch only
occur when they have the appropriate meaning. The DES Affix
Part in Fig. 7 shows how this is done.

We now design high-level supervisors that use the interface.
Fig. 7 shows a supervisor (Sequence Tasks) that allows a part
to visit each cell, executes the appropriate command for the cell
and the part type, and then allows the part to leave the conveyor
system. The figure also shows a supervisor (Exit Buffer) that
implements a two item buffer for the packaging system.

In this paper, all supervisors are designed for their level as
modular supervisors. The supervisors are designed by hand to
meet the given specifications, and then verified that they are lo-
cally controllable and that they do not cause the local plant to
block (i.e., they satisfy their portion of the serial level-wise non-
blocking and serial level-wise controllable definitions). If they
are not, they are modified until they are controllable and non-
blocking. If a subsystem fails to satisfy its share of the interface
properties, then it is modified until it does satisfy them.

D. Final System

We are now ready to define our system components. Fig. 7
shows our high-level subsystem, plant, and supervisor, DES

, and . We also have our low-level subsystem, plant,
and supervisor, DES , and . They are defined to be
the synchronous product of the indicated automata.

Examining our system, we found it to be serial interface con-
sistent, serial level-wise nonblocking, and serial level-wise con-
trollable. We can thus conclude by Theorem 1 that the flat

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

1332 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

system is nonblocking, and by Theorem 2 that the flat super-
visor is controllable for the flat plant.

VI. CONCLUSION

In this paper, we have presented a method for DES design
and verification that implements many of the concepts of infor-
mation hiding, thus providing benefits such as independent de-
velopment, high degree of changeability and comprehensibility,
and an excellent means to manage complexity by hiding unnec-
essary detail behind interfaces.

Hierarchical interface-based supervisory control offers an ef-
fective method to model systems with a natural client-server ar-
chitecture. The method offers an intuitive way to model and de-
sign the system. As each requirement can be verified using only
one of the two subsystems, the entire plant model never needs
to be constructed or traversed (in computer memory), offering
potentially significant savings in computation.

It is clear from the definitions in Section IV, that once we have
defined our interface and event partition, evaluating our high and
low-level subsystems for compliance can be done independently
of each other. This means we can evaluate one high (low) level
subsystem and use it with any low (high) level subsystem that
satisfies the low (high) level portion of our definitions for the
given interface and event partition. This provides us with the
infrastructure required for component reuse.

APPENDIX

PROOFS OF SELECTED PROPOSITIONS

Proposition 4:
Proof: Assume system is serial level-wise nonblocking

and serial interface consistent. (1)
Let , and (2)
Let be the number of answer events in string . This implies

(3)

From (2), we have: (4)
Using an inductive proof, we will now show

Claim to be Proven: For , there exists
such that the following are true: (5)

a) ;
b) .
We will first prove the initial case , and then the gen-

eral case of . We can then conclude by induction
that the claim has been proven.

Initial Case:
We take and we have .
We have as and

by (2). Initial case complete.
Inductive Step: Let . Assume

and that they satisfy (5) for
.

We note: , by (4).

We now note

by (6)

(8)

As , (7) and (8) imply that
and, thus

(9)

Since , we can conclude by (8) that
. As

, (7) implies that
and with (9)

(10)

We note that

by (6) (11)

By (10), we have . (12)
We note [by (3)] implies that

We have by (11)
and point B) of the command-pair interface definition. (13)

Point A) of the command-pair interface definition implies
that only a request event can follow . (14)

From (12), we have:

by (3) and (14).
By point A) of the command-pair interface definition, we

have:
by (3).

By Proposition 3) (take to be string , and
to be string), we conclude

by (6)

We now take and the inductive step is complete.
We have now proven the initial case and the inductive step.

We now conclude that the claim is true, by induction.
Thus, we take and we have

, and , as required.
Proposition 5:

Proof: Assume system is serial level-wise nonblocking
and serial interface consistent. (1)

Let , and (2)
We have two cases to examine: I) and II) .

Case I)
Since , we have .

As [from (2)] implies
that and thus by (2):

.
By Proposition 2), we have:

We take and Case I) is complete.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART I: SERIAL CASE 1333

TABLE I
ABBREVIATIONS USED IN EVENT LABELS

Case II)
This implies . (3)
From (2), we have and thus:

.
by Point B of

the command-pair interface definition. (4)
Point A of the definition implies that only a re-

quest event can follow . (5)
From (2), we have and thus:

As [by (3)], we can conclude by (5) that:
(6)

By Point B of the command-pair interface definition we have:

by (6) (7)

as (8)

(9)

We can now conclude as , by (2).
By Proposition 4) (take to be string), we can conclude

(10)

By (8) and (9), we have: . (11)
Since [by (9)], we have .

As [from (10)] implies that
and, thus

(12)

From (2) and (9), we have: (13)
Since [by (10)], we have:

.
As , (13) implies that

and, thus: (14)
As , we have: . As

, (13) implies that and
thus:

Combining with (12) and (14), we can conclude

By Proposition 2), (take to be string), we can con-
clude: (15)

We thus take and we have and
, and by (9), (11), and

(15). Case II) is complete.
By Cases I) and II), we now have constructed a string with

the required properties.

REFERENCES

[1] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, pp. 1053–1058, Dec. 1972.

[2] D. L. Parnas, P. C. Clements, and D. M. Weiss, “The modular structure
of complex systems,” IEEE Trans. Software Eng., vol. SE-11, no. 3, pp.
259–266, Mar. 1985.

[3] R. Leduc, B. Brandin, and W. M. Wonham, “Hierarchical interface-
based nonblocking verification,” in Proc. Canadian Conf. Electrical and
Computer Engineering, May 2000, pp. 1–6.

[4] E. W. Endsley, M. R. Lucas, and D. M. Tilbury. (2005) Modular design
and verification of logic control for reconfigurable machining systems.
[Online]http://www-personal.engin.umich.edu/~tilbury/papers.html

[5] R. Leduc, B. Brandin, W. M. Wonham, and M. Lawford, “Hierarchical
interface-based supervisory control: Serial case,” in Proc. 40th Conf. De-
cision and Control, Orlando, FL, Dec. 2001, pp. 4116–4121.

[6] R. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-
based supervisory control, Part II: Parallel case,” IEEE Trans. Autom.
Control, vol. 50, no. 9, pp. 1336–1348, Sep. 2005.

[7] R. Leduc, “Hierarchical interface-based supervisory control,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON,
Canada, 2002.

[8] L. de Alfaro and T. A. Henzinger, “Interface automata,” in Proc. 9th
Annu. Symp. Foundations of Software Engineering, 2001, pp. 109–120.

[9] M. Fabian, “On object-oriented non-deterministic supervisory control,”
Ph.D. dissertation, Chalmers Univ. Tech., Goteborg, Sweden, 1995.

[10] M. Fabian and B. Lennartson, “Petri nets and control synthesis: An ob-
ject oriented approach,” in Proc. I.M.S., Vienna, Austria, Jun. 1994, pp.
365–370.

[11] M. Shayman and R. Kumar, “Process objects/masked composition: An
object-oriented approach for modeling and control of discrete-event sys-
tems,” IEEE Trans. Autom. Control, vol. 44, no. 10, pp. 1864–1869, Oct.
1999.

[12] W. M. Wonham. (2004, Jul.) Supervisory control of discrete-event sys-
tems. Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON, Canada.
[Online]. Available: http://www.control.toronto.edu/DES/

[13] M. Courvoisier, M. Combacau, and A. de Bonneval, “Control and mon-
itoring of large discrete event systems: A generic approach,” in Proc.
ISIE 93, Budapest, Hungary, 1993, pp. 571–576.

[14] M. Queiroz and J. Cury, “Modular supervisory control of large scale
discrete event systems,” in Proc. WODES 2000, Ghent, Belgium, Aug.
2000, pp. 103–110.

[15] G. Stremersch and R. Boel, “Decomposition of the supervisory control
problem for Petri nets under preservation of maximal permissiveness,”
IEEE Trans. Autom. Control, vol. 46, no. 9, pp. 1490–1496, Sep. 2001.

[16] N. Alsop, “Formal techniques for the procedural control of industrial
processes,” Ph.D. dissertation, Dept. Chem. Eng. Chem. Technol., Impe-
rial College of Science, Technology, and Medicine, London, U.K., 1996.

[17] R. Leduc, “PLC implementation of a DES supervisor for a manufac-
turing testbed: An implementation perspective,” M.A.Sc. thesis, Dept.
Elect. Comput. Eng., Univ. Toronto, Toronto, ON, Canada, 1996.

[18] G. Barrett and S. Lafortune, “Decentralized supervisory control with
communicating controllers,” IEEE Trans. Autom. Control, vol. 45, no.
9, pp. 1620–1638, Sep. 2000.

[19] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observations,” in Proc. 27th IEEE
Conf. Decision Control, Dec. 1988, pp. 1125–1130.

[20] K. Rudie and J. C. Willems, “The computational complexity of decen-
tralized discrete-event control problems,” IEEE Trans. Autom. Control,
vol. 440, no. 7, pp. 1313–1319, Jul. 1995.

[21] K. Rudie and W. M. Wonham, “Think globally, act locally: Decentral-
ized supervisory control,” IEEE Trans. Autom. Control, vol. 37, no. 11,
pp. 1692–1708, Nov. 1992.

[22] K. Wong and J. van Schuppen, “Decentralized supervisory control of
discrete event systems with communication,” in Proc. WODES 1996,
Edinburgh, U.K., Aug. 1996, pp. 284–289.

[23] T. Yoo and S. Lafortune, “A general architecture for decentralized super-
visory control of discrete-event systems,” in Proc. WODES 2000, Ghent,
Belgium, Aug. 2000, pp. 111–118.

[24] Y. Willner and M. Heymann, “Supervisory control of concurrent dis-
crete-event systems,” Int. J. Control, vol. 54, no. 5, pp. 1143–1169, 1991.

[25] S. Abdelwahed, “Interacting discrete event systems: Modeling, verifi-
cation, and supervisory control,” Ph.D. dissertation, Dept. of Elec. and
Comp. Eng., Univ. Toronto, Toronto, ON, Canada, 2002.

[26] K. Åkesson, H. Flordal, and M. Fabian, “Exploiting modularity for syn-
thesis and verification of supervisors,” in Proc. IFAC World Congr. Au-
tomatic Control, Barcelona, Spain, 2002.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

1334 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

[27] S. Chen, “Control of discrete-event systems of vector and mixed struc-
tural type,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 1996.

[28] Y. Li, “Control of vector discrete-event systems,” Ph.D. dissertation,
Dept. Elect. Eng., Univ. Toronto, Toronto, ON, Canada, 1991.

[29] J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event
Systems Using Petri Nets. Norwell, MA: Kluwer, 1998.

[30] M. Zhou, D. Wang, and I. Mayk, “Using Petri nets for object-oriented
design of command and control systems,” Int. J. Intell. Control Syst.,
vol. 2, no. 2, pp. 287–300, 1998.

[31] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control
of Manufacturing Systems. Norwell, MA: Kluwer, 1993.

[32] M. Uzam, “An optimal deadlock prevention policy for flexible manu-
facturing systems using Petri net models with resources and the theory
of regions,” Int. J. Adv. Manuf. Technol., vol. 19, pp. 192–208, 2002.

[33] Y. Brave and M. Heymann, “Control of discrete event systems modeled
as hierarchical state machines,” IEEE Trans. Autom. Control, vol. 38, no.
12, pp. 1803–1819, Dec. 1993.

[34] P. Gohari-Moghadam, “A linguistic framework for controlled hierar-
chical DES,” M.A.Sc. thesis , Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 1998.

[35] B. Wang, “Top-down design for RW supervisory control theory,”
M.A.Sc. thesis, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto,
ON, Canada, 1995.

[36] C. Ma and W. M. Wonham, “Control of state tree structures,” in Proc.
11th Mediterranean Conf. Control and Automation, Jun. 2003. paper
T4-005.

[37] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[38] A. Aziz, V. Singhal, and G. Swamy, “Minimizing interacting finite state
machines: A compositional approach to language containment,” in Proc.
IEEE Int. Conf. Computer Design: VLSI in Computers and Processors,
Cambridge, MA, Oct. 1994, pp. 255–261.

[39] P. Caines and Y. Wei, “The hierarchical lattices of a finite machine,” Syst.
Control Lett., vol. 25, pp. 257–263, Jul. 1995.

[40] H. Chen and H.-M. Hanisch, “Model aggregation for hierarchical con-
trol synthesis of discrete event systems,” in Proc. 39th Conf. Decision
Control, Sydney, NSW, Australia, Dec. 2000, pp. 418–423.

[41] Y.-L. Chen and F. Lin, “Hierarchical modeling and abstraction of dis-
crete event systems using finite state machines with parameters,” in Proc.
40th Conf. Decision Control, Orlando, FL, Dec. 2001, pp. 4110–4115.

[42] J. M. Eyzell and J. E. Cury, “Exploiting symmetry in the synthesis of
supervisors for discrete event systems,” in Proc. Amer. Control Conf.,
Philadelphia, PA, Jun. 1998, pp. 244–248.

[43] K. Q. Pu, “Modeling and control of discrete-event systems with hier-
archical abstraction,” MA.Sc. thesis, Dept. Elect. Comput. Eng., Univ.
Toronto, Toronto, ON, Canada, 2000.

[44] R. G. Qiu and S. B. Joshi, “A structured adaptive supervisory control
methodology for modeling the control of a discrete event manufacturing
system,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 29, no.
6, pp. 573–586, Dec. 1999.

[45] G. Shen and P. E. Caines, “Hierarchically accelerated dynamic program-
ming for finite-state machines,” IEEE Trans. Autom. Control, vol. 47, no.
2, pp. 271–283, Feb. 2002.

[46] H. Zhong and W. M. Wonham, “On the consistency of hierarchical su-
pervision in discrete-event systems,” IEEE Trans. Autom. Control, vol.
35, no. 10, pp. 1125–1134, Oct. 1990.

[47] K. Wong, “Discrete-event control architecture: An algebraic approach,”
Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto,
ON, Canada, 1994.

[48] T. Moor, J. Raisch, and J. Davoren, “Admissibility criteria for a hier-
archical design of hybrid control systems,” in Proc. IFAC Conf. Anal-
ysis and Design of Hybrid Systems, Saint-Malo, France, June 2003, pp.
389–394.

[49] J. Gunnarsson, “Symbolic methods and tools for discrete event dy-
namic systems,” Ph.D. dissertation, Dept. Elect. Eng., Linköping Univ.,
Linköping, Sweden, 1997.

[50] Z. Zhang, “Smart TCT: An efficient algorithm for supervisory control
design,” M.A.Sc. thesis, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 2001.

[51] Z. Zhang and W. M. Wonham, “STCT: An efficient algorithm for super-
visory control design,” in Proc. SCODES 2001. Paris, France, Jul. 2001,
pp. 82–93.

[52] J. Burch, E. M. Clarke, and K. McMillan, “Symbolic model checking:
10 states and beyond,” Inform. Comput., vol. 98, pp. 142–170, 1992.

[53] K. McMillan, Symbolic Model Checking. Norwell, MA: Kluwer, 1992.

[54] S. Berezin, S. Campos, and E. M. Clarke, “Compositional reasoning in
model checking,” in COMPOS’97, ser. LNCS. New York: Springer-
Verlag, 1998, vol. 1536, pp. 81–102.

[55] P. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete-event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp.
206–230, 1987.

[56] W. M. Wonham and P. Ramadge, “On the supremal controllable sublan-
guage of a given language,” SIAM J. Control Optim., vol. 25, no. 3, pp.
637–659, 1987.

[57] B. Brandin and F. Charbonnier, “The supervisory control of the auto-
mated manufacturing system of the AIP,” in Proc. Rensselaer’s 1994 4th
Int. Conf. Computer Integrated Manufacturing and Automation Tech-
nology, Troy, NY, Oct. 1994, pp. 319–324.

Ryan Leduc (M’02) received the B.Eng. degree
in electrical engineering from the University of
Victoria, Victoria, BC, Canada, in 1993, and the
M.A.Sc. and Ph.D. degrees in electrical engineering
from the University of Toronto, Toronto, ON,
Canada, in 1996 and 2002, respectively.

In 1997 and 1998, he was a Guest Scientist at
Siemens Corporate Technology, Munich, Germany.
In 2001, he joined McMaster University, Hamilton,
ON, Canada, where he is currently an Assistant
Professor of Software Engineering. His research in-

terests include supervisory control of discrete-event systems (DES) hierarchical
structure, concurrency and implementation issues, and DES as software and
hardware. He is also interested in hierarchical approaches to formal verification
of software and hardware.

Dr. Leduc is the Chair of the IEEE Control Systems Society Technical Com-
mittee on Discrete-Event Systems.

Bertil A. Brandin (M’95) received the B.S. degree in mechanical engineering
from the University of New South Wales, Australia, in 1984, and the M.A.Sc.
and Ph.D. degrees in electrical engineering from the University of Toronto,
Toronto, ON, Canada, in 1989 and 1993, respectively.

From 1993 to 1995, he was Project Leader in a collaborative project on the
supervisory control of automated manufacturing systems between the Province
of Ontario, Canada, and Région Rhône-Alpes, France. In 1994, he was an In-
vited Scientist at the Rockwell Science Center, Thousand Oaks, CA. From 1995
to 2003, he managed R&D on formal verification techniques for software and
business process applications at Siemens Corporate Technology, Munich, Ger-
many. He is currently General Manager of Siemens Medical Solutions Health
Services, Italy. His research interests include discrete-event systems, supervi-
sory control, formal verification techniques, model-based testing, and diagnos-
tics.

Mark Lawford (S’88–M’97) received the B.Sc. de-
gree in engineering mathematics from Queen’s Uni-
versity, Kingston, ON, Canada, in 1989 (receiving
the University Medal in engineering mathematics),
and the M.A.Sc. and Ph.D. degrees in electrical en-
gineering at the University of Toronto, Toronto, ON,
Canada, in 1992 and 1997, respectively.

From 1997 to 1998, he was with Ontario Hydro as
a consultant on the Darlington Nuclear Generating
Station Shutdown Systems Redesign project, where
he was a co-recipient of an Ontario Hydro New

Technology Award. Currently, he is an Associate Professor in the Department
of Computing and Software at McMaster University, Hamilton, ON, Canada,
where he has helped develop the Software Engineering programs. His research
interests include discrete-event systems, formal methods for real-time systems,
and computer aided inspection of safety critical software. He is a licensed
Professional Engineer in the province of Ontario.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART I: SERIAL CASE 1335

W. M. Wonham (M’64–SM’76–F’77) received the
B.Eng. degree in engineering physics from McGill
University, Montreal, QC, Canada, in 1956, and the
Ph.D. degree in control engineering from the Univer-
sity of Cambridge, Cambridge, U.K., in 1961.

From 1961 to 1969, he was associated with several
U.S. research groups in control. Since 1970, he has
been a Faculty Member in Systems Control with the
Department of Electrical and Computer Engineering
of the University of Toronto, Toronto, ON, Canada.
In addition, he has held visiting lectureships at Wash-

ington University, St. Louis, MO, the Massachusetts Institute of Technology,
Cambridge, the Institute of System Science of the Academia Sinica, Beijing,
China, and other institutions. His research interests have included stochastic
control and filtering, geometric multivariable control, and discrete-event sys-
tems. He is the author of Linear Multivariable Control: A Geometric Approach
(New York: Springer-Verlag, 1985) and the coauthor (with C. Ma) of Hierar-
chical Control of State Tree Structures (New York: Springer-Verlag, 2005).

Dr. Wonham is a Fellow of the Royal Society of Canada, and (2005) a Foreign
Associate of the (U.S.) National Academy of Engineering. In 1987, he received
the IEEE Control Systems Science and Engineering Award, and, in 1990, was
a Brouwer Medallist of the Netherlands Mathematical Society. In 1996, he was
appointed University Professor in the University of Toronto, and in 2000, Uni-
versity Professor Emeritus.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

	toc
	Hierarchical Interface-Based Supervisory Control Part I: Serial
	Ryan J. Leduc, Member, IEEE, Bertil A. Brandin, Member, IEEE, Ma
	I. I NTRODUCTION
	A. Literature Review

	II. DES P RELIMINARIES
	Definition 1: A DES ${\bf G}$ is said to be nonblocking if the f
	Definition 2: A supervisor ${\bf S}$ is controllable for a plant

	Fig.€1. Interface block diagram.
	III. S ERIAL C ASE S ETTING
	A. Interface Definitions

	Fig.€2. Star interface.
	Fig.€3. Example command-pair interface.
	Definition 3: A DES ${\bf G}_I = (X, \Sigma_R \mathdot{\cup} \Si

	Fig.€4. Two-tiered structure of system.
	B. Terminology and Notation

	Fig.€5. Plant and supervisior subplant decomposition.
	IV. S ERIAL I NTERFACE C ONSISTENCY, N ONBLOCKING, AND C ONTROLL
	A. Definitions
	Definition 4: The system composed of DES ${\bf G}_H, {\bf G}_L$,
	Definition 5: The system composed of plant components ${\bf G}^p
	Definition 6: The system composed of DES ${\bf G}_H, {\bf G}_L$,

	B. Nonblocking Propositions and Theorem
	Proposition 1: If the system composed of DES ${\bf G}_H, {\bf G}
	Proof: See the proof in [7] . \blackboxfill

	Proposition 2: If the system composed of DES ${\bf G}_H, {\bf G}
	Proof: See the proof in [7] . \blackboxfill

	Proposition 3: If the system composed of DES ${\bf G}_H, {\bf G}
	Proof: See the proof in [7] . \blackboxfill

	Proposition 4: If the system composed of DES ${\bf G}_H,$ ${\bf
	Proof: See the Appendix . \blackboxfill

	Proposition 5: If the system composed of DES ${\bf G}_H, {\bf G}
	Proof: See the Appendix . \blackboxfill

	Theorem 1: If the system composed of DES ${\bf G}_H, {\bf G}_L$,
	Proof: Assume system is serial level-wise nonblocking and serial

	C. Controllability Propositions and Theorem
	Proposition 6: If the system composed of plant components ${\bf
	Proof: See proof in [7] . \blackboxfill

	Proposition 7: If the system composed of plant components ${\bf
	Proof: See the proof in [7] . \blackboxfill

	Theorem 2: If the system composed of plant components ${\bf G}^p
	Proof: Assume the system is serial level-wise controllable. $\hf

	Fig.€6. Block diagram of plant.
	V. S IMPLE M ANUFACTURING E XAMPLE
	A. Description of Manufacturing Unit
	B. Defining Infrastructure

	Fig.€7. Complete system definition.
	C. Designing Supervisors
	D. Final System
	VI. C ONCLUSION
	P ROOFS OF S ELECTED P ROPOSITIONS
	Proposition 4:
	Proof: Assume system is serial level-wise nonblocking and serial

	Claim to be Proven: For $k \in \{0, 1, \ldots, n \}$, there exis
	Initial Case: $k = 0$
	Inductive Step: Let $k \in \{ 1, \ldots, n \}$. Assume $\exists
	Proposition 5:
	Proof: Assume system is serial level-wise nonblocking and serial

	TABLE I A BBREVIATIONS U SED IN E VENT L ABELS
	D. L. Parnas, On the criteria to be used in decomposing systems
	D. L. Parnas, P. C. Clements, and D. M. Weiss, The modular struc
	R. Leduc, B. Brandin, and W. M. Wonham, Hierarchical interface-b
	E. W. Endsley, M. R. Lucas, and D. M. Tilbury . (2005) Modular d
	R. Leduc, B. Brandin, W. M. Wonham, and M. Lawford, Hierarchical
	R. Leduc, M. Lawford, and W. M. Wonham, Hierarchical interface-b
	R. Leduc, Hierarchical interface-based supervisory control, Ph.D
	L. de Alfaro and T. A. Henzinger, Interface automata, in Proc. 9
	M. Fabian, On object-oriented non-deterministic supervisory cont
	M. Fabian and B. Lennartson, Petri nets and control synthesis: A
	M. Shayman and R. Kumar, Process objects/masked composition: An
	W. M. Wonham . (2004, Jul.) Supervisory control of discrete-even
	M. Courvoisier, M. Combacau, and A. de Bonneval, Control and mon
	M. Queiroz and J. Cury, Modular supervisory control of large sca
	G. Stremersch and R. Boel, Decomposition of the supervisory cont
	N. Alsop, Formal techniques for the procedural control of indust
	R. Leduc, PLC implementation of a DES supervisor for a manufactu
	G. Barrett and S. Lafortune, Decentralized supervisory control w
	F. Lin and W. M. Wonham, Decentralized control and coordination
	K. Rudie and J. C. Willems, The computational complexity of dece
	K. Rudie and W. M. Wonham, Think globally, act locally: Decentra
	K. Wong and J. van Schuppen, Decentralized supervisory control o
	T. Yoo and S. Lafortune, A general architecture for decentralize
	Y. Willner and M. Heymann, Supervisory control of concurrent dis
	S. Abdelwahed, Interacting discrete event systems: Modeling, ver
	K. Åkesson, H. Flordal, and M. Fabian, Exploiting modularity for
	S. Chen, Control of discrete-event systems of vector and mixed s
	Y. Li, Control of vector discrete-event systems, Ph.D. dissertat
	J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete
	M. Zhou, D. Wang, and I. Mayk, Using Petri nets for object-orien
	M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event
	M. Uzam, An optimal deadlock prevention policy for flexible manu
	Y. Brave and M. Heymann, Control of discrete event systems model
	P. Gohari-Moghadam, A linguistic framework for controlled hierar
	B. Wang, Top-down design for RW supervisory control theory, M.A.
	C. Ma and W. M. Wonham, Control of state tree structures, in Pro
	R. Bryant, Graph-based algorithms for boolean function manipulat
	A. Aziz, V. Singhal, and G. Swamy, Minimizing interacting finite
	P. Caines and Y. Wei, The hierarchical lattices of a finite mach
	H. Chen and H.-M. Hanisch, Model aggregation for hierarchical co
	Y.-L. Chen and F. Lin, Hierarchical modeling and abstraction of
	J. M. Eyzell and J. E. Cury, Exploiting symmetry in the synthesi
	K. Q. Pu, Modeling and control of discrete-event systems with hi
	R. G. Qiu and S. B. Joshi, A structured adaptive supervisory con
	G. Shen and P. E. Caines, Hierarchically accelerated dynamic pro
	H. Zhong and W. M. Wonham, On the consistency of hierarchical su
	K. Wong, Discrete-event control architecture: An algebraic appro
	T. Moor, J. Raisch, and J. Davoren, Admissibility criteria for a
	J. Gunnarsson, Symbolic methods and tools for discrete event dyn
	Z. Zhang, Smart TCT: An efficient algorithm for supervisory cont
	Z. Zhang and W. M. Wonham, STCT: An efficient algorithm for supe
	J. Burch, E. M. Clarke, and K. McMillan, Symbolic model checking
	K. McMillan, Symbolic Model Checking . Norwell, MA: Kluwer, 1992
	S. Berezin, S. Campos, and E. M. Clarke, Compositional reasoning
	P. Ramadge and W. M. Wonham, Supervisory control of a class of d
	W. M. Wonham and P. Ramadge, On the supremal controllable sublan
	B. Brandin and F. Charbonnier, The supervisory control of the au

