
1336 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

Hierarchical Interface-Based Supervisory
Control—Part II: Parallel Case

Ryan J. Leduc, Member, IEEE, Mark Lawford, Member, IEEE, and W. M. Wonham, Life Fellow, IEEE

Abstract—In this paper, we present a hierarchical method that
decomposes a discrete-event system (DES) into a high-level sub-
system which communicates with 1 parallel low-level subsys-
tems, through separate interfaces which restrict the interaction of
the subsystems. It is a generalization of the serial case (= 1)
described in Part I of this paper, where we define an interface and
a set of interface consistency properties that can be used to verify
if a DES is nonblocking and controllable. Each clause of the defi-
nition can be verified using a single subsystem; thus the complete
system model never needs to be stored in memory, offering poten-
tially significant savings in computational resources. We provide
algorithms for verifying these new properties, and briefly discuss
the computational complexity of the method. Finally, we present
an application to a large manufacturing example with an estimated
worst-case closed-loop state–space size of 2 9 1021.

Index Terms—Automata, discrete-event systems (DESs), formal
methods, hierarchical systems, interfaces.

I. INTRODUCTION

I N THIS paper, we present an interface-based hierarchical
method to verify if a system is nonblocking and controllable,

extending the work in [1] and [2].1 In this paper, we restrict
attention to two-level systems where the system is split into a
high-level subsystem interacting with parallel low-level
subsystems via a separate interface DES. The most significant
feature which distinguishes this paper from some current work
along similar lines (e.g., [5]) is the results on nonblocking. A
more detailed literature review, motivation for hierarchical inter-
face-based supervisory control (HISC) and discussion of DES
preliminaries, are given in Part I of this paper [1].

In the serial case of HISC, we propose a master-slave system,
where a high-level subsystem sends a command to a low-level
subsystem, which then performs the indicated task and returns
a reply. Fig. 1 in [1] shows conceptually the structure and infor-
mation flow of the system. We call this the serial case as commu-
nication occurs in a serial fashion between the two subsystems.
In this case , the number of low-level systems, is equal to 1.

Referring to the primary definitions of [1] as needed, we gen-
eralize the set of (local) consistency properties that can be used

Manuscript received August 27, 2003. Recommended by Associate Editor R.
Boel.

R. J. Leduc and M. Lawford are with the Department of Computing and
Software, McMaster University, Hamilton, ON L8S 4K1, Canada (e-mail:
leduc@mcmaster.ca; lawford@mcmaster.ca).

W. M. Wonham is with the Department of Electrical and Computer En-
gineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
wonham@control.utoronto.ca).

Digital Object Identifier 10.1109/TAC.2005.854612

1Early results of this work can be found in [3] and [4].

Fig. 1. Parallel interface block diagram.

to verify if a DES is globally nonblocking and controllable to
low-level subsystems in Section II. Next, we present al-

gorithms for verifying these new properties, briefly discussing
computational complexity in Section III. We close with an appli-
cation to a manufacturing example with an estimated worst-case
closed-loop state–space size of in Section IV.

II. PARALLEL CASE

In [1], we described our method for the serial case where the
number of low-level subsystems or degree of the system
is restricted to one. Now we extend to the more general set-
ting with low-level subsystems. Fig. 1 shows concep-
tually the structure and flow of information. In this new setting,
a single high-level subsystem, interacts with independent
low-level subsystems, communicating with each low-level sub-
system in parallel through a separate interface.

As in the serial case, to restrict the flow of information im-
posed by the interface, we partition the system alphabet into the
following analogous pairwise disjoint alphabets:

(1)

For an th degree parallel system, the high-level sub-
system is modeled by DES (defined over event set

). For , the th
low-level subsystem is modeled by DES (defined over
event set), the th interface by DES
(defined over event set), so that the overall system
has the structure shown in Fig. 2. By the th low-level we mean

0018-9286/$20.00 © 2005 IEEE

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART II: PARALLEL CASE 1337

Fig. 2. Two-tiered structure of parallel system.

, assume that the alphabet partition is given by (1),
and take the flat system to be

To simplify notation in proofs, we bring in the following event
sets, natural projections, and languages. For the remainder of
this section, the index has range

A. General Form

As in the serial case, we need to be able to decompose the
th degree parallel interface system into its plant and

supervisor components.
We designate the high-level plant as , and the high-level

supervisor as (both defined over). Similarly, the
th low-level plant and supervisor are and (defined

over). The high-level subsystem and the th low-level
subsystem are

The reader should note that the definition of a parallel inter-
face system that we present here in terms of plant and supervisor
components, is the general form of such systems. The form we
defined above (in terms of high and low-level subsystems) is a
special case of the general form, on applying the above identi-
ties for and . We will refer to the original form, used
to simplify nonblocking definitions and proofs, as the parallel
subsystem based form.

We can now define our flat supervisor and plant as well as
some useful languages as follows:

B. Serial System Extraction

As the event set of each low-level is disjoint from the event
sets of the other low-levels, we can consider the parallel in-
terface system as serial interface systems by choosing one
low-level and ignoring the others. This allows reuse of our pre-
vious setup for serial interface systems.

In this section, we introduce the concept of serial system ex-
tractions for an th degree parallel interface system,
shown conceptually in Fig. 3 in terms of subsystems. We first
give the subsystem form of the definition, and then the gen-
eral form (event set definitions not repeated are unchanged). We
refer to the th serial system extraction, as the type of the par-
allel system will make clear which definition is intended.

Definition 1: For the th degree parallel interface
system composed of DES ,
with alphabet partition (1), the th serial system extraction (sub-
system form), denoted by system , is composed of the fol-
lowing elements:

Definition 2: For the th degree
parallel interface system composed of DES

,
with alphabet partition (1), the th serial system extraction
(general form), denoted by system , is composed of the
following elements:

It can be shown that for , a parallel interface system re-
duces to a single serial interface system, and thus a serial system
is a special case of a parallel system.

C. Parallel Case Definitions

In this section, we present a set of properties that match their
serial interface counterparts from [1]. They all involve inter-
preting the parallel system as serial systems by using the serial
system extraction definition.

Definition 3: The th degree parallel interface
system composed of DES ,
is interface consistent with respect to alphabet partition (1), if
for all the th serial system extraction of the
system is serial interface consistent.

Definition 4: The th degree parallel interface
system composed of DES ,
is level-wise nonblocking with respect to the alphabet partition
(1), if for all the th serial system extraction of
the system is serial level-wise nonblocking.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

1338 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

Fig. 3. Serial system extractions.

We now extend serial level-wise controllability to the parallel
case, using the standard partition , into uncontrol-
lable and controllable events.

Definition 5: The th degree
parallel interface system composed of DES

, is
level-wise controllable with respect to alphabet partition (1), if
for all the th serial system extraction of the
system is serial level-wise controllable.

We present two propositions that will aid in the use of serial
system extractions in proofs. The propositions interpret termi-
nology for the th serial system extraction in terms of the orig-
inal parallel system. First, we need the new natural projection,

.
Proposition 1: If the th degree parallel interface

system composed of DES ,
is interface consistent with respect to the alphabet partition (1),
then for the th serial system extraction, system , the fol-
lowing is true.

i) The flat system is: .
ii) The following event sets are:

, and .
iii) The following inverse natural projections are:

,
and .

iv) The event set of is , the event set of
is , and the event set of is .

v) The indicated languages satisfy the following:

vi) Languages , and are closed.
vii) , and .

Proof: See the proof in [6].
Proposition 2: If the th degree

parallel interface system composed of DES
,

is level-wise controllable with respect to the alphabet partition

(1), then for the th serial system extraction, system , the
following is true.

i) The flat plant is
and

the flat supervisor is .
ii) The following event sets are:

, and .
iii) The following inverse natural projections are:

,
and .

iv) The alphabet of and is , the al-
phabet of and is , and the al-
phabet of is .

v) The indicated languages satisfy the following state-
ments:

vi) Languages
,

and are closed.
Proof: See the proof in [6].

We now introduce a proposition that provides a useful rela-
tionship for natural projections. In the parallel case, we will see
several instances of this relationship. First, we need different no-
tation to avoid confusion with that used later. Let
and natural projections , where .

Proposition 3: If and then

Proof: See the proof in [6].

D. Nonblocking Propositions and Theorem

We will now present Propositions 4–6, followed by our main
result for this section, Theorem 1. The following propositions
are analogous to their serial case counterparts.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART II: PARALLEL CASE 1339

Our first proposition is analogous to [1, Prop. 1]. It asserts that
the low-levels are not dependent on high-level events to reach a
marked state.

Proposition 4: If the th degree parallel interface
system composed of DES ,
is level-wise nonblocking and interface consistent with respect
to the alphabet partition (1), then

Proof: See the proof in [6].
We group the last two propositions together as Proposition

6 builds upon Proposition 5. The first proposition asserts that
any string accepted by the system can always be extended to a
string marked by the high-level.

Proposition 5: If the th degree parallel interface
system composed of DES ,
is level-wise nonblocking and interface consistent with respect
to the alphabet partition (1), then

Proof: See the proof in [6].
Our last proposition is analogous to [1, Prop. 5]. It asserts that

we can use string as a basis to construct string by adding
low-level events so that each low-level subsystem will accept
the request and answer event contained in . As these events
are common to both levels, they must agree on their occurrence.

Proposition 6: If the th degree parallel interface
system composed of DES ,
is level-wise nonblocking and interface consistent with respect
to the alphabet partition (1), then

Proof: See Appendix I.
We are now ready to present our nonblocking theorem for

parallel interface systems. It states that, to verify if a parallel
system is nonblocking, it is sufficient to check that each of its
serial system extractions is serial level-wise nonblocking and
serial interface consistent. As the level-wise nonblocking and
interface consistency definitions can be evaluated by examining
only one level (the high-level or one of the low-levels) of the
system at a time, we now have a means of verifying nonblocking
of the parallel system using local checks.

Theorem 1: If the th degree parallel interface
system composed of DES ,
is level-wise nonblocking and interface consistent with respect
to the alphabet partition (1), then , where

Proof: Assume system is level-wise nonblocking and in-
terface consistent. (1)
As is automatic, it suffices to show

(2)

We show this implies
It is sufficient to show:

We first apply Proposition 4 and conclude

(3)

We note that (3) implies that .
Now we can apply Proposition 5, taking to be string in that
proposition, and conclude

(4)

Combining with (3), we can now apply Proposition 6, taking
to be string in that proposition, and conclude

We take string and we have
, as required.

E. Controllability Propositions and Theorem

We will now present Propositions 7 and 8, followed by our
main result for this section, Theorem 2. The following propo-
sitions are analogous to the serial controllability propositions.

We start with Proposition 7. It asserts that if the system is
level-wise controllable, then each pair of low-level supervisor
and interface is controllable for the flat plant.

Proposition 7: If the th degree parallel interface
system composed of plant components , su-
pervisors , and interfaces , is
level-wise controllable with respect to the alphabet partition (1),
then

Proof: See the proof in [6].
The following proposition asserts that if the system is level-

wise controllable, then is controllable for the flat plant when
the flat plant is already under the control of the interfaces.

Proposition 8: If the th degree parallel interface
system composed of plant components , su-
pervisors , and interfaces , is
level-wise controllable with respect to the alphabet partition (1),
then

Proof: See Appendix I.
Next, we present a controllability theorem for parallel inter-

face systems. It states that, to verify if a parallel system is con-
trollable, it is sufficient to check that each of its serial system
extractions is serial level-wise controllable. As in the case of

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

1340 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

nonblocking, we now have a means of verifying controllability
of the flat supervisor using local checks.

Theorem 2: If the th degree parallel interface
system composed of plant components , su-
pervisors , and interfaces , is
level-wise controllable with respect to the alphabet partition (1),
then

Proof: Assume that the th degree parallel in-
terface system is level-wise controllable. (1)
Let , and (2)
We show this implies . It is sufficient to show

Note and
by (2). (3)

By (1), we can apply Proposition 7 and conclude

(4)

All that remains is to show that
From (3), we have
From (3) and (4), we have

We can now apply Proposition 8, and conclude

Combining with (4), we can now conclude
, as required.

III. ALGORITHMS AND COMPLEXITY ANALYSIS

To aid in investigating hierarchical interface-based supervi-
sory control, we have developed software routines to verify that
a serial system satisfies the conditions: serial level-wise non-
blocking ([1, Def. 4]) and controllable ([1, Def. 5]), and serial
interface consistent ([1, Def. 6]). Examining the conditions to
be verified, one sees that most of them are either very straight-
forward (i.e., verifying two sets are disjoint), or can be verified
using existing supervisory control algorithms after suitable def-
initions have been made. Points 3 and 4 of the serial interface
consistency definition can be verified using standard control-
lability algorithms such as TCTs condat function [7]. For ex-
ample, in the case of Point 3, we simply define

, and).
The exceptions are Points 5 and 6 of the serial interface con-

sistency definition. While these points effectively involve com-
puting a transitive closure over for each of the low-
levels, this only needs to be done for the relatively small sys-
tems . If we assume that the sizes of the state sets of

and are bounded by and , respectively, then this
operation is for each low-level component [8] and
hence for a system with low-level systems is .

The limiting factor in a monolithic verification of the system
in which the low-level subsystems are composed directly with
the high-level system (i.e., no interface DES) is the size of the
product state space of

If we let denote the size of the state space of , the
product state–space is bounded by .

From Definition 2, we see that the high-level of the th serial
system extraction is given by

which has a state–space size bound of . This system is
then used to check serial level-wise nonblocking ([1, Def. 4–I])
and controllability ([1, Def. 5–III]) which require an additional
language intersection with effectively requiring computa-
tion of , producing a state–space size bounded by

. This indicates that in order to be effective computation-
ally, we need , or more generally, interfaces should
be designed to be at least an order of magnitude smaller than
their respective low-level systems to achieve significant benefit
from interface based supervisory control.

The complexity of the supervisory control algorithms in-
volved in controllability and nonblocking also depends upon
the product of the sizes of the components’ event sets [9].
Therefore, the restriction of the alphabets of interface automata
to the interface events provides HISC with further potential
computational savings by reducing the number of transitions
involved in the computations.

Of course, there is a cost for this increase in computational
efficiency. The tradeoff is a more restrictive architecture as the
interface approach restricts knowledge about internal details
of components, and only allows supervisors to disable local
and interface events. As similar interface-based approaches are
common in both hardware and software, we are confident that
our method will be widely applicable.

All of the routines used on the example in Section IV were
developed by Leduc during his collaboration with Siemens Cor-
porate Research. In the algorithms currently implemented for
serial interface consistency, the routines actually check that the
interface is a star interface (for Point 2) and that the system is
serial interface strictly marked (for Point 6).

For completeness, we now present the serial interface strict
marking condition and a proposition showing that it implies the
serial interface consistency definition.

Definition 6: The system composed of DES , and
, is serial interface strictly marked with respect to the al-

phabet partition , if
.

This statement is equivalent to Property 6 of the serial inter-
face consistency definition ([1, Def. 6]), with string restricted
to the empty string. It is useful as it implies Property 6 of the
serial interface consistency definition, but is less expensive to
evaluate.

Proposition 9: If the system composed of DES ,
and , satisfies Properties 1–5 of the serial interface consis-
tency definition and is serial interface strictly marked with re-
spect to the alphabet partition , then
the system is serial interface consistent.

Proof: See the proof in [6].
Further details of the algorithms, including discussion of

counter example generation when the conditions fail, can be
found in Appendix II and [6].

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART II: PARALLEL CASE 1341

Fig. 4. AIP.

An important topic of current research is how to synthesize
local controls that cause an interface inconsistent system to be-
come consistent or produce a controllable nonblocking sublan-
guage of a specification when these conditions fail. This is cur-
rently the topic of [10].

IV. APPLICATION TO THE AIP

To demonstrate the utility of our method, we apply it to a
large manufacturing system, the Atelier Inter-établissement de
Productique (AIP) as described in [11] and [12]. Here we only
present the final system design and the computation results on
that model. Details of how the system design was obtained from
the initial problem description based upon the HISC theory can
be found in [13], [14].

The AIP, shown in Fig. 4, is an automated manufacturing
system consisting of a central loop (CL) and four external loops
(EL), three assembly stations(AS), an input/output (I/O) station,
and four inter-loop transfer units (TU). The I/O station is where
the pallets enter and leave the system. Pallets can be of types 1
or 2, chosen at random.

A. Assembly Stations

The assembly stations are shown in Fig. 5. Each consists of
a robot to perform assembly tasks, an extractor to transfer the
pallet from the conveyor loop to the robot, sensors to determine
the location of the extractor, and a raising platform to present the
pallet to the robot. The station also contains a pallet sensor to de-
tect a pallet at the pallet gate, the pallet stop, and a sensor to de-
tect when a pallet has left the station. Finally, the assembly sta-
tion contains a read/write (R/W) device to read and write to the
pallet’s electronic label. The pallet label contains information

Fig. 5. Assembly station of external loop X = 1; 2; 3.

about the pallet type, error status, and assembly status (which
tasks have been performed).

Whereas the assembly stations contain the same basic com-
ponents, they differ with respect to functionality. Station 1 is
capable of performing two separate tasks denoted task1A and
task1B, while station 2 can perform task task2A and task2B.
Station 3 can perform all four of these tasks as well as func-
tioning as a repair station allowing an operator to repair a dam-
aged pallet. The assembly stations also differ with respect to re-
liability. Stations 1 and 2 can break down and must be repaired,
while station 3 is of higher quality and is assumed never to break
down. Station 3 is used as a substitute for the other stations when
they are down.

B. Transport Units

The structure of the four identical transport units is shown in
Fig. 6. The transport units are used to transfer pallets between

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

1342 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

Fig. 6. Transport unit for external loop X = 1; 2; 3; 4.

the central loop, and the external loops. Each one consists of a
transport drawer which physically conveys the pallet between
the two loops, plus sensors to determine the drawer’s location.
At each loop, the unit contains a pallet gate and a pallet stop,
to control access to the unit from the given loop. The unit also
contains multiple pallet sensors to detect when a pallet is at a
gate, drawer, or has left the unit. Also, each unit contains a R/W
device located before the central loop gate.

C. Control Specifications

For this example, we adopt the control specifications and as-
sumptions used in [11] and [12] and restated below. To this we
add Specification 7 to make the assembly stations more inter-
esting and complicated.

Assumptions: We assume that 1) the system is initially
empty, 2) two types of pallets are randomly introduced to the
system, subjected to assembly operations, and then leave, and
3) pallets enter the system following the order: type 1, type 2,
type 1, ...

Specifications:

1) Routing: Pallets follow a certain route based on their
type. A type 1 pallet must go first to AS1, then AS2
before leaving the system. Type 2 pallets go first to
AS2, then AS1 before leaving the system. A pallet is
not allowed to leave the system until all four assembly
tasks have been successfully performed on it.

2) Maximum capacity of external loops 1 and 2: The
maximum allowed number of pallets in either loop at
a given time is one.

3) Ordering of pallet exit from system: The pallets must
exit the system in the following order: type 1, type 2,
type 1,

4) Assembly errors: When a robot makes an assembly
error, the pallet is marked damaged and routed to AS3

for maintenance. After maintenance, the pallet is re-
turned to the original assembly station to undergo the
assembly operation again.

5) Assembly station breakdown: The robots of external
loops 1 and 2 are susceptible to breakdowns. When a
station is down, pallets are routed to assembly station
3 which is capable of performing all tasks of the other
two stations. When the failed station is repaired, all
pallets not already in external loop 3 are rerouted to
the original station.

6) Maximum capacity of assembly stations: To avoid
collisions, only one pallet is allowed in a given station
at a time.

7) Assembly task ordering: Assembly tasks are per-
formed in a different order for pallets of different
types. For pallets of type 1, task1A is performed be-
fore task1B, and task2A is performed before task2B.
For pallets of type 2, task1B is performed before
task1A, and task2B is performed before task2A.

D. System Structure

To cast the AIP into a parallel interface system, we break the
system into a high-level and seven low-levels, corresponding to
the three assembly stations and four transport units, as shown in
Fig. 7. We select a few representative subsystems to describe in
the following sections. As this example contains 181 DESs, we
are not able to describe the design in complete detail, but refer
the reader to [6] for a complete description.

The models and supervisors developed for this example are
based on the automata presented in [11] and [12]. We have al-
tered them to fit our setting, and extended them to fill in the
missing details of several events that were defined as “macro
events” in the cited references.

In the diagrams to follow, uncontrollable events are shown in
italics; all other events are controllable. Also, initial states can
be recognized by a thick outline, and marker states are filled.

1) High-level: The high-level subsystem, which contains 15
DES, keeps track of the breakdown status of assembly stations
1 and 2, and enforces the maximum capacity of external loops
1 and 2. This subsystem controls the operation of all transport
units and assembly stations, while tracking the pallets’ progress
around the manufacturing system.

As an example of the high-level subsystem’s behavior, we
discuss supervisor ManageTU1, shown in Fig. 8. This super-
visor controls the transfer of pallets between the central loop
and external loop 1. It permits pallets on the central loop to
pass through transport unit 1 (to be liberated) without being
transferred to the external loop. Pallets are liberated if the at-
tached external loop is at maximum capacity, assembly station
1 is down, or TU1 determines that the pallet is not to be trans-
ferred.

2) Low-levels AS1 and AS2: We now describe the low-level
subsystems that represent assembly stations 1 and 2. As they
are identical, we will describe them collectively as low-level
subsystem , where .

Subsystem contains 17 DESs and provides the function-
ality specified in its interface, shown in Fig. 9. An assembly sta-
tion accepts the pallet at its gate, and presents it to the robot

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART II: PARALLEL CASE 1343

Fig. 7. Structure of parallel system.

Fig. 8. Supervisor ManageTU1.

for assembly. It then releases the pallet, and reports on the suc-
cess of the assembly operation. If the robot breaks down, this is
reported through the interface, and the pallet is released. Sub-
system then waits for a repair command to return the robot to
operation.

Supervisor HndlPallet.AS1, shown in Fig. 10, provides an ex-
ample of low-level subsystem AS1’s behavior. HndlPallet.AS1
handles the task of processing a pallet once it reaches the ex-
tractor. It reads the pallet’s label, presents the pallet to the robot,
and has the robot perform the appropriate tasks on the pallet.
The supervisor then allows the pallet to leave the assembly sta-
tion and reports on the success of the processing operation by
updating the pallet’s label, and notifies the high-level subsystem
through the interface.

3) low-levels TU1 and TU2: We now describe the low-level
subsystems that represent transport units 1 and 2. As they are
identical, we will describe them collectively as low-level sub-
system , where .

Subsystem contains 25 DES and provides the functionality
specified in its interface, shown in Fig. 12. The transport units
are used to transfer pallets between the central loop, and the
external loops (i.e., TU1 transfers pallets between CL and

Fig. 9. Interface to low-level k = AS1;AS2.

EL1). Subsystem has two entry points for pallets, the central
loop gate, and the external loop gate. If a pallet is at the EL
gate, subsystem transfers the pallet to the central loop. If
a pallet is at the CL gate, subsystem can be requested to
liberate the pallet (allow it to pass through and continue on
CL), or to transfer the pallet to the EL. When requested to
transfer a pallet to the EL, subsystem will only transfer the
pallet if the pallet is undamaged and if the next assembly

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

1344 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

Fig. 10. Supervisor HndlPallet.AS1.

task required by the pallet is performed by the external loop’s
assembly station.

Supervisor HndlTrnsfToEL.r, shown in Fig. 11, provides an
example of low-level subsystem r’s behavior. HndlTrnsfToEL.r
handles transporting pallets from the central loop to the external
loop. It only transfers pallets if they are undamaged, or if the
next assembly task required by the pallet is performed by the
external loop’s assembly station.

E. Discussion of Results

Applying our research tool to the seven serial extraction sys-
tems, we find that they are all serial level-wise nonblocking, se-
rial level-wise controllable, and serial interface consistent. Thus,
we conclude that the system is level-wise nonblocking, level-
wise controllable, and interface consistent, and hence, by Theo-
rems 1 and 2, the flat system is nonblocking and the flat system’s
supervisor is controllable for the flat plant.

This example contains 181 DES in total, with an estimated
closed-loop state space of . This estimate was cal-
culated by determining the closed-loop state space of the high-
level, and each low-level and then multiplying these together

to create a worst case state estimate. The computation ran for
25 min, using 760 MB of memory. The machine used was a 750
MHz Athlon system, with 512 MB of RAM, 2 GB of swap, run-
ning Redhat Linux 6.2. A standard nonblocking verification was
also attempted on the monolithic system, but it quickly failed
due to lack of memory.

Table I shows the size of the various subsystem automata
used in the AIP calculations. First, the size of the state space of
each component without being synchronized with their respec-
tive interfaces (Standalone) is given and then state space size
when synchronized with their interface DES (is synchro-
nized with all seven interfaces). The last two columns give the
size of the interfaces for for the high-level and each low-level.
From Section III, we saw that the limiting factor for a monolithic
algorithm would be and similarly for the HISC
method. denotes the size of the state–space of , while

and are the bounds for and ,
respectively. If we substitute actual data from Table I, we get

and
. This is a potential savings of eleven orders

of magnitude. In fact, instead of multiplying

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART II: PARALLEL CASE 1345

Fig. 11. Supervisor HndlTrnsfToEL.r.

Fig. 12. Interface to low-level q = TU1;TU2;TU4.

by a factor of , adding the interfaces only doubles
the state space of the high-level. For low-level AS1, synchro-
nizing with its interface actually causes the state–space to de-
crease from 1795 to 120 states, an order of magnitude reduction.

We note that the prototype tool used for these calculations
did not make use of IDDs and symbolic techniques such as
those used in [15] and [16]. We conjecture that using HISC
methods with tools utilizing symbolic techniques should allow
the method to scale up to considerably larger systems as has
been the case with the application of symbolic techniques to
monolithic supervisory control calculations.

V. CONCLUSION

Hierarchical interface-based supervisory control offers an
effective means to model systems with a natural master-slave
structure. It provides an intuitive way to model and design the

TABLE I
SIZE OF AIP SUBSYSTEM AUTOMATA MODELS

system. Using multiple low-level subsystems allows
the subsystems to be independently modeled and verified,
while still allowing a high degree of concurrent operation.
As each low-level requirement can be verified using only one
subsystem and its interface, the entire plant model never needs
to be constructed or traversed (in computer memory), offering
potentially significant savings in computation. However, the
limiting factor is the size of the high-level as the high-level
requirements depend upon the high-level subsystem and the in-
terfaces to all of the low-level components. When the interfaces
are designed to have smaller state–spaces than the low-level
components, the verification of the high-level requirements
will require considerably less space, though in the worst case
the space required for the verification still grows exponentially

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

1346 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

with the number of components. To address this problem, future
research will focus on extending the method to a multilevel
hierarchy.

Finally, we discussed a large example based on the automated
manufacturing system of the AIP. As the example contains 181
DESwithanestimatedworst-caseclosed-loopstate–spaceofsize

, itdemonstrates that theHISCmethodcanbeapplied to
interesting systems of realistic complexity even though symbolic
techniques have not yet been incorporated into our approach.

APPENDIX I
PROOFS OF SELECTED PROPOSITIONS

Proposition 6:
Proof: Assume system is level-wise nonblocking and

interface consistent. (1)
Let , and

(2)
We will now show this implies

Iterative step:
• For each , construct , with prop-

erties and
, as follows.

• From (2), we have
• As since (by Propo-

sition 1), we can conclude

• (by Proposition 1).(3)
• From (2), we have

. (4)
• From Proposition 1, we thus have

(5)

• From (2), we have . This implies

• Combining with (2), (3), and (5), we now apply [1,
Prop. 5] by taking to be string in that proposi-
tion and conclude

(6)

• We next note that as and
(by Proposition 1), we can conclude

(7)

• We now note that implies that
. Combining with (6) and substituting for

(using Proposition 1), and , we
have

(8)

• From Proposition 1, we have
(for), and . We

can now apply Proposition 3 three times by taking
[, and], [

, and], and then [
, and], and conclude

• and
(by (7), as required.

• Iterative step complete.
Now that we have completed the iterative step, we have shown
the following:

(9)

We take to be any string in set (10)
We know that the set is nonempty for the following reasons.

• For each , we have
where:

.
• The only events strings have in common are

.
• All strings agree on common events as

.
From (10), we have . As

(by Proposition 1) and (by (2)), we can con-
clude:

(11)

From (2), we have:
by (11).

.
Similarly, as for , we can conclude
(by (11)) that and thus:

.
From (9), we have for . From (10),
we have as . As
(by Proposition 1), we can conclude and
thus:

From (11), we have , as required.
Proposition 8:

Proof: Assume that the th degree parallel
interface system is level-wise controllable. (1)
Let , and

(2)
We will now show that this implies
It’s sufficient to show that .
We first note that

(3)

by (2).
By examining the definition of for some

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL—PART II: PARALLEL CASE 1347

(see definition of th serial system extraction: general form in
Section 2), we see that

. (4)
We use this and note that by (1), we can conclude that

, the th serial system extraction of our parallel
system, is serial level-wise controllable. (5)
From (2) and (3), we have

.
See Section II-C for the definition of the natural projection, .

, by Proposition 2.
Similarly, from (3) we can conclude

We next note that [from (4)] implies that
.

We can now conclude by point III of the serial level-wise con-
trollable definition that:

and thus
, by Proposition 2.

As by Proposition 2, we have .
We can thus apply Proposition 3 by taking

, and and thus conclude:
, as required.

APPENDIX II
ALGORITHM FOR SERIAL INTERFACE CONSISTENCY

In this section, we present an algorithm for evaluating points
5) and 6) of the serial interface consistent definition [1, Def.
6] and discuss counter example generation when the conditions
fail. We assume that all DES are reachable, deterministic, and
have finite state and event sets, and that we are given

, and the
map defined as:

For a given DES , we use the standard
definition for its transition function , and define
the inverse transition function , for

and as follows:

To avoid repeating existing algorithms, we will assume we
already have the DES

and the inverse transition function
, which can be created using TCT [7]. We will also use

the variables (states of that are in
), , and . The complete algorithm

appears in Fig. 13.

A. Counter Example Generation

Considering the algorithm in Fig. 13, we see that if point
5 fails, the variables and define the state tuple in

, reached by the request event contained in variable .
This is the state from which we failed to find a low-level path
to the answer events remaining in , whose transitions are
possible at state in the interface.

We also see that when Point 6 fails, the variable con-
tains the set of reachable states of that are marked by

Fig. 13. Algorithm to compute points 5 and 6 of serial interface consistency.

, but do not have continuations at the low-level to a marked
state.

As mentioned in Section II, all of the remaining conditions
that need to be verified to prove global nonblocking and control-
lability are based upon standard supervisory control algorithms,
hence counter examples can be easily generated using standard
techniques.

REFERENCES

[1] R. Leduc, B. Brandin, M. Lawford, and W. M. Wonham, “Hierarchical
interface-based supervisory control, Part I: Serial case,” IEEE Trans.
Autom. Control, vol. 50, no. 9, pp. 1322–1335, Sep. 2005.

[2] R. Leduc, B. Brandin, W. M. Wonham, and M. Lawford, “Hierarchical
interface-based supervisory control: Serial case,” in Proc. 40th Conf. De-
cision Control, Orlando, FL, Dec. 2001, pp. 4116–4121.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

1348 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 9, SEPTEMBER 2005

[3] R. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-
based supervisory control: AIP example,” in Proc. 39th Allerton Conf.
Communication, Control, and Computing, Oct. 2001, pp. 396–405.

[4] R. Leduc, W. M. Wonham, and M. Lawford, “Hierarchical interface-
based supervisory control: Parallel case,” in Proc. 39th Allerton Conf.
Communication, Control, and Computing, Oct. 2001, pp. 386–395.

[5] E. W. Endsley, M. R. Lucas, and D. M. Tilbury. (2000, Oct.) Modular
design and verification of logic control for reconfigurable machining
systems. [Online]http://www-personal.engin.umich.edu/~tilbury/pa-
pers.html

[6] R. Leduc, “Hierarchical interface-based supervisory control,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON,
Canada, 2002.

[7] W. M. Wonham. (2004, Jul.) Supervisory control of discrete-event sys-
tems. Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON, Canada.
[Online]. Available: http://www.control.toronto.edu/DES/

[8] S. Warshal, “A theorem on boolean matrices,” J. ACM, vol. 9, no. 1, pp.
11–12, Jan. 1962.

[9] K. Rudie, “Software for the control of discrete-event systems: A
complexity study,” M.A.Sc. thesis, Dept. Elect. Comput. Eng., Univ.
Toronto, Toronto, ON, Canada, 1988.

[10] P. Dai, “Synthesis method for hierarchical interface-based supervisory
control,” M.A.Sc. thesis, Dept. Comput. Software, McMaster Univ.,
Hamilton, Ont, Canada, 2005.

[11] B. Brandin and F. Charbonnier, “The supervisory control of the auto-
mated manufacturing system of the AIP,” in Proc. Rensselaer’s 1994 4th
Int. Conf. Computer Integrated Manufacturing and Automation Tech-
nology, Troy, NY, Oct. 1994, pp. 319–324.

[12] F. Charbonnier, “Commande par supervision des systèmes à événements
discrets: Application à un site expérimental l’Atelier Inter-établissement
de Productique,” Laboratoire d’Automatique de Grenoble, Grenoble,
France, Tech. Rep., 1994.

[13] R. Leduc and M. Lawford, “Hierarchical interface-based supervisory
control of a flexible manufacturing system,” IEEE Trans. Control Syst.
Technol. , 2005, submitted for publication.

[14] R. Leduc, M. Lawford, and W. M. Wonham. (2001, Nov.) Hierarchical
interface based supervisory control: AIP example for parallel case. Soft-
ware Quality Research Laboratory, Dept. Comput. Software, McMaster
Univ., Hamilton, ON, Canada. [Online]. Available: Tech Rep. no. 2,
http://www.cas.mcmaster.ca/sqrl/sqrl reports.html

[15] Z. Zhang, “Smart TCT: An efficient algorithm for supervisory control
design,” M.A.Sc. thesis, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 2001.

[16] Z. Zhang and W. M. Wonham, “STCT: An efficient algorithm for super-
visory control design,” in Proc. SCODES 2001. Paris, France, Jul. 2001,
pp. 82–93.

Ryan Leduc (M’02) received the B.Eng. degree
in electrical engineering from the University of
Victoria, Victoria, BC, Canada, in 1993, and the
M.A.Sc. and Ph.D. degrees in electrical engineering
from the University of Toronto, Toronto, ON,
Canada, in 1996 and 2002, respectively.

In 1997 and 1998, he was a Guest Scientist at
Siemens Corporate Technology, Munich, Germany.
In 2001, he joined McMaster University, Hamilton,
ON, Canada, where he is currently an Assistant
Professor of Software Engineering. His research in-

terests include supervisory control of discrete-event systems (DES) hierarchical
structure, concurrency and implementation issues, and DES as software and
hardware. He is also interested in hierarchical approaches to formal verification
of software and hardware.

Dr. Leduc is the Chair of the IEEE Control Systems Society Technical Com-
mittee on Discrete-Event Systems.

Mark Lawford (S’88–M’97) received the B.Sc. de-
gree in engineering mathematics from Queen’s Uni-
versity, Kingston, ON, Canada, in 1989 (receiving
the University Medal in engineering mathematics),
and the M.A.Sc. and Ph.D. degrees in electrical en-
gineering at the University of Toronto, Toronto, ON,
Canada, in 1992 and 1997, respectively.

From 1997 to 1998, he was with Ontario Hydro as
a consultant on the Darlington Nuclear Generating
Station Shutdown Systems Redesign project, where
he was a co-recipient of an Ontario Hydro New

Technology Award. Currently, he is an Associate Professor in the Department
of Computing and Software at McMaster University, Hamilton, ON, Canada,
where he has helped develop the Software Engineering programs. His research
interests include discrete-event systems, formal methods for real-time systems,
and computer aided inspection of safety critical software. He is a licensed
Professional Engineer in the province of Ontario.

W. M. Wonham (M’64–SM’76–F’77) received the
B.Eng. degree in engineering physics from McGill
University, Montreal, QC, Canada, in 1956, and the
Ph.D. degree in control engineering from the Univer-
sity of Cambridge, Cambridge, U.K., in 1961.

From 1961 to 1969, he was associated with several
U.S. research groups in control. Since 1970, he has
been a Faculty Member in Systems Control with the
Department of Electrical and Computer Engineering
of the University of Toronto, Toronto, ON, Canada.
In addition, he has held visiting lectureships at Wash-

ington University, St. Louis, MO, the Massachusetts Institute of Technology,
Cambridge, the Institute of System Science of the Academia Sinica, Beijing,
China, and other institutions. His research interests have included stochastic
control and filtering, geometric multivariable control, and discrete-event sys-
tems. He is the author of Linear Multivariable Control: A Geometric Approach
(New York: Springer-Verlag, 1985) and the coauthor (with C. Ma) of Hierar-
chical Control of State Tree Structures (New York: Springer-Verlag, 2005).

Dr. Wonham is a Fellow of the Royal Society of Canada, and (2005) a Foreign
Associate of the (U.S.) National Academy of Engineering. In 1987, he received
the IEEE Control Systems Science and Engineering Award, and, in 1990, was
a Brouwer Medallist of the Netherlands Mathematical Society. In 1996, he was
appointed University Professor in the University of Toronto, and in 2000, Uni-
versity Professor Emeritus.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:36 from IEEE Xplore. Restrictions apply.

	toc
	Hierarchical Interface-Based Supervisory Control Part II: Parall
	Ryan J. Leduc, Member, IEEE, Mark Lawford, Member, IEEE, and W.
	I. I NTRODUCTION

	Fig.€1. Parallel interface block diagram.
	II. P ARALLEL C ASE

	Fig.€2. Two-tiered structure of parallel system.
	A. General Form
	B. Serial System Extraction
	Definition 1: For the n th degree $(n\geq 1)$ parallel interfa
	Definition 2: For the n th degree $(n\geq 1)$ parallel interfa

	C. Parallel Case Definitions
	Definition 3: The n th degree $(n\geq 1)$ parallel interface s
	Definition 4: The n th degree $(n\geq 1)$ parallel interface s

	Fig.€3. Serial system extractions.
	Definition 5: The n th degree $(n\geq 1)$ parallel interface s
	Proposition 1: If the n th degree $(n \geq 1)$ parallel interf
	Proof: See the proof in [6] . $% \blackboxfill$

	Proposition 2: If the n th degree $(n \geq 1)$ parallel interf
	Proof: See the proof in [6] . \blackboxfill

	Proposition 3: If $\Sigma_b \subseteq % \Sigma_a$ and $L_b \subset
	Proof: See the proof in [6] . \blackboxfill

	D. Nonblocking Propositions and Theorem
	Proposition 4: If the n th degree $(n\geq 1)$ parallel interfa
	Proof: See the proof in [6] . \blackboxfill

	Proposition 5: If the n th degree $(n\geq 1)$ parallel interfa
	Proof: See the proof in [6] . \blackboxfill

	Proposition 6: If the n th degree $(n\geq 1)$ parallel interfa
	Proof: See Appendix€I . \blackboxfill

	Theorem 1: If the n th degree $(n\geq 1)$ parallel interface s
	Proof: Assume system is level-wise nonblocking and interface con

	E. Controllability Propositions and Theorem
	Proposition 7: If the n th degree $(n\geq 1)$ parallel interfa
	Proof: See the proof in [6] . \blackboxfill

	Proposition 8: If the n th degree $(n \geq 1)$ parallel interf
	Proof: See Appendix€I . \blackboxfill

	Theorem 2: If the n th degree $(n\geq 1)$ parallel interface s
	Proof: Assume that the n th degree $(n \geq 10)$ parallel inte

	III. A LGORITHMS AND C OMPLEXITY A NALYSIS
	Definition 6: The system composed of DES ${\bf G}_H, {\bf G}_L$,
	Proposition 9: If the system composed of DES ${\bf G}_H, {\bf G}
	Proof: See the proof in [6] . \blackboxfill

	Fig.€4. AIP.
	IV. A PPLICATION TO THE AIP
	A. Assembly Stations

	Fig.€5. Assembly station of external loop $X = 1,2,3$.
	B. Transport Units

	Fig.€6. Transport unit for external loop $X = 1,2,3,4$.
	C. Control Specifications
	Assumptions: We assume that 1) the system is initially empty, 2)
	Specifications:

	D. System Structure
	1) High-level: The high-level subsystem, which contains 15 DES,
	2) Low-levels AS1 and AS2: We now describe the low-level subsyst

	Fig.€7. Structure of parallel system.
	Fig.€8. Supervisor ManageTU1.
	3) low-levels TU1 and TU2: We now describe the low-level subsyst

	Fig. 9. Interface to low-level $k= {\rm AS}1, {\rm AS}2$.
	Fig.€10. Supervisor HndlPallet.AS1.
	E. Discussion of Results

	Fig.€11. Supervisor HndlTrnsfToEL.r.
	Fig. 12. Interface to low-level $q = {\rm TU}1, {\rm TU}2, {\rm
	V. C ONCLUSION

	TABLE I S IZE OF AIP S UBSYSTEM A UTOMATA M ODELS
	P ROOFS OF S ELECTED P ROPOSITIONS
	Proposition 6:
	Proof: Assume system is level-wise nonblocking and interface con

	Proposition 8:
	Proof: Assume that the n th degree $(n \geq 1)$ parallel inter

	A LGORITHM FOR S ERIAL I NTERFACE C ONSISTENCY
	A. Counter Example Generation

	Fig.€13. Algorithm to compute points 5 and 6 of serial interface
	R. Leduc, B. Brandin, M. Lawford, and W. M. Wonham, Hierarchical
	R. Leduc, B. Brandin, W. M. Wonham, and M. Lawford, Hierarchical
	R. Leduc, M. Lawford, and W. M. Wonham, Hierarchical interface-b
	R. Leduc, W. M. Wonham, and M. Lawford, Hierarchical interface-b
	E. W. Endsley, M. R. Lucas, and D. M. Tilbury . (2000, Oct.) Mod
	R. Leduc, Hierarchical interface-based supervisory control, Ph.D
	W. M. Wonham . (2004, Jul.) Supervisory control of discrete-even
	S. Warshal, A theorem on boolean matrices, J. ACM, vol. 9, no.
	K. Rudie, Software for the control of discrete-event systems: A
	P. Dai, Synthesis method for hierarchical interface-based superv
	B. Brandin and F. Charbonnier, The supervisory control of the au
	F. Charbonnier, Commande par supervision des systèmes à événemen
	R. Leduc and M. Lawford, Hierarchical interface-based supervisor
	R. Leduc, M. Lawford, and W. M. Wonham . (2001, Nov.) Hierarchic
	Z. Zhang, Smart TCT: An efficient algorithm for supervisory cont
	Z. Zhang and W. M. Wonham, STCT: An efficient algorithm for supe

