
1110 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

Optimal Supervisory Control of Probabilistic
Discrete Event Systems

Vera Pantelic and Mark Lawford, Senior Member, IEEE

Abstract—Probabilistic discrete event systems (PDES) are
modeled as generators of probabilistic languages and the supervi-
sors employed are a probabilistic generalization of deterministic
supervisors used in standard supervisory control theory. In the
case when there exists no probabilistic supervisor such that the
behavior of a plant under control exactly matches the probabilistic
language given as the requirements specification, we want to find
a probabilistic control such that the behavior of the plant under
control is “as close as possible” to the desired behavior. First, as a
measure of this proximity, a pseudometric on states of generators
is defined. Two algorithms for the calculation of the distance
between states in this pseudometric are described. Then, an
algorithm to synthesize a probabilistic supervisor that minimizes
the distance between generators representing the achievable and
required behavior of the plant is presented.

Index Terms—Discrete event systems, optimal control, stochastic
systems, supervisory control.

I. INTRODUCTION

T HE supervisory control theory of discrete event systems
(DES) was developed in the seminal work of Ramadge

and Wonham [1]. A supervisor (controller) controls a plant by
enabling/disabling controllable events based on the observa-
tion of the previous behavior of the plant. DES are most often
modeled by finite automata whose transitions are labeled with
events: therefore, the behavior of a DES can be represented as a
regular language. The supervisory control problem considered
is to supervise the plant so it generates a given specification
language.
Recently probabilistic models have attracted considerable at-

tention in modeling systems with uncertainty. They are of in-
terest in many application areas, e.g., communication protocols,
distributed computing, performance analysis, and fault toler-
ance. Many probabilistic logics are used in the specification and
verification of probabilistic systems (excellent overviews are of-
fered in [2], [3]). Probababilistic model checking provides for
(limited) guarantees when conventional model checking is not
possible (e.g., the state space is too large) [4]. Many of proba-
bilistic models have been widely researched and applied. While
reactive models have been predominantly used in probabilistic
model checking tools as well as in the control of probabilistic
systems, generative models have also found their applications,

Manuscript received July 27, 2010; revised April 20, 2011; revised July
27, 2011; revised September 07, 2011; revised September 09, 2011; accepted
September 30, 2011. Date of publication October 25, 2011; date of current
version April 19, 2012. Recommended by Associate Editor S. A. Reveliotis.
The authors are with the Department of Computing and Software, Faculty of

Engineering, McMaster University, Hamilton ON Canada L8S 4K1 (e-mails:
pantelv@mcmasterdotca; lawford@mcmasterdotca).
Digital Object Identifier 10.1109/TAC.2011.2173420

especially in the control and modeling of robot systems [5]–[7],
prediction of human behavior [8], etc. The difference between
reactive and generative systems is in the treatment of events [9],
[10]. In a reactive system, an event is seen as an input from the
environment: the system reacts to it by choosing a next state ac-
cording to a probability distribution on the states of the system.
On the other hand, in a generative system, an event is seen as
an output: the system chooses a transition according to a prob-
ability distribution, and generates as an output the event the
chosen transition is labeled with. In terms of expressiveness, in
general, a generative model is more expressive than a reactive
model.
The control of different models of stochastic discrete event

systems has been investigated in [11], [12], etc.. Rabin’s proba-
bilistic automata are used in [11] as the underlying model. The
optimal control theory of Markov chains is widely investigated
in the framework of controlled Markov chains, also known as
Markov decision processes (MDPs), e.g., see [12]. A determin-
istic supervisory control framework for stochastic discrete event
systems was developed in [13] using the model of [14]–[16].
The control objective considered in [13] is to construct a super-
visor such that the controlled plant does not execute specified
illegal traces, and occurrences of the legal traces in the system
are greater than or equal to specified values. Necessary and suffi-
cient conditions for the existence of a supervisor are given. Fur-
ther, in [17], a technique to compute a maximally permissive su-
pervisor on-line is given. In [18], [19], the deterministic version
of probabilistic automata used in [14]–[16] (our model) is used.
The requirements specification is given by weights assigned to
states of a plant and the control goal is, roughly speaking, to
reach the states with more weight (more desirable states) more
often. A deterministic control is synthesized for a given require-
ments specification so that a measure based on the specification
and probabilities of the plant is optimized. Optimal supervisory
theory of probabilistic systems was considered in [5], where
the system is allowed to violate the specification, but with a
probability lower than a specified value. Controller synthesis for
probabilistic systems has also attracted attention in the formal
methods community (e.g., [20]).
We seek for a comprehensive theoretical framework for

probabilistic supervisory control theory of probabilistic dis-
crete event systems (PDES). We build upon the framework
introduced in [21]–[23]. Finite state machines with transitions
labeled with events, generators, commonly used in classical
supervisory theory to represent discrete event systems, are
generalized to a generative probabilistic model called prob-
abilistic generators (a version of automata from [14]–[16]),
which are generative models. Roughly speaking, probabilistic
generators are generators extended with probabilities attached

0018-9286/$26.00 © 2011 IEEE

PANTELIC AND LAWFORD: OPTIMAL SUPERVISORY CONTROL OF PROBABILISTIC DISCRETE EVENT SYSTEMS 1111

to each transition. A probability attached to an event that can
occur from a state represents the probability of occurrence of
that event from the state. A probabilistic generator generates a
probabilistic language: each string generated by the underlying
(nonprobabilistic) generator has a probability attached to it
that represents the probability of occurrence of that particular
string in the language. The control used in the framework is
probabilistic. Although probabilistic control of PDES is harder
to deal with than deterministic control, both from the viewpoint
of analysis, and practice, it is much more powerful: it has
been shown in [21], [23] that probabilistic supervisory control
of PDES can generate a much larger class of probabilistic
languages than deterministic control. In the sense of a super-
visory control problem that would require that the controlled
plant generates a specified probabilistic language, the use of
deterministic control might be too restrictive for a designer. In
[21], the standard supervisory control problem is accordingly
generalized to the probabilistic supervisory control problem
(PSCP): find, if possible, a probabilistic supervisor for a plant
so that the plant under control generates a given probabilistic
language. This problem has been solved in [21]–[23].
This paper focuses on optimal supervisory control theory in-

side this framework. Analogous to a problem in classical su-
pervisory control theory, it can happen that, given a plant to
be controlled and a probabilistic specification language, no su-
pervisor exists such that the plant under control generates the
specified language. In this case, when the exact solution is not
achievable, a designer tries to find a supervisor such that the
plant under control generates a closest approximation of the de-
sired behavior. The problem is called the Optimal Probabilistic
Supervisory Control Problem (OPSCP). The nonprobabilistic
behavior of the requirements specification is considered to be a
safety constraint in the standard supervisory control sense sim-
ilar to [13].
The closest approximation is then generated such that its

nonprobabilistic behavior is the maximally permissive behavior
of the controlled plant. Then, using an iterative algorithm, the
probabilities of the closest approximation are determined such
that the approximation is the most similar to the (appropriately
modified) requirements specification. As a measure of simi-
larity, a pseudometric on states of probabilistic generators is
used.
The pseudometric is adopted from the theoretical computer

science community. It is a measure of behavioral similarity be-
tween states: the smaller the distance in the pseudometric, the
more similar the behavior of the states is. A distance of zero cor-
responds to probabilistic bisimilarity. The pseudometric was de-
fined in [24] as a greatest fixed point of a monotone function. It
is based on Kantorovich metric [25] (also known as Hutchinson
metric [26], and Wasserstein metric [27]) that has been widely
applied in many domains [28]. The work of [24] is closely re-
lated to the well-established work on pseudometrics presented
in [29]–[35]. In [36], [37], we further characterize our pseudo-
metric by giving it logical and trace characterizations. The log-
ical characterization measures the distance between two sys-
tems by a real-valued formula that distinguishes between the
systems the most. The trace characterization shows that two
systems similar in the pseudometric have similar (appropriately

discounted) probabilities of traces, certain sets of traces and cer-
tain properties of traces.
The work of [24] did not offer any algorithm to calculate dis-

tances in the pseudometric. In this paper, we suggest two algo-
rithms to calculate/approximate the distance between two gen-
erators in the pseudometric. The first algorithm calculates dis-
tances by solving a system of linear equations, and is, to the
best of our knowledge, a novel result in the field. The second
algorithm approximates distances with a specified accuracy. It
is iterative and bears some similarities to the algorithms of [32],
[35], [38]–[40]. However, our algorithm is for a different type of
probabilistic transition systems and is derived using a different
mathematical machinery, resulting in a much simpler algorithm
due to the nature of the underlying models. While interesting in
its own right, the main significance of this iterative algorithm is
that its proof of correctness can be reused in the solution of the
OPSCP.
Our research is likely to find an application in the field of

robotics as probabilistic generators have been used to model
systems in the control of robot systems [5]–[7] (see [41] for a
simple, illustrative application). Also, the Kantorovich metric
has been used in a number of applications [28]. The most
promising area in regard to our research is the field of bionfor-
matics, where the metric has been used to measure similarities
between DNA sequences. Another route to explore is the use
of our research in the generation of test cases (adversaries) for
MDPs. More precisely, a probabilistic generator can be viewed
as a supervisor for MDPs. On the other hand, the probabilistic
supervisors defined in our framework can be represented as an
MDP (see [41]). This duality between the plant to be controlled
and the probabilistic supervisor performing the control might
provide interesting connections between probabilistic model
checking and supervisory control theory.
In Section II, PDES are presented as generators of proba-

bilistic languages and the probabilistic control of PDES is in-
troduced before stating the PSCP and reviewing its solution.
The OPSCP is formulated in Section III. The pseudometric to
be used in the solution of the OPSCP is presented in Section IV.
Section V derives two algorithms for the calculation of the pseu-
dometric. Section VI solves the OPSCP: it presents the algo-
rithm for finding the closest approximation to within a specified
accuracy. Section VII concludes with avenues for future work.
This paper represents the journal version of results of [42].

The paper offers a thorough literature review and additional in-
formal reasoning and formal proofs that are lacking from [42].

II. PRELIMINARIES

In this section, PDES are modeled as generators of proba-
bilistic languages. Then, the probabilistic control of PDES, the
PSCP, and the solution of the PSCP are introduced.

A. Modeling PDES

Following [21], [23], a probabilistic DES is modeled as a
probabilistic generator.
Definition 1: A probabilistic generator is a tuple

, where is the nonempty finite set of states,

1112 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

is a finite alphabet whose elements we will refer to as event la-
bels, is the (partial) transition function,
is the initial state, and is the statewise event
probability distribution, i.e., for any , .
The probability that the event is going to occur at the
state is . For generator to be well-defined,

should hold if and only if is undefined.
Remark 1: Relaxing the condition into

would allow for modeling termination. The
probability that the system terminates at state would then be

. However, since a terminating PDES can
easily be transformed into a probabilistic generator of Defini-
tion 1 using the technique described in [21], we find the model
of Definition 1 general enough.
The state transition function is traditionally extended by in-

duction on the length of strings to in a natural
way. For a state , and a string , the expression will
denote that is defined for the string in the state . The defini-
tion of probabilistic generators does not contain marking states
since the probabilistic specification languages considered in this
paper are prefix closed.
The language generated by is

. The probabilistic language generated by is
defined as:

if

Informally, is the probability that the string is exe-
cuted in . Also, iff .
For each state , we define the function
such that for any , , we have
if , and 0 otherwise. The function is a

probability distribution on the set induced by . Also, for
a state , we define the set of possible events to be

, or, equivalently,
.

Next, the synchronous product of (nonprobabilistic) DES that
underlie PDES is defined in a standard manner. For a proba-
bilistic generator , the (nonprobabilistic)
discrete event system that underlies will be denoted
(i.e.,) throughout the sequel. Let and

be the nonprobabilistic generators (DES) underlying
and , respectively,

i.e., and .
Definition 2: The synchronous product of

and , denoted
, is the reachable sub-DES of DES
, where , ,

and, for any , , , it holds that
whenever ,

and .

B. Probabilistic Supervisors: Existence and Synthesis

As in classical supervisory control theory, the set is parti-
tioned into and , the sets of controllable and uncontrol-
lable events, respectively. Deterministic supervisors for DES
are generalized to probabilistic supervisors. The control tech-

nique used is called random disablement. Instead of determin-
istically enabling or disabling controllable events, probabilistic
supervisors enable them with certain probabilities. This means
that, upon reaching a certain state , the control pattern is chosen
according to supervisor’s probability distributions of control-
lable events. Consequently, the controller does not always en-
able the same events when in the state .
Let . For a PDES , a

probabilistic supervisor is a function such
that

if

Therefore, after observing a string , the supervisor enables
event with probability . More precisely, for event ,
the supervisor performs a Bernoulli trial with possible outcomes
enable (that has the probability), and disable (with
probability), and, depending on the outcome of
the trial, decides whether to enable or disable the event. After a
set of controllable events to be enabled has been decided upon
(uncontrollable events are always enabled), the system acts as if
supervised by a deterministic supervisor. Given sets , , we
will denote the power set of by , and the set difference
of and by . Let be the state of the plant after

has been observed. The plant under the control of
the supervisor will be denoted . The probability that
the event will occur in the controlled plant after
string has been observed is equal to:

(1)
where

if

The goal is to match the behavior of the controlled plant
with a given probabilistic specification language. We call
this problem the Probabilistic Supervisory Control Problem
(PSCP). More formally:
Given a plant PDES and a specification PDES , find, if

possible, a probabilistic supervisor such that
.

An example of probabilistic generators representing a plant
and a requirements specification is shown in Fig. 1. Controllable
events are marked with a bar on their edges.
Next, we present the conditions for the existence of a proba-

bilistic supervisor for the PSCP from [21], [23].
Theorem 1: Let and

be two PDES with disjoint state sets
and . Then, let and be the nonproba-

bilistic generators underlying and , respectively, i.e.,
and . Also, let

PANTELIC AND LAWFORD: OPTIMAL SUPERVISORY CONTROL OF PROBABILISTIC DISCRETE EVENT SYSTEMS 1113

Fig. 1. Plant , and requirements specification .

be the synchronous product of generators
and , . There exists a probabilistic

supervisor such that iff for all
, the following two conditions hold:

i) , and for all

ii) , and, if ,
then for all

Conditions (i) and (ii) together are necessary and sufficient
for the existence of a probabilistic supervisor. The first part of
both conditions corresponds to controllability as used in clas-
sical supervisory theory (namely, the condition

of (i), and of (ii)).
The remaining equations and inequalities correspond to the con-
ditions for probability matching. For each uncontrollable event
possible from a state in a plant, the equation to be checked re-
flects the fact that the ratio of probabilities of uncontrollable
events remains the same under supervision. This comes from
the fact that after a control pattern has been chosen, the prob-
abilities of disabled events in the plant are redistributed over
enabled events in proportion to their probabilities. Any pos-
sible uncontrollable events are always enabled, hence the ra-
tios of their probabilities remain unchanged. An inequality for
each possible controllable event is derived from the upper
bound on the probability of the occurrence of in the supervised
plant that is reached when the controllable event
is always enabled. In this case we could add to and use
(i) to derive that for an

. Reducing probability of the controller en-
abling would have the effect of reducing this ratio on the right
side, so we must have or
equivalently . Since we
assume the systems are nonterminating, we know that:

This last equation simplifies to (ii) with equality holding when
event is always enabled.
Also, it should be stressed that a special case was implic-

itly considered in the previous theorem. This special case arises
when all the possible events in a state of the plant are control-
lable. Then, disabling all the events can cause termination. In
order to avoid this (as the generators considered do not termi-
nate), there is always at least one event enabled (for details, an
interested reader is referred to [23]).
When the conditions are satisfied, a solution to the PSCP ex-

ists. The probabilistic supervisor can then be computed by the
fixed point iteration algorithm as presented in [22], [23].

III. PROBLEM FORMULATION

In the case when the conditions for the existence of a so-
lution of the probabilistic supervisory control problem are not
satisfied, we search for a suitable approximation. We define the
problem as follows.
1) Optimal Probabilistic Supervisory Control Problem

(OPSCP): Let be a plant PDES, and
let be a requirements specification
represented as a PDES. If there is no probabilistic supervisor
such that (i.e., the conditions of

Theorem 1 fail), find, if it exists, such that
1) and supervisor is maximally per-
missive in the nonprobabilistic sense (i.e., is the
supremal controllable sublanguage of with the re-
spect to).

2) The probabilistic behavior of the controlled plant is “as
close as possible” to the probabilistic behavior of the re-
quirements specification restricted to the supremal control-
lable sublanguage of with the respect to .

Let be the closest approximation.
The first criterion is straightforward. The requirement rep-

resents a safety constraint: the controlled plant is not allowed to
generate strings not in even with the smallest of prob-
abilities. Further, the criterion of maximal permissiveness is a
standard one for optimality of supervisory control. The second
criterion, on the other hand, is probabilistic: a distance in a pseu-
dometric between the initial states of the probabilistic genera-
tors and an appropriately modified is chosen as a measure
of probabilistic similarity. The requirements specification is
modified such that its nonprobabilistic behavior is reduced to
the maximal permissible legal nonprobabilistic behavior of the
plant under control. In other words, the (nonprobabilistic) lan-
guage of the modified specification is the supremal controllable
sublanguage of with respect to . Consequently, the
probabilities of the specification are revised so that the proba-
bilities of the events inadmissible for not satisfying the first cri-
terion are redistributed over the admissible ones. The rationale
behind the modified specification is as follows:
• It makes sense for a designer to modify the (probabilistic)
requirements specification as she cannot do better in a non-
probabilistic sense. So, after realizing that only a subset
of the desired nonprobabilistic behavior is achievable, the
designer sees no reason to insist on the probabilities sug-
gested for a behavior that cannot be achieved. We assume
that the designer wants to, for each state, distribute the

1114 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

probabilities of the events not possible anymore over the
remaining ones so that the new probabilities are propor-
tional to the old ones. However, the designer might want
to rebalance the probabilities any way it suites her. The al-
gorithm to be proposed should be able to handle any such
rebalancing.

• Obviously, it might be the case that the designer prefers to
leave the specification intact. Then, the problem to solve
becomes the OPSCP with criterion (2) modified so that
the difference between the controlled plant and the orig-
inal specification is minimized. As it turns out, the solu-
tion of the original OPSCP is an important part en route
to the solution of this modified OPSCP. More precisely,
with some preprocessing, the algorithm that we propose in
Section VI can be reused for the modified OPSCP (for de-
tails, see [37]).

IV. PSEUDOMETRIC FOR THE CLOSEST APPROXIMATION

In this section, we first motivate our choice of the pseudo-
metric, especially in the context of related research done on
pseudometrics on states of probabilistic systems. The chosen
pseudometric is then presented.

A. Probabilistic Pseudometrics

Probabilistic bisimulation, introduced in [43], is commonly
used to define an equivalence relation between probabilistic sys-
tems. However, probabilistic bisimulation is not a robust rela-
tion: the probabilities of corresponding transitions must match
exactly.
The formal definition follows and represents a modified ver-

sion of the definition of probabilistic bisimulation given in [44].
Definition 3: Let be a PDES. A proba-

bilistic bisimulation on is the binary relation such that for
any , and any such that , the following
holds:
1) For every such that , there is
such that , , and .

2) For every such that , there is
such that , , and .

States and are probabilistic bisimilar if there exists a prob-
abilistic bisimulation such that .
As a more robust way to compare probabilistic systems, a

notion of pseudometric is introduced. A pseudometric on a set
of states is a function that defines a dis-
tance between two elements of , and satisfies the following
conditions: , , , and

, for any , , . A pseudometric
generalizes a metric in that two distinct points are allowed to be
at the distance 0. If all distances are in , the pseudometric
is 1-bounded.
Little work on distance between probabilistic systems has fo-

cused on generative models. The first paper that discussed the
use of a pseudometric as a way to measure the distance between
two probabilistic processes is [45]. This early work considers
deterministic generative probabilistic systems. The distance be-
tween processes is a number between 0 and 1, and represents a
measure of a behavioral proximity between the processes: the
smaller the number, the smaller the distance. The work of [14]

suggests a pseudometric based on probabilities of occurrence
of strings in languages generated by two automata. More pre-
cisely, the distance between two automata in the pseudometric
is defined as a maximal difference in occurrence probabilities of
strings in the corresponding languages. Probabilistic generators
are used to model probabilistic systems in [46]. In a symbolic
pattern recognition application, a pseudometric is introduced to
measure the distance between the original model and the trans-
formed one, where the transformed model has the same long
term distribution over the states as the original one.
The work of [24] introduces a pseudometric on states for a

large class of probabilistic automata, including reactive and gen-
erative probabilistic automata. This metric is inspired by the
Kantorovich metric [25] which is used in transport problems,
and more recently has been used by Hutchinson in his theory of
fractals [26]. The metric is also known as Wasserstein metric
[27]. The pseudometric is characterized as the greatest fixed
point of a function. Two states are at distance 0 in this pseu-
dometric if and only if they are probabilistic bisimilar. This is
the pseudometric we will use in the solution of our problem.
The pseudometric has a discount factor : the smaller
the factor, the greater the discount of future. The work of [24] is
closely related to [29]–[35], [38]–[40], [47], which consider re-
active systems. In [32], [35], [38]–[40], polynomial algorithms
to approximate (with a specified accuracy) the distances in re-
spective pseudometrics (also based on the Kantorovich metric
with a discount factor) are presented. The algorithms are appli-
cable for . In general, for this type of pseudometric, the
value of determines the topology of the pseudometric: a pseu-
dometric with factor has a different topology than
the one with (see [31]). Further, efficient algorithms typ-
ically exist that approximate the distances for , while
no such algorithms are known to exist for . It is to expect,
then, that for , there is a simple algorithm to compute
distances in our pseudometric for our generative, deterministic
model (see Section V). Conveniently enough, the concept of dis-
count has been widely applied in game theory, economics and
optimal control [48]. From an engineering point of view, one
cares more about an error in the near future than one in the dis-
tant future [49]. Also, the pseudometric intuitively matches our
notion of the distance between PDES and accounts for all dif-
ferences between corresponding transition probabilities, as op-
posed to, for example, that of [45] that, roughly speaking, con-
siders only the maximum of the differences between the cor-
responding probabilities. Furthermore, as the pseudometric is
suggested for a large class of systems, it allows for an exten-
sion of our work to, for example, nondeterministic systems.
Further, as presented in [36], [37], the pseudometric has both
logical and trace characterizations. The logical characterization
measures the distance between two systems by a -valued
formula that distinguishes between the systems the most, while
the trace characterization describes the similarity between the
probabilistic traces of similar systems. More precisely, the trace
characterization shows that the pseudometric measures not only
the difference in (appropriately discounted) occurrence proba-
bilities of strings in two systems, but also differences in (appro-
priately discounted) occurrence probabilities of certain sets of
strings as well as some properties of strings.

PANTELIC AND LAWFORD: OPTIMAL SUPERVISORY CONTROL OF PROBABILISTIC DISCRETE EVENT SYSTEMS 1115

Our generativemodel can be transformed to themodels of [2],
[3], [29], [31], but with a state space expansion by a factor of

. However, as the current mathematical apparatus allows
for direct reasoning about distance between our generators, no
benefits in regards to the optimal supervisory control of PDES
would have been gained by a transformation to one of the afore-
mentioned models.
For a more detailed discussion on probabilistic pseudomet-

rics, see [41].

B. Pseudometric

Let be a PDES, where
. This is the system that will be used

throughout the sequel. Our pseudometric is based on the pseu-
dometric suggested in [24] for a large class of automata which
includes our generator: the two pseudometrics are the same up
to a constant.
First, [24] introduces the class of 1-bounded pseudomet-

rics on states with the (partial) ordering

(2)

as was initially suggested in [30]. It is proved that is a
complete lattice.
Then, let , and let the constant be a discount

factor that determines the degree to which the difference in the
probabilities of transitions further in the future is discounted:
the smaller the value of , the greater the discount on future
transitions. Next, we introduce some useful notation. Let ,

and let and be the distributions on
induced by the states and , respectively. Assume ,

. For notational convenience, we will write instead
of , and, similarly, instead of . Then, the
distance between the distributions and , (note
the slight abuse of notation) for our generators is given as:

if
(3)

The dual of this problem is:

(4)

where is given as in (3). The problem (4) is a minimum cost
flow problem in the network made of two copies of state space
, where one state space represents the set of source nodes, and

the other is the set of sink nodes. Let be the cost of moving
one unit of mass from source state to sink state through
and . Then, the problem becomes finding the most economical
way to transport mass from source nodes to sink nodes such that
the mass to be transported from source node through is ,
and the mass to be transported to sink node through is .
The pseudometric on states, , is now given as the greatest

fixed-point of the following function on (here, for proba-
bilistic generators, we give a simplified version of that in [24]):

(5)

The definition of the pseudometric on distributions is a mod-
ified version of that of [24]: the pseudometric is changed such
that the distances between the states in are larger by a factor
of than the distances in the pseudometric defined in [24].
This is done so that the distances in our pseudometric are in

interval instead of . A number of existing results can
be reused in reasoning about our pseudometric. The distance
between distributions (3) is a 1-bounded pseudometric, and is
consistent with the ordering (2) (see [30], [32]). The proofs that
the function defined by (5) is monotone on , and that it does
have a greatest fixed point originate from [30]. Also, according
to Tarski’s fixed point theorem, the greatest fixed point of func-
tion can be reached through an iterative process that starts
from the greatest element. As the number of transitions from a
state of a probabilistic generator is finite, the greatest fixed point
of the function is reached after at most iterations ([24],
[30]), where is the first infinite ordinal.
The definition of the pseudometric as a greatest fixed point of

function (5) is a quantitative analogue of the definition of (non-
probabilistic) bisimilarity as a greatest fixed point of a mono-
tone function. Consequently, the pseudometric is an analogue
of probabilistic bisimulation: two states are at distance 0 if and
only if they are probabilistic bisimilar (for proof, see [24]). Fur-
thermore, the pseudometric measures behavioral similarity be-
tween states: greater distances correspond to greater differences
in behavior.
The work of [24] does not offer any algorithms for calculation

of their pseudometric. In Section V, two algorithms for calcu-
lating our pseudometric are proposed.

V. CALCULATING THE PSEUDOMETRIC

As a prelude to the solution of the optimal approximation
problem, two algorithms that calculate/approximate distances
in the pseudometric are suggested. First, the function is
simplified, and then the algorithms are described, and their cor-
rectness proven.

A. Simplifying Function for Deterministic Generators

The function that represents the pseudometric on distribu-
tions is defined as the linear programming problem (3). We now
show that, for deterministic generators, this function, and con-
sequently, function as defined by (5), can be simplified by
explicitly solving the linear programming problem (3).
First, recall that our generators are deterministic: for an event
and a state , there is at most one state such that

1116 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

. For the purposes of the following analysis of our de-
terministic generators, we rewrite the objective function of the
optimization problem of (3) as:

(6)

where such that if , and
, otherwise. We arbitrarily choose to be 0

when is not defined, although we could have chosen
any . This is because when does
not hold, then for any .
Similarly, such that if , and

, otherwise. For readability purposes, we will write
instead of , and instead of .
We are now ready to state our first result.
Lemma 1: Let be a PDES. Then, the

function simplifies to:

where, again, as before, and and denote
and , respectively, as defined in (6).

Proof: The objective function (6) can be maximized by
maximizing each of its summands separately. In order to explain
this observation, we consider a summand .
Due to the generator’s determinism, there is no other nonzero
summand containing , , , .
Therefore, the last constraint of (3) for any two coefficients
and from different summands be-
comes . This constraint is already implied by the
first constraint, so we can independently pick the coefficients
in different summands, and, consequently, independently max-
imize the summands in order to maximize the sum.
In order to maximize a summand of the objective function (6),

we solve the following linear programming problem for :

where and are defined as in (6), and as
before. Also, note that the set of constraints does not contain
the inequality . In order to maximize the given
function, the coefficient is to be chosen to be greater than

since the given constraints allow it. In that case, since
, if , then follows, so

the latter constraint is redundant. Further, it is not hard to see
that the solution of the given linear programming problem for

is equal to . We can solve
this problem using graphical method, simplex method or using
the following line of reasoning. In order to maximize the given
function, we can either choose to be 1 and then pick
so that it has the minimal value for the given constraints, or we
choose to be 0, and then pick so that it has the maximal
value under the given constraints. In the first case, we pick
to be 1, to be , and value of the objective function is

. In the second case, since is 0, then
is equal to , and the objective function becomes . The
latter is our solution, since

(for and). Using
the same reasoning, for , the maximum is reached at

and its value is .
Now, we put together the presented solution of the linear pro-

gramming problem (3). The distance between the distributions
and is then:

if

or, equivalently,

where as before, and and denote
and , respectively, as defined as in (6).
To summarize, the function for our model is given as:

where, again, as before, and and denote
and , respectively, as defined in (6).

As stated in Section IV-B, the pseudometric is now char-
acterized as the greatest fixed point of function .

B. Calculating the Pseudometric

For , we will prove that the function has only
one fixed point, , and, consequently, . Then, two
algorithms for calculating the distances in pseudometric are
suggested.
First, some useful definitions and results from linear algebra

are introduced.
A real matrix defines a linear mapping

from to , and we will write to denote either
the matrix or linear function, as no distinction between the two
is necessary. Also, the absolute value of column vector

will be denoted by , and defined as
. A partial ordering on is defined as

the product order:

Definition 4: For any complex matrix , the spectral
radius of is defined as the maximum of , where

are the eigenvalues of .
The spectral radius of , denoted , satisfies
, where is an arbitrary norm on . During the course

of the following proof we will make use of the infinity norm
. Also, the proof will use functions

and defined in the
standard manner to be the quotient and remainder, respectively,
of the division of the first argument by the second.
Definition 5 ([50]): An operator is called

a -contraction on a set if there exists a linear operator
such that , and

PANTELIC AND LAWFORD: OPTIMAL SUPERVISORY CONTROL OF PROBABILISTIC DISCRETE EVENT SYSTEMS 1117

Now, let . Next, we define the function
:

Note that the vector could be further cut down, as
and for any , . However, for ease of

presentation, we will not decrease the size of the vector. There-
fore, , where for

is given as:

Now, the function is redefined in a natural way as
, where for any

:

(7)

Further, let .
Lemma 2: The function is a -contraction on .
Proof: Let , , and , and .

Let , and let and be given
as in (7). Also, let such that if ,
and , otherwise. Similarly, such that

if , and , otherwise. Again, for
notational convenience, we will write instead of , and
instead of . Also, we will write instead of ,
and, similarly, instead of for . Then:

if
otherwise

(8)

(9)

Note that and are also functions of
(since and are functions of). Now, without the explicit
construction of matrix , we can see from (9) that there exists
such that where

Therefore, and, since, obviously, , then is
-contraction.
Lemma 3: Let , , and , and .

For any , there exists such
that:

Proof: We use the notation from Lemma 2.

Theorem 2: For any , the sequence

converges to the unique fixed point of in , , and the error
estimate is given componentwise as:

(10)

Proof: Note that this is a variant of the contraction-map-
ping theorem extended to -contractions [50, Theorem 13.1.2].
A similar proof technique is employed. For details, see the
Appendix.
Now, using the presented analysis, the following two algo-

rithms for the calculation of the distances between the states of
PDES in the chosen pseudometric are suggested.
Algorithm 1: Theorem 2 proves that the system of equations

(11)

1118 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

has a unique solution. The system (11) is a system of linear
equations. Therefore, the system (11) can be rewritten into the
standard form , where is a matrix and is
a column vector of dimension . Therefore, the distances in
the pseudometric can be calculated by solving this system of
linear equations.
Algorithm 2: Theorem 2 also suggests an iterative algorithm

to approximate distances in the pseudometric between the
states of a probabilistic generator. Let for any
two states , . As before, let and be the distribu-
tions induced by the states and , respectively. The -th it-
eration of the algorithm calculates the distance between each
two states , :

where , and and
are defined as in (6). The accuracy of the solution found at the
-th iteration is .
The pseudometric of [24] is closely related to the ones sug-

gested in [32], [35], [38]–[40]. It is not a surprise then that our
iterative algorithm turns out to be similar to those of [32], [35],
[38]–[40] that calculate distances in similar pseudometrics sug-
gested for different kinds of probabilistic system. Those algo-
rithms are similar to ours in that they all approximate the dis-
tances by fixed point iterations. In each iteration, however, the
algorithms of [32], [35], [38]–[40] solve a special case of the
linear programming problem—the transshipment problem—for
each pair of states. The transshipment problem can be solved
in polynomial time. On the other hand, in each iteration, for
each pair of states, our algorithm simply evaluates an expres-
sion. The evaluation is done in linear time. The simplification
is possible due to the deterministic nature of our generators.
Also, while our algorithm is derived from the characterization
of the pseudometric as the greatest fixed point of a monotone
function, the pseudometric of [32], [35] is defined as the metric
kernel induced by the unique map from the probabilistic transi-
tion system, viewed as a coalgebra, to the terminal coalgebra. In
that regard, the derivation of [39], [40] is more similar to ours
since they start from the fixed point characterization, and then
use the Banach fixed point theorem, whereas we use its gener-
alization to -contractions.
The iterative method can be useful for systems with large
, where the direct method can be rather expensive. More

importantly, the mathematical apparatus used to reach the iter-
ative method will be reused in the solution of the OPSCP in
Section VI.
An important feature of is to be noted: metric is defined

on any two states of a single PDES, not on two states that belong
to different PDES. In order to define the distance between two
PDES (with disjoint sets of states) as the distance between their
initial states, a new PDES is created that represents the union of
the two PDES (the union is defined in a natural way as will be
presented formally in Section VI-B).
Also, it should be stressed that the presented algorithm works

for . However, [51] presented an algorithm for cal-
culating distances in the pseudometric of [31] for a variant of

Markov chains for the case when . The key element in
the algorithm is Tarski’s decision procedure for the first order
theory of real closed fields. We believe that this algorithm can
be modified to calculate between the states of probabilistic
generators. However, as this algorithm is impractical, an effi-
cient calculation of the pseudometric for is still an open
problem.

VI. CLOSEST APPROXIMATION: ALGORITHM

In this section the algorithm that solves the closest approx-
imation problem is presented. All the results in the sequel are
applicable for .
First, the formulation of the closest approximation problem

is repeated. Assume that the plant is given as PDES
, and the requirements specification is given

as . If there is no probabilistic super-
visor such that , the optimal solu-
tion is sought. The solution is optimal in the following sense.
It is assumed that the nonprobabilistic language of the require-
ment is a safety requirement: no other strings are allowed in the
plant. Then, it is required that maximal permissible behavior (in
the nonprobabilistic sense) is achieved. In this case, the proba-
bilistic behavior of the controlled plant should be as close as
possible to the requirements specification that is now normal-
ized so that it is constrained to the supremal controllable non-
probabilistic language. The proposed algorithm uses this sepa-
ration of probabilistic and nonprobabilistic aspects of optimality
so that it deals with each aspect separately: the first part handles
the “nonprobabilistic optimality,” and the second part handles
the “probabilistic optimality.”

A. Part I: Nonprobabilistic Optimality

Before we start looking for the closest approximation in the
sense of probability matching, we resort to the classical supervi-
sory theory of supremal controllable languages. First, the clas-
sical controllability condition that corresponds to the first parts
of conditions (i) and (ii) of Theorem 1 is checked while con-
structing . Then, if the condition is not sat-
isfied, the goal is to find , the deadlock-free supremal con-
trollable sublanguage of (with respect to).
The language is required to be deadlock-free as termina-
tion is not allowed. Then, the DES that represents this language
, further equipped with distribution (appropriately normal-

ized) becomes the modified plant PDES . Also, a DES cor-
responding to language equipped with the distribution
appropriately normalized, becomes the desired behavior PDES
. Formally, let the reachable and deadlock-free DES

represent language . We define a PDES
, where the distribution , for

any , , is defined as:

where for any such that .

PANTELIC AND LAWFORD: OPTIMAL SUPERVISORY CONTROL OF PROBABILISTIC DISCRETE EVENT SYSTEMS 1119

Similarly, let be a DES isomorphic to
up to renaming of states, and, without loss of generaliza-

tion, assume . Obviously, the nonprobabilistic lan-
guage generated by is , too. Similarly, we define a PDES

where the distribution ,
for any , , is defined as:

where for any such that .
Note that and are well-defined as no state minimization on
automaton representing language is performed.

B. Part II: Probabilistic Optimality

Now, the probability matching equations and inequalities
from Theorem 1 are checked. If they are not satisfied (i.e., there
is no probabilistic supervisor such that

), the goal is to find
such that there exists a probabilistic supervisor so that

holds, and is closest to in our
chosen pseudometric. Without loss of generality, it is assumed
that . Also, without loss of generality, it is assumed
that the nonprobabilistic automata underlying and are
isomorphic (with labeling of events being preserved). There-
fore, the nonprobabilistic automata underlying and are
identical up to renaming of states. This assumption is not re-
strictive as there cannot be any string in the desired system that
does not belong to , and, therefore, since , there
cannot be any string in the desired system that does not belong
to . This comes from the fact that is the reach-
able and deadlock-free supremal controllable sublanguage: if
any string not in would be allowed in the controlled
plant, either the safety or nontermination requirement might
not be met. As our pseudometric is defined on the states of a
single system, in order to define distances between the states
of different systems, namely and , the union PDES

is considered, where for
and :

if

if

First, note that, considering the isomorphism between
and , only the distances between (probability measures on)
states of and of are of in-
terest, where is the isomorphism between and .
Also, let be an isomorphism between and . It is as-
sumed that PDES is in state after the occurrence of string

. Then, the closest approximation
is in state , respectively, where . Let be the prob-
ability distribution induced by the state of PDES
and let be the probability distribution induced by the state

of PDES .
Next, a class of partial functions

is defined, such that , ,
, where . Therefore, the class is the class of

all 1-bounded pseudometrics with domain reduced to ,
and only distances between and defined
since the algorithm is independent of the distance between the
other states. Next, we define a family as a set of probability
distributions on . Now, for each , we define
function as (, ,):

where, as before, is lifted to the pseudometric on distributions,
and is defined as in (5). Also, the reversed ordering
on is introduced to match the one in (2):

The fact that is a complete lattice follows from the
fact that is a complete lattice. Further, for each

, we define function as the greatest fixed point

of function . The problem of finding the optimal approx-
imation reduces now to finding such that

and the

conditions for the existence of a probabilistic supervisor of The-
orem 1 are satisfied. It follows straight from the definitions of

and that, for any , , ,
the distances are distances in our pseudometric.
We assume that ,

, and ,
where , , . Note
that, for probability distributions, a different notation will be
used than the one used in the previous section. Let ,

, , ,
and . Also, we will write for ,
then instead of , and instead of ,

. Now, the function is defined
as:

(12)

(13)

(14)

(15)

(16)

Constraints (13) and (14) represent the conditions for the ex-
istence of probabilistic supervisor given by Theorem 1. The
function is well-defined since, if for all

1120 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

, the constraints (13)–(16) are satisfied. Therefore, the op-
timization problem has a feasible origin. Since is a complete
lattice, and the function can be easily shown to be monotone,
it has a greatest fixed point. Next, a useful lemma is stated.
Lemma 4: Let be a complete lattice, and let ,

be two monotone functions such that
. Let and denote the greatest fixed point of

functions and , respectively. Then, .
Proof: See the Appendix.

Obviously, because of the definition of function , for any
function , where , it holds that ,

. Using Lemma 4, we conclude that the greatest
fixed point of is greater than or equal to any , .
This greatest fixed point corresponds to theminimal distance be-
tween and because of the reversed ordering on . There-
fore, the greatest fixed point of function corresponds to the
distances in our pseudometric where the distance between
and is minimized under the conditions of Theorem 1 for the
existence of a probabilistic supervisor. Consequently, the values
of decision variables for when the greatest fixed
point of is reached correspond to the statewise probability
distributions of the optimal approximation.
We suggest an iterative algorithm to calculate the minimum

achievable distance (i.e., the only fixed point of the function
) up to a desired accuracy and provide the probability dis-

tribution of the system’s achievable behavior when this dis-
tance is reached. The proof pattern used for the algorithm from
Section V-B is followed. However, as mentioned before, the
only relevant distances are the ones between and

.
Let . Again, we assume that ,

and , where ,
. Further, let us define function as:

Therefore, , where, for
:

The function is redefined in a natural way as
, where for any :

where . Also, let .
Theorem 3: Function is P-contractive on .
Proof: Let , , and , and .

Next, for , , we define set
to be the set of all distributions that satisfy conditions
given by (13)–(16). Let . Then,

, and . As-
sume that the minumum of the objective function in (12)
in function is reached for for

. Further, assume that the minumum of the objective
function in (12) in function is reached for

for . Let . Also, let

such that , and . Assume that
. Then:

(17)

(18)

(Similarly, when , we get (18), with
instead of .) Every summand in (18) has one of the fol-
lowing forms:

PANTELIC AND LAWFORD: OPTIMAL SUPERVISORY CONTROL OF PROBABILISTIC DISCRETE EVENT SYSTEMS 1121

Hence,

Further, using the same reasoning as in the proof of Lemma 2,
it is straightforward to show that is P-contractive.
Lemma 5: Let , , and , and .

For any , there exists such
that:

Proof: See the Appendix.
Theorem 4: For any , the sequence

converges to the only fixed point of in , , and the error
estimate is given componentwise as:

Proof: See the Appendix.
The problem of (12)–(16) is not a linear programming

problem, but it is transformable into one by using additional
variables , and by transforming (13) into (19):

(19)

It might look as if (19) is weaker than (13) as it allows the
possibility of for all , which (13) forbids.
However, this is not the case. Let for every

. From (14) it follows that:

which would mean that for every which
contradicts the condition (15).
We now present the iterative algorithm for finding the fixed

point of function .

Let , . The distance
in the -th iteration is:

(20)

After the -th iteration, the value of decision variables
that represent the unknown transition probabilities are such that
the distance between the (initial states of) systems and is
within of the minimal achievable distance between the two
systems (in our pseudometric). Note that the aforementioned
results hold for .
Also, as previously mentioned, a modification of the pre-

sented algorithm can be used to solve the control problem pre-
sented in Section III with requirement 2) changed so that the
distance between the controlled plant and the unmodified re-
quirement is minimized (see [36], [37]).

C. Summarizing the Algorithm

We now summarize the presented algorithm and give a brief
complexity analysis.
1) First, the classical algorithm for finding the supremal
controllable sublanguage is modified. The automaton ,
the synchronous product of the nonprobabilistic automata
underlying and is constructed. While constructing
the product, the classical controllability conditions are
checked for each state. If the conditions are satisfied for
each state of the product, then , and go to 2).
If there is at least one state of the product for which the
classical conditions do not hold, the rest of the algorithm
for finding the automaton representing the supremal con-
trollable sublanguage is then applied. The algorithm can
easily be modified to exclude deadlock states: these states
are considered uncontrollable.
Let (reachable and deadlock-free) DES
represent this supremal controllable language.

2) Let , , and be defined as previously in this section.
Check the equalities and inequalities of Theorem 1 for each
state: if they are satisfied, a supervisor exists, and is the
optimal approximation. If not, then let for
all . The distance in the -th
iteration is given by (20).

1122 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

Fig. 2. Generators , , and optimal approximation .

TABLE I
EXAMPLE: FIXED POINT ITERATION

For each of the states of (typically, the number of states of
is much smaller than), either the simplex method

or an interior point method can be used to solve the linear pro-
gramming problem (20). Depending onwhat method is used, the
worst-case running time of the algorithm is either exponential
(simplex method) or polynomial (interior point methods) in the
maximal number of events possible from a state of the supremal
controllable sublanguage of the specification (with respect to the
plant). Even the worst-case exponential complexity of the sim-
plexmethod is not problematic for two reasons: first, the method
is very efficient in practice, and second, the number of possible
events from a state is small in practical applications. Further-
more, the number of iterations sufficient to reach the accuracy
of is (the smallest number for which
is satisfied).

D. Example

For plant depicted in Fig. 1, there does not exist a proba-
bilistic supervisor such that . Fig. 2 shows
the modified plant and modified specification , defined
as suggested in Section VI-A. For PDES , let be the prob-
ability distribution induced by the state and, for PDES
, let be the probability distribution induced by the state

. As before, we will write instead of ,
and instead of , , , 1, 2. For the accu-
racy , and , 10 iterations of the algorithm are
suficient. The closest approximation is as given in Fig. 2. The
computation is shown in detail in Table I. Note that the proba-
bilities of the closest approximation do not change from the first
iteration. Although this is not the case in general, for future work
we would like to investigate how the unknown probabilities of

the closest approximation change as the distance converges. The
computation took 0.3 seconds on a 2.6 GHz dual core Opteron
processor with 8 GB of RAM running Red Hat Enterprise Linux
Server 5.5. In order to find the corresponding probabilistic su-
pervisor, the algorithm of [22], [23] can be used. For the state
and event , the control input is 0.6, for and event , the

input is 1, and for and event , the input is 0.625.

VII. CONCLUSIONS

This paper solves the classical problem of finding the closest
approximation in the framework of probabilistic control of
PDES. Two algorithms for the calculation of distances (in the
chosen pseudometric) between the states of a probabilistic
generator used to model a PDES are suggested. Then, a modi-
fication of the iterative algorithm is proposed to minimize the
distance (in this pseudometric) between the desired behavior of
the system and its achievable behavior.
Operators on probabilistic generators should be defined and

their desired property of non-expansiveness with the respect to
the pseudometric should be checked. This would allow for com-
positional reasoning. Further, the question of uniqueness of the
closest approximation remains open as well as probabilistic con-
trol with marking.

APPENDIX

Proof of Theorem 2: Let , . Then:

(21)

PANTELIC AND LAWFORD: OPTIMAL SUPERVISORY CONTROL OF PROBABILISTIC DISCRETE EVENT SYSTEMS 1123

(22)

Therefore, the sequence is a Cauchy sequence and
hence converges to some , and, consequently, the sequence

converges to some . Also, we have:

When we let , we see that .
Remark 2: Note that the error in the -th iteration can be

estimated as

that follows from (22) when in (21).
Finally, it should be proven that is the only fixed point in
. Assume that there is another fixed point of in the same

set , . Then,

Hence, . However, since ,
(see [50], 2.4.5.), then

. Therefore, .
The error estimate of (10) follows by induction, using

Lemma 3.
Proof of Lemma 4: According to Knaster-Tarski theorem,

the functions and have the greatest fixed points and
, respectively, where ,

and . Since ,
then ; hence .

Proof of Lemma 5: First, use the proof of Theorem 3 up to
(17), and, then, analogous to the proof of Lemma 3.

Proof of Theorem 4: Analogous to the proof of Theorem 2
(with using Lemma 5 instead of Lemma 3).

REFERENCES
[1] P. Ramadge and W. Wonham, “On the supremal controllable sublan-

guage of a given language,” SIAM J. Control Opt., vol. 25, no. 3, pp.
637–659, 1987.

[2] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical
Techniques for Analyzing Concurrent and Probabilistic Systems, ser.
CRM Monograph Series, P. Panangaden and F. van Breugel, Eds.
Providence, RI: Amer. Math. Soc., 2004, vol. 23.

[3] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Proc. Formal Methods for the Design of Computer,
Communication and Software Systems: Performance Evaluation, M.
Bernardo and J. Hillston, Eds., (Tutorial Volume) ed. Berlin, Ger-
many: Springer-Verlag, 2007, vol. 4486, Lecture Notes in Computer
Science, pp. 220–270.

[4] M. Huth andM. Kwiatkowska, “Comparing CTL and PCTL on labeled
Markov chains,” in Proc. PROCOMET, Feb. 1998.

[5] Y. Li, F. Lin, and Z. H. Lin, “Supervisory control of probabilistic dis-
crete event systems with recovery,” IEEE Trans. Autom. Control, vol.
44, no. 10, pp. 1971–1975, Oct. 1998.

[6] G. Mallapragada, I. Chattopadhyay, and A. Ray, “Autonomous robot
navigation using optimal control of probabilistic regular languages,”
Int. J. Control, vol. 82, no. 1, pp. 13–26, Jan. 2009.

[7] I. Chattopadhyay, G. Mallapragada, and A. Ray, “ : A robot path
planning algorithm based on renormalized measure of probabilistic
regular languages,” Int. J. Control, vol. 82, no. 5, pp. 849–867, May
2009.

[8] J. Feldman and J. F. Hanna, “The structure of responses to a sequence
of binary events,” J. Math. Psych., vol. 3, no. 2, pp. 371–387, 1966.

[9] L. Schröder and P. Mateus, “Universal aspects of probabilistic au-
tomata,”Math. Struct. Comput. Sci., vol. 12, no. 4, pp. 481–512, 2002.

[10] R. J. V. Glabbeek, S. A. Smolka, and B. Steffen, “Reactive, generative
and stratifiedmodels of probabilistic processes,” Inf. Comput., vol. 121,
no. 1, pp. 59–80, 1995.

[11] H.Mortazavian, “Controlled stochastic languages,” inProc. 31st Annu.
Allerton Conf. Commun. , Control, Comput., Urbana, IL, 1993, pp.
938–947.

[12] V. S. Borkar, Topics in Controlled Markov Chains. Hoboken, NJ:
Wiley, 1991.

[13] R. Kumar and V. Garg, “Control of stochastic discrete event systems:
Existence,” in Proc. Int. Workshop Discrete Event Syst., Cagliari, Italy,
Aug. 1998, pp. 24–29.

[14] V. Garg, R. Kumar, and S. Marcus, “Probabilistic language formalism
for stochastic discrete event systems,” IEEE Trans. Autom. Control,
vol. 44, no. 2, pp. 280–293, 1999.

[15] V. Garg, “An algebraic approach to modeling probabilistic discrete
event systems,” in Proc. 31st IEEE Conf. Decision Control, Tucson,
AZ, Dec. 1992, pp. 2348–2353.

[16] V. Garg, “Probabilistic languages for modeling of DEDS,” in Proc.
26th Conf. Inf. Sci. Syst., Princeton, NJ,Mar. 1992, vol. 1, pp. 198–203.

[17] R. Kumar and V. Garg, “Control of stochastic discrete event systems
modeled by probabilistic languages,” IEEE Trans. Autom. Control, vol.
46, no. 4, pp. 593–606, Apr. 2001.

[18] I. Chattopadhyay and A. Ray, “Language-measure-theoretic optimal
control of probabilistic finite state systems,” in Proc. 46th IEEE Conf.
Decision Control, New Orleans, LA, Dec. 2007, pp. 5930–5935.

[19] I. Chattopadhyay and A. Ray, “Language-measure-theoretic optimal
control of probabilistic finite-state systems,” Int. J. Control, vol. 80,
no. 8, pp. 1271–1290, 2007.

[20] A. Kučera and O. Stražovský, “On the controller synthesis for finite-
state Markov decision processes,” Fundamenta Inf., vol. 82, no. 1–2,
pp. 141–153, 2008.

[21] M. Lawford and W. Wonham, “Supervisory control of probabilistic
discrete event systems,” in Proc. 36th IEEE Midwest Symp. Circuits
Syst., Aug. 1993, vol. 1, pp. 327–331.

[22] S. Postma and M. Lawford, “Computation of probabilistic supervisory
controllers for model matching,” in Proc. Allerton Conf. Commun. ,
Control, Comput., V. Veeravalli and G Dullerud, Eds., Monticello, IL,
2004.

[23] V. Pantelic, S. Postma, and M. Lawford, “Probabilistic supervisory
control of probabilistic discrete event systems,” IEEE Trans. Autom.
Control, vol. 54, no. 8, pp. 2013–2018, Aug. 2009.

[24] Y. Deng, T. Chothia, C. Palamidessi, and J. Pang, “Metrics for ac-
tion-labelled quantitative transition systems,” Electron. Notes Theoret.
Comput. Sci., vol. 153, no. 2, pp. 79–96, 2006.

[25] L. Kantorovich, “On the transfer of masses (in Russian),” Doklady
Akademii Nauk, vol. 37, no. 2, pp. 227–229, 1942.

[26] J. E. Hutchinson, “Fractals and self-similarity,” Indiana Univ. Math.
J., vol. 30, no. 5, pp. 713–747, 1981.

[27] L. Wasserstein, “Markov processes over denumerable products of
spaces describing large systems of automata,” Prob. Inf. Trans., vol.
5, no. 3, pp. 47–52, 1969.

1124 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

[28] Y. Deng and W. Du, “The Kantorovich metric in computer science:
A brief survey,” Electron. Notes Theoret. Comput. Sci., vol. 253, pp.
73–82, Nov. 2009.

[29] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, J. C. M.
Baeten and S. Mauw, Eds., “Metrics for labeled Markov systems,”
in Proc. 10th Int. Conf. Concurrency Theory, 1999, vol. 1664, pp.
258–273.

[30] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden, “The
metric analogue of weak bisimulation for probabilistic processes,” in
Proc. 17th Annu. IEEE Symp. Logic in Comput. Sci., Washington, DC,
2002, pp. 413–422.

[31] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics
for labelled Markov processes,” Theoret. Comput. Sci., vol. 318, no. 3,
pp. 323–354, 2004.

[32] F. van Breugel and J. Worrell, K. G. Larsen and M. Nielsen, Eds., “An
algorithm for quantitative verification of probabilistic transition sys-
tems,” in Proc. Int. Conf. Concurrency Theory, 2001, vol. 2154, pp.
336–350.

[33] F. van Breugel and J. Worrell, “A behavioural pseudometric for prob-
abilistic transition systems,” Theoret. Comput. Sci., vol. 331, no. 1, pp.
115–142, 2005.

[34] F. van Breugel, C. Hermida, M.Makkai, and J. Worrell, “An accessible
approach to behavioural pseudometrics,” in Automata, Languages and
Programming, L. Caires, G. Italiano, L. Monteiro, C. Palamidessi, and
M. Yung, Eds. Berlin, Germany: Springer-Verlag, 2005, vol. 3580,
Lecture Notes in Computer Science, pp. 1018–1030.

[35] F. van Breugel and J. Worrell, “Approximating and computing
behavioural distances in probabilistic transition systems,” Theoret.
Comput. Sci., vol. 360, no. 1–3, pp. 373–385, 2006.

[36] V. Pantelic and M. Lawford, “Use of a metric in supervisory control
of probabilistic discrete event systems,” in Pro. 10th Int. Workshop on
Discrete Event Systems, Berlin, Germany, Aug. 2010, pp. 227–232.

[37] V. Pantelic andM. Lawford, “A pseudometric in supervisory control of
probabilistic discrete event systems,”Discr. Event Dynam. Syst., 2012,
to be published.

[38] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite Markov
decision processes,” in AAAI, D. L. McGuinness and G. Ferguson,
Eds. Cambridge, MA: AAAI Press/ MIT Press, 2004, pp. 950–951.

[39] N. Ferns, P. Panangaden, and D. Precup, “Metrics forMarkov Decision
Processes with infinite state spaces,” in UAI. Arlington, VA: AUAI
Press, 2005, pp. 201–208.

[40] N. Ferns, P. S. Castro, D. Precup, and P. Panangaden, “Methods for
computing state similarity in Markov decision processes,” in UAI.
Arlington, VA: AUAI Press, 2006.

[41] V. Pantelic, “Probabilistic supervisory control of probabilistic discrete
event systems,” Ph.D. dissertation, McMaster Univ., Hamilton, ON,
Canada, 2011.

[42] V. Pantelic and M. Lawford, “Towards optimal supervisory control of
probabilistic discrete event systems,” in Proc. 2nd IFAC Workshop De-
pendable Control of Discrete Syst., Bari, Italy, Jun. 2009, pp. 85–90.

[43] K. G. Larsen andA. Skou, “Bisimulation through probabilistic testing,”
Inf. Comput., vol. 94, no. 1, pp. 1–28, 1991.

[44] G. Barrett and S. Lafortune, “Using bisimulation to solve discrete event
control problems,” in Proc. Amer. Control Conf., Albuquerque, NM,
Jun. 1997, pp. 2337–2341.

[45] A. Giacalone, C. Jou, and S. Smolka, M. Broy and C. B. Jones, Eds.,
“Algebraic reasoning for probabilistic concurrent systems,” in Proc.
Working Conf. Programming Concepts Methods, Sea of Gallilee, Is-
rael, 1990, pp. 443–458.

[46] I. Chattopadhyay and A. Ray, “Structural transformations of prob-
abilistic finite state machines,” Int. J. Control, vol. 81, no. 5, pp.
820–835, 2008.

[47] F. van Breugel and J. Worrell, “Towards quantitative verification of
probabilistic transition systems,” in Int. Colloq. Automata, Lang. Pro-
gramming, F. Orejas, P. G. Spirakis, and J. van Leeuwen, Eds. Berlin,
Germany: Springer, 2001, vol. 2076, Lecture Notes in Computer Sci-
ence, pp. 421–432.

[48] D. Blackwell, “Discrete dynamic programming,” Annals Math. Stat.,
vol. 33, no. 2, pp. 719–726, 1962.

[49] L. de Alfaro, T. A. Henzinger, and R. Majumdar, J. C. M. Baeten, J.
K. Lenstra, J. Parrow, and G. J. Woeginger, Eds., “Discounting the
future in systems theory,” in Proc. Int. Colloq. Automata, Languages
and Programming, 2003, vol. 2719, pp. 1022–1037.

[50] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables. New York: Academic Press, 1970.

[51] F. van Breugel, B. Sharma, and J. Worrell, “Approximating a be-
havioural pseudometric without discount for probabilistic systems,”
Logical Methods Comput. Sci., vol. 4, no. 2:2, pp. 1–23, 2008.

Vera Pantelic received the B.Eng. in Electrical
Engineering from University of Belgrade, Bel-
grade, Serbia, in 2001, and the M.A.Sc, and
Ph.D. in Software Engineering from McMaster
University, Hamilton, ON, Canada, in 2005, and
2011, respectively.
She is currently working as a Postdoctoral Fellow

with the McMaster Centre for Software Certification.
Her main research interests include supervisory con-
trol of discrete event systems, and verification and
certification of safety-critical software systems.

Mark Lawford (SM’08) received the B.Sc. degree
in Engineering Mathematics from Queen’s Univer-
sity, Kingston, in 1989, where he also received the
University Medal in Engineering Mathematics, and
the M.A.Sc. and the Ph.D. degrees from the Systems
Control Group, Department of Electrical and Com-
puter Engineering, University of Toronto, Toronto,
ON, Canada in 1992 and 1997, respectively.
His research interests include software certifica-

tion, application of formal methods to safety critical
real-time systems, and supervisory control of discrete

event systems. He worked at Ontario Hydro as a real-time software verifica-
tion consultant on the Darlington Nuclear Generating Station Shutdown Sys-
tems Redesign project, receiving the Ontario Hydro New Technology Award
for Automation of Systematic Design Verification of Safety Critical Software in
1999. He joined the Department of Computing and Software,McMaster Univer-
sity, Hamilton, ON, Canada, in 1998 where he helped to develop the Software
Engineering and Mechatronics Engineering programs. In 2003 he was a Guest
Co-Editor of joint special issues on software inspection for the IEEE SOFTWARE
MAGAZINE and the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. He is a
licensed Professional Engineer in the province of Ontario.

