
Contents

Chapter 1 � Verifying Trustworthy Cyber-Physical Systems
using Closed-loop Modeling 3
Neeraj Kumar Singh, Mark Lawford, Thomas S. E. Maibaum
, and Alan Wassyng

1.1 INTRODUCTION 4
1.2 PRELIMINARIES 7

1.2.1 Requirements Engineering 7
1.2.2 CRT Pacemaker 8
1.2.3 Definition of the NBG Code 9
1.2.4 Event-B 9

1.3 ENVIRONMENT MODELING (THE HEART) 10
1.3.1 Heart Block 13

1.3.1.1 SA block: 13
1.3.1.2 AV block: 13
1.3.1.3 Infra-Hisian block: 13
1.3.1.4 Left bundle branch block: 14
1.3.1.5 Right bundle branch block: 14

1.3.2 Cellular Automata Model 14
1.4 CRT PACEMAKER CONTROL REQUIREMENTS 15
1.5 CLOSED-LOOP MODEL OF THE CRT PACE-

MAKER AND HEART 19
1.5.1 Abstract Model 19
1.5.2 First Refinement: Impulse Propagation and Tim-

ing Requirements 23
1.5.3 Second Refinement: Threshold and Heart Blocks 27
1.5.4 Third Refinement: Refractory and Blanking Pe-

riods and Cellular Model 29
1.5.5 Model Validation and Analysis 34

1.6 DISCUSSION 35

1

2 � Contents

1.7 RELATED WORK 36
1.8 CONCLUSION 37

CHAPTER 1

Verifying Trustworthy
Cyber- Physical Systems
using Closed-loop
modeling
Neeraj Kumar Singh
McMaster Centre for Software Certification, McMaster University
Hamilton, Ontario, Canada

Mark Lawford
McMaster Centre for Software Certification, McMaster University
Hamilton, Ontario, Canada

Thomas S. E. Maibaum
McMaster Centre for Software Certification, McMaster University
Hamilton, Ontario, Canada

Alan Wassyng
McMaster Centre for Software Certification, McMaster University
Hamilton, Ontario, Canada

CONTENTS

1.1 Introduction . 4
1.2 Preliminaries . 7

1.2.1 Requirements Engineering . 7
1.2.2 CRT Pacemaker . 8
1.2.3 Definition of the NBG Code . 9
1.2.4 Event-B . 9

1.3 Environment modeling (The Heart) . 10
1.3.1 Heart Block . 13

1.3.1.1 SA block: . 13
1.3.1.2 AV block: . 13

3

4 �

1.3.1.3 Infra-Hisian block: . 13
1.3.1.4 Left bundle branch block: 13
1.3.1.5 Right bundle branch block: 14

1.3.2 Cellular Automata Model . 14
1.4 CRT Pacemaker Control Requirements 15
1.5 Closed-Loop Model of The CRT Pacemaker and Heart . . . 19

1.5.1 Abstract Model . 19
1.5.2 First Refinement: Impulse Propagation and

Timing Requirements . 23
1.5.3 Second Refinement: Threshold and Heart Blocks . 27
1.5.4 Third Refinement: Refractory and Blanking

Periods and Cellular Model . 29
1.5.5 Model Validation and Analysis . 34

1.6 Discussion . 35
1.7 Related Work . 36
1.8 Conclusion . 37

T rustworthy Cyber Physical Systems (TCPS) are safety critical
systems, in which failure can lead to injuries and loss of life. These

systems demand strong integration and co-ordination between the comput-
ing sciences, network communication and physical modeling. Analyzing sys-
tem requirements is a major challenge in the area of safety-critical software,
where requirements quality is also an important issue in building a depend-
able cyber-physical system. Most projects fail due to a lack of understanding of
user needs, inadequate knowledge of the system’s environment, and inconsis-
tent system specifications. This typically results in poor system requirements.
Since software plays such an important role in critical systems embedded in
a physical environment, it is essential that we trace unidentified and hidden
requirements by validating and checking the consistency of the system re-
quirements. To this end, formal methods that model the closed-loop system
are invaluable. In this chapter, we present an incremental proof-based develop-
ment of a closed-loop model of the Cardiac Resynchronization Therapy (CRT)
and heart. We analyze the prime benefits of a closed-loop modeling approach
in requirements engineering to validate the appropriateness and correctness
of system behaviors in the early stage of system development, including new
research directions.

1.1 INTRODUCTION
The trustworthy cyber-physical systems (TCPS) are dependable critical sys-
tems that refer to the tight integration of and coordination between computa-
tional and physical resources [7]. The TCPS innovate several industrial sectors

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 5

related to avionic, transportation, medical, space and automotive domains, in
which main research goal is to improve our own ability to understand and
exploit interfaces between the cyber and physical worlds and to innovate new
behaviors and capabilities from their seamless integration. An increasing de-
mand for new technology forces for the rapid adoption of commercial firmware
and software for TCPS. The rapid adoption for TCPS increases vulnerabili-
ties could lead to devastating system failures. A failure in these system could
result of loss of life, including reputation and economical damage. In fact,
any failure in medical domain is a serious public health problem and poses a
threat to patient safety. For example, the USA Food and Drug Administration
(FDA) has reported several recalls for the cardiac pacemaker and implantable
cardioverter-defibrillator (ICD). These recalls are responsible for a large num-
ber of serious illnesses and deaths. During 1900-2002, 17,323 devices (8834
pacemakers and 8489 ICDs) were explanted and 61 deaths (30 Pacemaker pa-
tients, 31 ICD patients) were reported due to erroneous behavior according to
the FDA report. The FDA found that the deaths and adverse-events associ-
ated with the cardiac pacemaker and ICDs were caused by the product design
and engineering flaws including firmware problems [23].

Requirements engineering (RE) provides a framework for analysing and
simplifying a complex system to define the system requirements consistent
and precisely using informal, semiformal and formal techniques. It plays an
important role in the early stage of system development for reducing the de-
velopment cost, meeting system qualities and success of the system. The main
reasons of any project failure are inconsistent system requirements, missing
system behavior and lack of understanding of the system requirements. An
increasing demand for new emerging technologies and the growing system
complexities require to pay more attention on the requirement engineering
to omit failures in systems. The associated tools for requirement engineering
assist to identify the common problems, such as incompleteness, ambiguity,
inconsistencies, and vagueness encountered during the elicitation and specifi-
cation of the system requirements [6].

Software play a vital role in developing and controlling the critical em-
bedded systems. Over the past forty years, formal techniques have shown
some promising results in several domains, including healthcare, automotive,
avionic and nuclear by identifying possible errors through formal reasoning.
The formal reasoning has great impact in developing the system requirements
or checking the correctness of functional requirements. In the current indus-
trial practices, formal methods have been used to meet the standard require-
ments or certification requirements. For example, ISO 26262 [31] standard
has adopted the formal methods to design a passenger vehicle, particularly to
meet safety requirements of ASIL D. Validation of requirements specification
is an integral and essential part of the requirements engineering. Validation is
a process of checking, together with stakeholders, whether the requirements
specification meets its stakeholders’ intentions and expectations [24].

To identify emergent behaviors according to the given physical environ-

6 �

ment (i.e. the heart in cardiac pacemaker), missing requirements and incon-
sistencies in the early stage of system development for developing a safe and
dependable system, we need to look beyond the system itself and into the
working environment, including human interactions for specifying and ver-
ifying the given system requirements. In this chapter, we demonstrate the
results of our new work on the formalization of a closed-loop model of the Car-
diac Resynchronization Therapy (CRT) pacemaker and heart. The closed-loop
model is an integration of system model (CRT pacemaker) and environment
model (heart), in which both the system and environment models are formal-
ized using formal techniques. For developing the closed-loop model, we use the
Event-B modeling language that supports stepwise refinement. This stepwise
refinement is used to introduce safety properties at each layer of refinement
to guarantee a safe behavior of the CRT pacemaker. This closed-loop model-
ing approach is used to identify emergent behaviors according to the dynamic
functions of the biological environment heart and to help in the certification
of the CRT pacemaker. Moreover, the formal verification and validation of
this closed-loop model helps to identify missing system requirements and new
emergent behaviors that are not covered earlier during the requirements elic-
itation process. The closed-loop modeling approach helps for finding not only
the missing system requirements but also to get a confidence in the early stage
of system development by providing required safety properties under the vir-
tual environment. Our main objectives and contributions are given below. We
can consider all these objectives for developing any other TCPS that will use
the closed-loop modeling approach for verifying the system requirements using
formal techniques.

1. Closed-loop modeling in the early stage of TCPS development;

2. Identifying gaps or inconsistencies in the requirements of TCPS;

3. To verify and validate the behavior requirements of TCPS;

4. Strengthening the given TCPS requirements;

5. To support “what-if" analysis during the formal reasoning of TCPS;

6. Traceability of missing behaviors that leave a TCPS in undesired states;

7. Automatic identification of emergent behaviors;

8. Validation of the TCPS assumptions;

9. To demonstrate how we can help to meet the FDA requirements for
certifying the medical TCPS using the closed-loop formal modeling;

The structure of the chapter is as follows. In Section 1.2, we review pre-
liminary material: requirement engineering and CRT pacemaker. Section 1.3

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 7

presents an environment modeling of the heart, and the CRT pacemaker con-
trol requirements are presented in Section 1.4. Section 1.5 explores an incre-
mental proof-based formal development of a closed-loop system of the CRT
pacemaker and heart. A brief discussion is provided in Section 1.6. Section 1.7
presents related work and finally, in Section 1.8, we conclude the chapter.

1.2 PRELIMINARIES

1.2.1 Requirements Engineering

The Institute of Electrical and Electronics Engineers (IEEE) defines a require-
ment as a condition or capability that must be met or possessed by a system
or system components to satisfy the contract, standard, specification, or other
formally imposed document [1]. Requirements engineering is a branch of the
software engineering that allows to use systematic techniques to analyse sys-
tem requirements for checking the required properties of completeness and
consistency of a given system [35]. The requirements engineering is a complex
process that contains several small steps, such as elicitation, specification,
validation, analysis and management, for developing a system. In these steps,
the requirement elicitation is a process for identifying, reviewing, checking
and documenting the stakeholder requirements; the requirement specification
is used to documenting the stakeholder needs and constraints precisely using
formal or semi-formal techniques; the requirement analysis checks the stake-
holder requirements and system constraints using formal and informal tech-
niques; the requirements verification ensures the completeness, correctness,
understandable and consistent of system behavior according to stakeholders;
and finally, the requirements management is used for managing, coordinating,
and documenting the system development life-cycle.

The elicitation process of requirements engineering is an important step
for capturing the rationales and sources adequately to understand the require-
ments evolution and verification. Requirement analysis plays an important role
to advocate the required properties of the systems and software development
process. In addition, it also supports feedback mechanism to improve system
requirements by incorporating useful information for reducing complexities
by removing complex requirements by simple requirements. There are several
techniques that help for improving the quality of requirements for both the
ordinary and dependable systems. In this chapter, we demonstrate the result
of our work for analyzing the given system requirements of a TCPS under
the virtual environment by developing a closed-loop model. This approach
has potential benefits to identify new emergent behaviors and missing system
requirements in order to meet the required functional behavior of the system
under the given environment. This approach is useful for analyzing the sys-
tem requirements as long as its adoption decision is present preferably during
the early stages of the system development, and we need to understand how
a decision on analyzing requirements is made and which factors influence an

8 �

adoption of the requirements engineering. In our work, we present a concep-
tual treatment for analyzing the system requirements by developing a closed
loop model of TCPS and virtual operating environment for identifying the
emergent properties and peculiar requirements, which eventually provide us
with a theoretical lens to examine this adoption in a systematic manner [27].

1.2.2 CRT Pacemaker

The cardiac pacemaker is a complex electronic device that is designed to main-
tain an adequate heart rate in cases of bradycardia. This device is equipped
with a microprocessor that controls heart rhythm intelligently by observing
an actual behavior of the heart. The pacemaker generally serves two main
activities known as pacing and sensing. A sensor is used to sense an intrinsic
activity of the heart, and an actuator is used to deliver a short intense electri-
cal pulse into the heart. There are several sensors and actuators are required
together to sense and to actuate into multiple heart chambers, and all these
sensors and actuators are controlled by the microprocessor [4].

A Cardiac Resynchronization Therapy (CRT) or multi-site pacing device
is one of the advanced pacemakers that is designed to maintain heart rate
by treating a specific form of heart failure – poor synchronization of the two
lower heart chambers. This device has mainly three electrodes, equipped with
sensors and actuators, for right atrium, right ventricle and left ventricle. The
sensors of this device sense intrinsic activities from the chambers and the ac-
tuators deliver a short intense electrical pulse to the chambers of the heart to
help them beat together synchronously. The basic elements of a CRT pace-
maker are given as follows:

1. Leads: A set of insulated flexible wires for transmitting electrical im-
pulses between microprocessor and heart to fulfill the requirement of
pacing and sensing.

2. The CRT Generator: A metal case that contains the microprocessor
and battery. The microprocessor is also called the brain of the CRT
pacemaker that controls entire system functionalities.

3. Device Controller-Monitor (DCM): It is an external device that
communicates with an implanted CRT pacemaker through wireless con-
nection, and it helps for setting new parameters, changing configuration
and monitoring an actual behavior of the heart and implanted CRT
pacemaker.

4. Accelerometer: It is a specific sensor that is used to measure body
motion or dynamic activities to allow modulated pacing and sensing to
control the heart rhythm according to the physical needs of a patient.

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 9

Chambers Chambers Response to Rate Multisite
Paced Sensed Sensing Modulation Pacing
O-None O-None O-None O-None O-None
A-Atrium A-Atrium T-Triggered R-Rate Modulation A-Atrium
V-Ventricle V-Ventricle I-Inhibited V-Ventricle
D-Dual(A+V) D-Dual(A+V) D-Dual(T+I) D-Dual(A+V)

TABLE 1.1: The NASPE/BPEG Generic Code for Antibradycardia Pacing

1.2.3 Definition of the NBG Code

The NASPE/BPEG generic (NBG) code is summarized in Table 1.1. There
are five columns in the table, where each column represents a sequence of
letters for presenting the different type of operating modes. The first letter of
the code indicates the chamber(s) in which pacing occurs, the second letter
indicates the chamber(s) in which sensing occurs, and the third letter indicates
each instance of sensing on the triggering or inhibition of subsequent pacing
stimuli. The fourth letter is optional, and indicates the presence (R) or absence
(O) of an adaptive rate modulation. The last letter indicates whether multisite
pacing is present in (O) none of the cardiac chambers, (A) one or both atria,
(V) one or both ventricles, and (D) any combination of atria and ventricles.

1.2.4 Event-B

In our work, we choose the Event-B modeling language [2, 32] that enables to
formalize a system using correct by construction approach. The correct by con-
struction approach allows to design a complex system incrementally by adding
concrete details in each new refinement level. The incremental development
gradually builds a concrete system by introducing new safety properties and
checking the correctness of required behavior at each refinement layer. The
basic system modeling components are context and machine. The main ele-
ments of the context are carrier set, constant, axiom and theorem that describe
the static properties of a system. The main elements of another component
machine are variable, invariant, event and theorem that specify the dynamic
properties of a system. An event is composed of the guard and action that
models a changing state of a system. At each refinement step, we can either re-
fine abstract events or introduce a new set of variables, invariants and events.
In addition, we can also introduce new safety properties and theorems for
developing a safe system. The abstract events can be refined by: (1) keeping
the event as it is; (2) splitting an event into several events; or (3) refining by
introducing another event to maintain state variables. At each new refinement
level, the developing system always preserves the abstract functional behavior
and required safety properties.

Rodin [32] is an open source eclipse based Integrated Development Envi-
ronment (IDE) for developing the Event-B models. This is a collection of plu-
gins that supports model management, model development, refinement based
modeling, model composition/decomposition, proof obligation generation, dis-

10 �

(a) - Basic Electrical Conduction Sytem

Sinoatrial
(SA)
Node

Right Atrium

Right Ventricle
Right Bundle

Branch

Left Bundle
Branch

Left Ventricle

Bundle of His

Atrioventricular
(AV)
Node

Left Atrium A

B
C

D

E
F

G

H

RA

RV LV

(b) - Landmarks in Network (c) - Biventricular Pacing

FIGURE 1.1: The Electrical Conduction and Landmarks of the Heart

charging the generated proof obligations using automated theorem provers,
and code generation. Due to page limitation, we do not discuss the Event-B
modeling language in detail. There are several publications and books [2, 32]
available for fundamental and refinement strategies to gaining experience and
knowledge in Event-B.

1.3 ENVIRONMENT MODELING (THE HEART)
The heart, a biological muscular organ, pumps blood to circulate in the entire
body. It consists of four chambers. The left and right atrium chambers collect
blood and pump it into the lower ventricle chambers to pump blood out to
the lungs or other parts of the body. The heart requires an electrical stimulus
to contract and relax periodically. An electrical stimulus is generated by the
small mass of specialized tissue called sinus node. The generated electrical
impulse travel down through the conduction network. The flow of an electrical
impulse varies, and it is time dependent to synchronize the heart chambers:
atria and ventricles. For example, the atria contract earlier than ventricles,
so that the blood pumps out from atria and pumps it into ventricles. The
basic components of the heart are depicted in Fig. 1.1(a). To model the heart
behavior abstractly, we consider a set of landmark nodes (A, B, C, D, E, F,
G, H) on the conduction network (see Fig. 1.1(b)). All theses landmarks are
identified through literature survey [15, 19, 5, 16] and extensive discussions
with the cardiologists and physiologists.

In this section, we present a formal definition of the heart, and the required
properties related to the impulse propagation time and impulse propagation
speed. Moreover, we also discuss heart blocks and cellular automata that are
used for specifying the heart behavior correctly. This brief introduction allows
users to understand the modeling concepts of the heart and for developing a
closed-loop model together with the CRT pacemaker. A detailed description

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 11

about the heart and formalization steps are available in [26, 25, 33]. Below we
introduce only necessary elements to formally define the heart.
Definition 1 (The Heart). Given a set of nodes N, a transition (conduc-
tion) t is a pair (i, j), with i, j ∈ N. A transition is denoted by i j. The
heart system is a tuple HSys = (N, T, N0, TWtime, CWspeed) where:

• N = {A,B,C,D,E, F,G,H} is a finite set of landmark nodes in the con-
duction pathways of the heart;
• T ⊆ N × N = {A 7→ B,A 7→ C,B 7→ D,D 7→ E,D 7→ F,E 7→ G,F 7→ H}
is a set of transitions to represent electrical impulse propagation between two
landmark nodes;
• N0 = A is the initial landmark node (SA node);
• TWtime ∈ N → TIME is a weight function as time delay of each node,
where TIME is time delay in range;
• CWspeed ∈ T → SPEED is a weight function as impulse propagation speed
of each transition, where SPEED is propagation speed in range.

Property 1 (Impulse Propagation Time). In the biological heart, elec-
trical impulse originates from SA node (node A) and then it travels through
the conduction network and it terminates to the atrial muscle fibers (node
C) and at the end of Purkinje fibers into both side of the ventricular cham-
bers (node G and node H). The impulse propagation time delay differs for
each landmark nodes (N). The Impulse propagation time is represented as
a total function TWtime ∈ N → P(0..230). The impulse propagation time
delay for each node is represented as : TWtime(A) = 0..10, TWtime(B) =
50..70, TWtime(C) = 70..90, TWtime(D) = 125..160, TWtime(E) = 145..180,
TWtime(F) = 145..180, TWtime(G) = 150..210 and TWtime(h) = 150..230.

Property 2 (Impulse Propagation Speed). Similar to the impulse prop-
agation time, the impulse propagation speed also differs for each transition
(i j, where i, j ∈ N). The impulse propagation speed is represented as a
total function CWspeed ∈ T → P(5..400). The impulse propagation speed for
each transition is represented as: CWspeed(A 7→ B) = 30..50, CWspeed(A 7→
C) = 30..50, CWspeed(B 7→ D) = 100..200, CWspeed(D 7→ E) = 100..200,
CWspeed(E 7→ G) = 300..400 and CWspeed(F 7→ H) = 300..400.

The sinoatrial (SA) node spontaneously emits some electrical current that
spreads through the walls of the atria, causing them to contract. This SA node
is known as physiological pacemaker of the heart that is represented by the
node A in Fig 1.2(a) and it is responsible for maintaining the heart rhythm.
From SA node, an electrical impulse propagates through atria chamber and
it reaches to the nodes B and C (see Fig. 1.2(b)) at the end of muscle fibers
without crossing the boundary between atria and ventricles.

An electrical impulse generated from the SA node only enters through the
atrioventricular (AV) node. The atrioventricular node (AV node) shown as
the node B (see Fig. 1.1(b)) is located at the boundary between atria and

12 �

B C
D

E F
G

H

AX
B C

D

E F
G

H

A

X

A

B C
D

E F
G

H

A

X B C
D

E F
G

H

A

X
X

B C
D

E F
G

H

A

X

X

(f) - SA Block (g) - AV Block (h) - Infra-Hisian
Block

(i) - Right Bundle
Branch Block

(j) - Left Bundle
 Branch Block

B C
D

E F
G

H

A

B C
D

E F
G

H

A A

B C
D

E F
G

H

A

B C
D

E F
G

H

A

B C
D

E F
G

H

A

(a) - Step1 (b) - Step2 (c) - Step2 (d) - Step2 (e) - Step2

FIGURE 1.2: Impulse Propagation through Landmark nodes and Heart Blocks

Location in the heart Cardiac Activation Location in Conduction Velocity
Time (ms.) the heart (cm/sec.)

SA Node (A) 0..10 A 7→ B 30..50
Left atrium muscle fibers (C) 70..90 A 7→ C 30..50
AV Node (B) 50..70 B 7→ D 100..200
Bundle of His (D) 125..160 D 7→ E 100..200
Right Bundle Branch (E) 145..180 D 7→ F 100..200
Left Bundle Branch (F) 145..180 E 7→ G 300..400
Right Purkinje fibers (G) 150..210 F 7→ H 300..400
Left Purkinje fibers (H) 150..230

TABLE 1.2: Cardiac Activation Time and Cardiac Velocity [15]

ventricles. There is a small delay at this node to synchronize the atria and
ventricles to flow blood effectively. The distal portion of the AV node is made
of the bundle of His denoted as the landmark node D (see Fig. 1.1(b)). The
bundle of His splits into two branches in the inter-ventricular septum, the
left bundle branch and the right bundle branch. Then the electrical impulses
enter to the base of the ventricle at the Bundle of His (node D) and then
follow the left and right bundle branches along the inter-ventricular septum
(see Fig. 1.2(c)).

Two separate the left and right bundle branches propagate together on
each side of the septum. Two landmark nodes at the downside of the heart
into both the left and right bundle branches are denoted as E and F (see
Fig. 1.1(b)). The specialized fibers of left and right bundle branches conduct
an impulse rapidly, and the left bundle branch activates the left ventricle and
the right bundle branch activates the right ventricle (see Fig. 1.2(d)).

The bundle branches are divided into an extensive system of Purkinje

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 13

fibers that conduct the impulses at high velocity (see Table 1.2) throughout
the ventricles. The Purkinje fibers stimulate individual groups of myocardial
cells to contract. Two landmark nodes G and H (see Fig. 1.1(b)) are denoted
at the end of the Purkinje fibers in the ventricles (see Fig. 1.2(e)). At the
end of the Purkinje fibers, the electrical impulse is transmitted through the
ventricular muscles [15, 19].

The heart electrical behavior plays an important role to synchronize atria
and ventricles and it helps to optimize the haemodynamic. Some minor
changes in the conduction time or conduction speed between landmark nodes
cause different types of abnormalities known as arrhythmias. These arrhyth-
mias can be categorized as bradycardia (slow heart rate) or tachycardia (rapid
heart rate). All the possible range of values for the conduction speed and con-
duction time are given in Table 1.2.

1.3.1 Heart Block

Heart block is a disorder of impulse conduction which stimulates heart mus-
cle contraction. The normal cardiac impulse emits from the SA node that
spreads throughout the atria and ventricles. Disturbance into conduction may
demonstrate as slow conduction, intermittent condition failure, or complete
conduction failure. All these kinds of conduction failures are also known as
1st, 2nd and 3rd degree blocks. Fig. 1.2 depicts different kinds of heart blocks
throughout the conduction network using a set of landmark nodes.

1.3.1.1 SA block:

This type of block occurs within the SA node (A) known as sinoatrial (SA)
nodal block or sick sinus syndrome. In this block, the SA node fails to originate
an impulse and the heart misses one or two beats at regular or irregular
intervals (see Fig. 1.2(f)).

1.3.1.2 AV block:

The AV block occurs due to conduction defects between atria and ventricles.
This block may cause by the AV node (B), bundle of His (D) or the both
nodes B and D (see Fig. 1.2(g)).

1.3.1.3 Infra-Hisian block:

This type of block occurs due to defect after the AV node (B) known as
Infra-Hisian block (see Fig. 1.2(h)).

14 �

1.3.1.4 Left bundle branch block:

The left bundle branch block occurs when the conduction is interrupted into
the left branch of the bundle of His. A block that occurs within the fascicles
of the left bundle branch is known as hemiblocks (see Fig. 1.2(i)).

1.3.1.5 Right bundle branch block:

The right bundle branch block occurs when the conduction is interrupted into
the right branch of the bundle of His (see Fig. 1.2(j)).

1.3.2 Cellular Automata Model

A cellular automata (CA) model is a set of spatially distributed cells that
contains uniform connection pattern among the neighbouring cells and local
computation laws. In 1940, Ulam and von Neumann [17] proposed the cellular
automata (CA) for investigating the behavior of complex and distributed sys-
tems. CA is a discrete dynamic system corresponding to space and time that
provides uniform properties for state transitions and interconnection patterns.
A CA model can have an infinite number of cells in any dimension. In our
work, we only consider a finite number of cells in two dimensions as shown in
Fig. 1.3(a). A two-dimensional CA model is defined below.
Definition 2 (The Cellular Automata Model).
Cellular Automata (CA) = < S,N, T > : Discrete Time System
S : a set of states
N: a set of neighbouring patterns at (0,0),
T: a transition function
A typical case of the Cellular Automata (CA) is realized in D-dimensional
grid, N consists of D-tuples of indices from a coordinate set:
I: N ⊆ ID,
Hence the cellular model for 2D becomes,
N ⊆ I2.
T : S|N | → S
To consider automaton specified by the cellular automata (CA), let λ and α be
a global state and the global transition function of the cellular autamata (CA),
respectively. Then λ = {τ |τ : I2 → S} and α(λ(i, j)) = T (τ |N + (i, j)) for all
τ in λ and (i,j) in I2.
Definition 3 (State Transition of a Cell). The heart muscle is composed
of heterogeneous cells, the cellular automata model of the muscle, CAMCA, is
characterized with no dependencies on the type of cells. CAMCA is defined as
follows:
CAMCA = < S,N, T >
S = {Active, Passive,Refractory}
N = {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)}
s
′

m,n = sm,n(t+ 1)

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 15

The Cell at (0,0)

Neighborhoods of
the (0,0) cell

Alive cells

ActivePassive

Refractory

(a) - A Two-DImensional Cellular Automata Model (b) - State Transition of a Cell

FIGURE 1.3: Two-Dimensional Cellular Automata (CA) and State Transition
Model

s
′

m,n = T (sm,n, sm+1,n, sm−1,n, sm,n+1, sm,n−1)
where, sm,n denotes the state of the cell located at (m,n) and T is a transition
function of cellular automata (CAMCA), which is a function for the next state
to be defined in Fig. 1.3(b).

The cardiac heart muscle cells have mainly three states: Active, Passive
and Refractory. Initially, all the cells are in the Passive state. In the Passive
state, the cells are electrical discharged and they do not affect any neighbour-
ing cells. When an electrical impulse passes through a cell than the cell would
be charged and it is eventually activated, and the current state of the cell
switches in the Active state. An active cell can transmit an electrical impulse
to its neighbouring cells, and then the active cell can switch into the Refrac-
tory state, in which the cell can not be reactivated instantly. After delaying,
the Refractory state cells can switch in the Passive state to await for the next
impulse (see Fig. 1.3(b)).

1.4 CRT PACEMAKER CONTROL REQUIREMENTS
The CRT pacemaker is an advanced electronic device that controls the heart
rate by sensing and pacing in various heart chambers. In this section, we
describe the system requirements of biventricular sensing with biventricular
pacing (BiSP) considering other complex operating modes. The BiSP allows
pacing and sensing in the right atrium, left ventricle and right ventricle (see
Fig. 1.1(c)).

Biventricular pacing coordinates the left ventricle (LV) and right ventricle
(RV), and intra-ventricular regional wall contractions, by synchronizing with
the sinus rhythm. There are various intrinsic activities related to pacing and
sensing events that can reset escape intervals, such as atrioventricular interval
(AVI) and ventriculoatrial interval (VAI). Biventricular pacing controls the
heart rate using various combinations of the timing form events in either
LV or RV. For example, the first ventricular sense either from the left or right
ventricular chamber can reset the ventriculoatrial interval (VAI) and the heart

16 �

rate depends on intervals between the first ventricular events in each cycle.
However, heart rate intervals can vary due to stimulation in the opposite
chambers.

Minor delays between RV and LV pacing introduce complications in biven-
tricular timings. These timings allow several definitions of escape intervals,
such as atrioventricular interval (AVI) and ventriculoatrial interval (VAI).
The pacing rate is the sum of the VAI and AVI for dual chamber timing. The
definition preserves for biventricular timing of the VAI and AVI to pacing
either the RV for RV-based timing or the LV for LV-based timing. The pacing
delay can be represented by RVI - LVI interval. It can be negative, positive
or zero as per the occurrence order of the stimulation in both the left and
right ventricles. The possible scenarios of the biventricular sensing and pacing
are depicted in Fig. 1.4 that is described below assuming normal sensing and
pacing activities in the right atrium.

1. Scenario A shows a situation in which the CRT pacemaker paces in
both left and right ventricles after an AVI in which no intrinsic heart
activity is detected.

2. Scenario B shows a situation in which the CRT pacemaker paces in
the left ventricle only after an AVI, while RV pacing is inhibited due to
sensing of an intrinsic activity in the right ventricle.

3. Scenario C shows a situation in which the CRT pacemaker paces in
the right ventricle only after an AVI, while LV pacing is inhibited due
to sensing of an intrinsic activity in the left ventricle.

4. Scenario D shows the case where pacing activities are inhibited in both
left and right ventricles due to sensing of intrinsic activities in both left
and right ventricles.

In the following section, we provide a detailed description of given scenarios
for biventricular sensing and pacing in order to capture the possible behavioral
requirements.

We consider biventricular sensing for RV-based timing with the positive
RVI - LVI interval in the absence of intrinsic conduction (see Fig. 1.5(a)).
Following the AVI, an LVP event follows an RVP event.

An event sense related to the right ventricle resets all the pacing intervals
for both the right and left ventricles, so pacing is not allowed in the right
ventricle or in the left ventricle following an RVS event. Fig. 1.5(b) shows
that an RVS event resets the timing cycle and starts a new VAI.

An event sense related to the right ventricle may reset the VAI so the
right ventricle is not paced, but pacing is allowed in the left ventricle
if any intrinsic activity is not detected in the left ventricle. Fig. 1.5(c)
shows that the RVS event starts a new VAI but also is followed by an

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 17

AP

LVP LVS
RVP

RVS

AP

LVP RVP LVSRVS

AP AP

 (A) (B) (C) (D)

FIGURE 1.4: Possible scenarios of the biventricular sensing and pacing. AS
= atrial sensed; AP = atrial paced; LVS = left ventricular sensed; LVP = left
ventricular paced; RVS = right ventricular sensed; RVP = right ventricular
paced.

LVP event (*) unless an LVS event occurs first (**). Alternatively, the
VAI may be initiated from the right ventricle pace at the end of AVI.
Fig. 1.5(d) shows that a delivery of RVP starts a new VAI but also is
followed by an LVP event (*) unless an LVS event occurs first (**).

An event sense related to the right ventricle may allow an immediate
trigger to pace in the left ventricle without delaying to synchronize the
left ventricle and right ventricle contractions. Fig. 1.5(e) shows that the
RVS event results in an immediate LVP event.

Sometimes, pacing in opposite chambers can be advantageous after some
delay rather than immediately. Fig. 1.5(f) shows that an RVS event is
followed by an LVP event after the modified RVI - LVI interval. This
interval may be different from the RVP - LVP interval.

An event sense related to the left ventricle in AV or RVI - LVI interval
before pacing in the left ventricle may inhibit the left ventricle pace, and
the right ventricle pace would be unaffected unless the right ventricle
sense occurs before the AVI. Fig. 1.5(g) shows that the LVS event does
not inhibit the RVP event. However, if left ventricle to right ventricle
conduction occurs quickly enough, the RVS event starts a new timing
cycle.

During AVI, an event sense related to the left ventricle may trigger
an immediate pace in the right ventricle, which can reset the pacing
intervals. Fig. 1.5(h) shows that the left ventricle sense event does not
reset the timing cycle but initiates an immediate RVP event.

18 �

(a) - BiSP in the absence of AV
conduction

AS

LVPRVP

AP

LVP

AVI VAI

RVI - LVI

RVP

ARP PVARP

AS

LVP(RVP)

AP

(LVP)

AVI

VAI

RVI - LVI

RVPRVS

ARP PVARP

(b) - BiSP with a RVS event

AS

(LVP)(RVP)

AP

LVP*

AVI

VAI

RVI - LVI

RVSRVS

AVI

VAI

RVI - LVI
AP

(RVP)

LVS**

ARP PVARP PVARPARP

AS

(LVP)(RVP)

AP

LVP*

AVI

VAI

RVI - LVI

RVSRVS

AVI

VAI

RVI - LVI
AP

(RVP)

LVS**

ARP PVARP PVARPARP

(c) - The RVS event starts a new VAI in
BiSP

(d) - The theoretical point of delivery of
RVP starts a new VAI in BiSP

AS

LVPLVP

AP

VAI

RVS RVP

ARP PVARP

AS

LVPLVP

AP
VAI

RVS RVP

RVI - LVI

ARP PVARP

(e) - BiSP with triggering (f) - A RVS event is followed by a LVP event
after a modified RVI-LVI interval in BiSP

AS

(LVP)RVP

AP

(LVP)

AVI

VAI

RVI - LVI

LVSLVS

AVI

VAI

RVI - LVI
AP

RVS
(RVP)

ARP PVARP ARP PVARP

AS

LVPRVP

AP

VAI

LVS RVP

ARP PVARP

(g) - BiSP with RV-based timing (h) - BiSP with right ventricular-based timing
and trigger

FIGURE 1.5: Biventricular sensing and pacing (BiSP) Requirements

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 19

1.5 CLOSED-LOOP MODEL OF THE CRT PACEMAKER
AND HEART

In this chapter, we present a closed-loop formal model of the CRT pace-
maker and heart, in which the formal model of the heart is used as a vir-
tual environment, and the formal model of the CRT pacemaker is used as
a TCPS that guarantees to response according to intrinsic activities of the
heart (see Fig. 1.6). The main objective of this closed-loop model is to verify
and validate the complex properties of CRT pacemaker under the virtual en-
vironment, identifying new emergent behaviors and strengthening the given
system requirements. As far as we know, this is the first closed-loop formal
model of the CRT pacemaker and heart to analyze the functional behavior of
the CRT pacemaker under the virtual environment by satisfying the required
safety properties. For developing the closed-loop model, we use the previ-
ously developed and verified formal models of the CRT pacemaker [34] and
heart [26, 33]. In fact, we use our previous works as the basis for developing a
closed-loop model of the CRT pacemaker and heart using stepwise refinement
from scratch. To check the correctness of the closed-loop system, we introduce
several safety properties and discharge all the generated proof obligations at
each refinement level. An abstract model and a series of gradually refined
models are described below.

Pacemaker
Actuator

Pacemaker
Sensor

FIGURE 1.6: The Closed-loop Model1

1.5.1 Abstract Model

To model the functional behavior of the heart abstractly, we formalize the
characteristics of electrical impulse propagation using conduction network in
various chambers. An impulse propagation controls the temporal activities of
the heart, and it allows heart muscle to contract and relax periodically. We
identify a set of landmark nodes (see Fig. 1.1(b)) on the conduction network.
These nodes are connected to form a path for impulse propagation from the

1The image of CRT pacemaker is taken from: http://www.amayeza.co.za/files/
content/images/img331.jpg

20 �

SA node to the end of Purkinje fibers. An impulse propagation in the conduc-
tion network shows normal or abnormal behavior of the heart. To specify the
static properties of the heart, we declare an enumerated set ConductionNode
and three constants ConductionTime, ConductionPath and ConductionSpeed.
The enumerated set ConductionNode is a collection of landmarks nodes, and
the constants ConductionTime, ConductionPath and ConductionSpeed are im-
pulse propagation time for each landmark node, impulse propagation network
of the heart and impulse propagation speed for each path, respectively. These
are defined using axioms (axm1 - axm4), which are extracted from the heart
definition and the given properties (see Section1.3).

An abstract model of the CRT pacemaker formalizes only sensing and
pacing behaviors for each chamber (RA, RV and LV) without considering
any temporal requirements. To model the functional behavior of the CRT
pacemaker abstractly, we define an enumerated set Status in axm5 that shows
the ON and OFF states of the actuators and sensors.

axm1 : partition(ConductionNode, {A}, {B}, {C}, {D}, {E}, {F}, {G}, {H})
axm2 : ConductionTime ∈ ConductionNode→ P(0 .. 230)
axm3 : ConductionPath ⊆ ConductionNode× ConductionNode
axm4 : ConductionSpeed ∈ ConductionPath→ P(5 .. 400)
axm5 : partition(Status, {ON}, {OFF})

To model an abstract dynamic behavior of the closed-loop system, we need
to develop a formal model of the CRT pacemaker and heart together. In this
closed loop model, the CRT pacemaker behaves appropriately by observing
the normal and abnormal behaviors of the heart. A virtual environment model
of the heart simulates according to an impulse propagation in the conduction
network using conduction nodes and the defined properties. An abstract model
declares a list of variables to model the closed-loop system. For modeling the
heart, we define four variables (inv1 - inv4): ConductionNodeState – to show
boolean states of the landmark nodes to distinguish the visited (TRUE) and
unvisited (FALSE) landmark nodes; CConductionTime – to present the cur-
rent impulse propagation time in the conduction network; CConductionSpeed
– to present the current impulse propagation speed in the conduction network;
and HeartState – to show boolean states of the heart to represent normal
(TRUE) and abnormal (FALSE) conditions. The CRT pacemaker contains
three electrodes, equipped with sensors and actuators, that delivers pacing
stimulus in the heart chambers (RA, RV and LV) as per the physiological needs
through sensing intrinsic activities of the heart of a patient. All these three
electrodes synchronize together to sense and to pace appropriately in different
heart chambers whenever required. A list of variables is declared to define dif-
ferent actuators and sensors for each chamber. The actuators are defined by
PM_Actuator_A, PM_Actuator_LV and PM_Actuator_RV, and the sen-
sors are defined by PM_Sensor_A, PM_Sensor_LV and PM_Sensor_RV.
These actuators and sensors are defined as the type of Status using invariants
(inv5 -inv10).

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 21

inv1 : ConductionNodeState ∈ ConductionNode→ BOOL
inv2 : CConductionTime ∈ ConductionNode→ 0 .. 300
inv3 : CConductionSpeed ∈ ConductionPath→ 0 .. 500
inv4 : HeartState ∈ BOOL
inv5 : PM_Actuator_A ∈ Status
inv6 : PM_Actuator_RV ∈ Status
inv7 : PM_Actuator_LV ∈ Status
inv8 : PM_Sensor_A ∈ Status
inv9 : PM_Sensor_RV ∈ Status
inv10 : PM_Sensor_LV ∈ Status

The abstract model of the closed-loop system contains a set of events to
show changing states of the CRT pacemaker and heart. For modeling the
heart, we define three events, namely HeartOK to show a normal state of the
heart, HeartKO to express an abnormal state of the heart, and HeartCon-
duction to trace the current updated values of each landmark node in the
conduction network. The event HeartOK models the required behavior of the
heart when the heart is in the normal state. The guards of this event state
that all the landmark nodes of the conduction network must be visited dur-
ing the impulse propagation, the current impulse propagation time for every
landmark node must belong to the given range of the conduction time and
the impulse propagation speed for every path must belong to the given range
of the conduction speed (see Property 1 and Property 2). The action of this
event shows that the heart is in the normal state when all the guards of this
event are satisfied.

EVENT HeartOK
WHEN
grd1 : ∀i·i ∈ ConductionNode⇒ ConductionNodeState(i) = TRUE
grd2 : ∀i·i ∈ ConductionNode⇒ CConductionTime(i) ∈ ConductionTime(i)
grd3 : ∀i, j ·i 7→ j ∈ ConductionPath⇒

CConductionSpeed(i 7→ j) ∈ ConductionSpeed(i 7→ j)
THEN
act1 : HeartState := TRUE

END

The event HeartKO models the required behavior of an abnormal condition
of the heart. The guards of this event state that if any landmark node does not
visited during the impulse propagation, the current impulse propagation time
of any landmark node does not belong to the given range of the conduction
time, or the impulse propagation speed of any path does not belong to the
given range of the conduction speed (see Property 1 and Property 2). The
action of this event shows that the heart is in the abnormal state as FALSE
when the given guard (grd1) of this event is satisfied.

22 �

EVENT HeartKO
WHEN
grd1 : ∃i·i ∈ ConductionNode ∧ ConductionNodeState(i) = FALSE)

∨
(∃j ·j ∈ ConductionNode ∧ CConductionT ime(j) /∈ ConductionT ime(j))
∨
(∃m,n·m 7→ n ∈ ConductionPath ∧ CConductionSpeed(m 7→ n)
/∈ ConductionSpeed(m 7→ n))

THEN
act1 : HeartState := FALSE

END

The event HeartConduction models the dynamic behavior of heart con-
duction abstractly. This event allows to set new updated values to the visited
state of the landmark nodes, impulse propagation time, impulse propagation
velocity and state of the heart. This event is described to show updated values
only in one shot. This event is further refined to model the concrete behaviors
of the heart.

EVENT HeartConduction
BEGIN
act1 : ConductionNodeState :∈ ConductionNode→ BOOL
act2 : CConductionTime :∈ ConductionNode→ 0 .. 300
act3 : CConductionSpeed :∈ ConductionPath→ 0 .. 500
act4 : HeartState :∈ BOOL

END

In the abstract model of the closed-loop system, the CRT pacemaker model
describes only discrete functional behaviors for modeling sensors and actua-
tors without considering any temporal requirements. For modeling the CRT
pacemaker, we define twelve new events to formalize the sensing and pacing
activities in form of changing states for actuators and sensors for each chamber
(RA, RV and LV). All these events are very simple, and these events contain
only single guard to specify the current state of the actuators/sensors, and
then the action of these events allow to change the current state of the actu-
ators/sensors. For example, we present two events PM_Pacing_On_RV and
PM_Sensing_On_RV. The event PM_Pacing_On_RV is used to set ON
for the right ventricle actuator, when the right ventricle actuator is OFF ,
and the event PM_Sensing_On_RV is used to set ON for the right ventricle
sensor, when the right ventricle sensor is OFF . Other events are formalized
in the similar way.

EVENT PM_Pacing_On_RV
WHEN
grd1 : PM_Actuator_RV = OFF

THEN
act1 : PM_Actuator_RV := ON

END

EVENT PM_Sensing_On_RV
WHEN
grd1 : PM_Sensor_RV = OFF

THEN
act1 : PM_Sensor_RV := ON

END

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 23

1.5.2 First Refinement: Impulse Propagation and Timing Require-
ments

This refinement step allows to add more detail in the abstract model of the
closed-loop system by refining the CRT pacemaker and heart models together.
The heart model is refined by adding conduction behavior that introduces the
functional behavior of the impulse propagation in the conduction network. The
SA node originates an impulse that passes through the conduction network
by visiting all the landmark nodes to reach at the Purkinje fibers of ventricles.
For example, an impulse generates from the node A and finally sinks to the
terminal nodes (C, G and H). The conduction model uses a clock counter to
specify the required temporal properties for impulse propagation.

For modeling the CRT pacemaker, we define a list of constants as static
properties for describing the timing requirements for controlling the pacing
and sensing events, and to simulate the desired heart behavior. We define
four constants atrioventricular interval (AVI), ventriculoatrial interval (VAI),
left ventricular interval (LVI) and right ventricular interval (RVI). All these
constants are defined in axioms (axm1 - axm4). An extra axiom axm5 is
defined as a constraint that specifies that the RVI is greater than or equal to
the LVI. In this study, we consider all times to be in milliseconds.

axm1 : AV I ∈ 50 .. 350
axm2 : V AI ∈ 350 .. 1200
axm3 : LV I ∈ 0 .. 50
axm4 : RV I ∈ 0 .. 50
axm5 : RV I ≥ LV I

In this refinement, we introduce a logical clock for modeling the timing
requirements for the CRT pacemaker and heart. To model the clock behavior,
we declare a variable now to specify the current clock counter in inv1. This
clock counter is always progressed by 1 millisecond in every clock tick. In
the CRT pacemaker model, we define a variable PSRecord to store a time
whenever any pacing or intrinsic activity related to sensing occurs within the
chambers in inv2. The stored time can be used to control the future activities
related to pacing and sensing events. The CRT pacemaker model contains a
list of variables to synchronize the sensing and pacing events by observing the
various states of sensors and actuators for all the three chambers (RA, RV and
LV) in order to specify the required behavior. In the heart model, we declare
only a variable CCSpeed_CCTime_Flag to synchronize and for preserving the
desired behavior of the heart for capturing the current values of the impulse
propagation time and impulse propagation speed in the conduction network.

24 �

inv1 : CCSpeed_CCTime_Flag ∈ BOOL
inv2 : now ∈ N
inv3 : PSRecord ∈ N
inv4 : HeartState = TRUE⇒ CConductionTime(B) ∈ ConductionTime(B)

∧ CConductionSpeed(A 7→ B) ∈ ConductionSpeed(A 7→ B)
inv5 : HeartState = TRUE⇒ CConductionTime(C) ∈ ConductionTime(C)

∧ CConductionSpeed(A 7→ C) ∈ ConductionSpeed(A 7→ C)
inv6 : HeartState = TRUE⇒ CConductionTime(D) ∈ ConductionTime(D)

∧ CConductionSpeed(B 7→ D) ∈ ConductionSpeed(B 7→ D)
inv7 : HeartState = TRUE⇒ CConductionTime(E) ∈ ConductionTime(E)

∧ CConductionSpeed(D 7→ E) ∈ ConductionSpeed(D 7→ E)
inv8 : HeartState = TRUE⇒ CConductionTime(F) ∈ ConductionTime(F)

∧ CConductionSpeed(D 7→ F) ∈ ConductionSpeed(D 7→ F)
inv9 : HeartState = TRUE⇒ CConductionTime(G) ∈ ConductionTime(G)

∧ CConductionSpeed(E 7→ G) ∈ ConductionSpeed(E 7→ G)
inv10 : HeartState = TRUE⇒ CConductionTime(H) ∈ ConductionTime(H)

∧ CConductionSpeed(F 7→ H) ∈ ConductionSpeed(F 7→ H)
inv11 : now = 0⇒ PM_Sensor_RV = OFF ∧ PM_Actuator_RV = OFF
inv12 : now = 0⇒ PM_Sensor_LV = OFF ∧ PM_Actuator_LV = OFF
inv13 : now = 0⇒ PM_Sensor_A = OFF ∧ PM_Actuator_A = OFF
inv14 : PM_Actuator_RV = ON ⇒ now ≥ AV I ∨ Immd_Pace_RV = 1
inv15 : PM_Actuator_LV = ON⇒

now ≥ AV I + (RV I − LV I) ∨ Immd_Pace_LV = 1 ∨Delay_Pace_LV = 1
inv16 : PM_Actuator_A = ON⇒

now ≥ PSRecord + V AI ∨ now ≥ AV I + V AI

We define a list of safety properties to model the correct functionalities
of the closed-loop system. Most of the safety properties are defined indepen-
dently for both the CRT pacemaker and heart. A set of invariants (inv4 -
inv10) defines safety properties for the heart model that states if the heart is
in the normal state then the current impulse propagation speed and current
impulse propagation time are always within the given range for each land-
mark node and the defined path of the conduction network. Another list of
safety properties are introduced for the CRT pacemaker. Invariants (inv11,
inv12, and inv13) state that when the current clock counter is zero then the
sensors and actuators are OFF of the right ventricle, left ventricle and right
atrium. The next safety property inv14 states that if the current clock counter
elapses AVI or an immediate pacing is required in the right ventricle then the
actuator of the right ventricle must pace. Similarly, the next safety property
inv15 states that if the current clock counter elapses the total duration of the
atrioventricular interval and pacing delay, an immediate pacing is required in
the left ventricle, or a delay pacing is detected in the left ventricle then the
actuator of the left ventricle must pace. The last safety property inv16 states
that the current clock counter is elapsed the VAI after detecting the last pac-
ing or sensing activity, or the current clock counter elapses the total duration
of the AVI and VAI then the actuator of the right atrium must pace.

In this refinement, we introduce several events to specify the desired be-
havior of the CRT pacemaker and heart according to the given timing require-
ments and impulse propagation. There are total thirty events to specify the
concrete behavior of the closed-loop model. Few events are the refinement of
the abstract events, and other new added events at this level are the refine-
ment of the skip. In the heart modeling, we introduce an event SinusNodeFire
that refines the abstract event HeartConduction. This event models the func-

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 25

tional behavior of the sinoatrial (SA) node that initially generates an electrical
impulse for propagating in the conduction network. The guards of this event
state that all the landmark nodes are unvisited, the current impulse propaga-
tion time of each node is 0 ms., and the impulse propagation speed for every
path is 0 cm/sec. The actions of this event show that the sinoatrial (SA) node
is visited, and the current impulse propagation time of the SA node (A) is set
to 0 ms.

EVENT SinusNodeFire Refines HeartConduction
WHEN
grd1 : ∀n·n ∈ ConductionNode⇒ ConductionNodeState(n) = FALSE
grd2 : ∀n·n ∈ ConductionNode⇒ CConductionTime(n) = 0
grd3 : ∀n,m·n ∈ ConductionNode ∧m ∈ ConductionNode∧

n 7→ m ∈ ConductionPath⇒ CConductionSpeed(n 7→ m) = 0
THEN
act1 : ConductionNodeState(A) := TRUE
act2 : CConductionTime(A) := 0

END

We also introduce a list of events to model the stepwise progression of
an electrical impulse from SA node to Purkinje fibers. The introduced events
synchronize all the heart chambers through progressing an impulse in the
conduction network. All these set of events are the refinement of the abstract
event HeartConduction. An event HeartConduction_A_B is formalized to
show the basic formalization steps of the other events. The guards of this
event states that the sinoatrial (SA) node is visited, the atrioventricular (AV)
node is not visited, the current conduction time of the atrioventricular (AV)
node belongs to the given range of the conduction time, the conduction speed
from sinoatrial (SA) node to atrioventricular (AV) node belongs to the given
range of the conduction speed, and the current impulse propagation time and
speed flag is FALSE. The actions of this event shows that the atrioventricular
(AV) node is visited, and the current impulse propagation time and speed flag
becomes TRUE. All the other refined events are modeled in the similar way.

EVENT HeartConduction_A_B Refines HeartConduction
WHEN
grd1 : ConductionNodeState(A) = TRUE
grd2 : ConductionNodeState(B) = FALSE
grd3 : CConductionTime(B) ∈ ConductionTime(B)
grd4 : CConductionSpeed(A 7→ B) ∈ ConductionSpeed(A 7→ B)
grd5 : CCSpeed_CCTime_Flag = FALSE

THEN
act1 : ConductionNodeState(B) := TRUE
act2 : CCSpeed_CCTime_Flag := TRUE

END

A new event Update_CCSpeed_CCtime is introduced that is the refine-
ment of the event HeartConduction. The main functionality of this event is to
update the current impulse propagation time and impulse propagation speed
according to the progressive conduction flow using landmark nodes in the
conduction network. The guards of this event are used to select a pair of
nodes that belongs to the defined conduction paths, and to select the current

26 �

conduction speed and current conduction time from the given range at the
present time. The actions of this event update the current conduction time
and current conduction speed according to the selected nodes and path.

EVENT Update_CCSpeed_CCtime Refines HeartConduction
ANY i, j, CSpeed, CTime
WHERE
grd1 : i ∈ ConductionNode
grd2 : j ∈ ConductionNode
grd3 : i 7→ j ∈ ConductionPath
grd4 : CSpeed ∈ 0 .. 500
grd5 : CTime ∈ 0 .. 300
grd6 : CCSpeed_CCTime_Flag = TRUE
grd7 : HeartState = FALSE
grd8 : tic = CTime

THEN
act1 : CConductionTime(j) := CTime
act2 : CConductionSpeed(i 7→ j) := CSpeed
act3 : CCSpeed_CCTime_Flag := FALSE

END

In the CRT pacemaker modeling, we introduce total eighteen events,
in which seventeen events are the refinement of the abstract events.
For example, the event PM_Pacing_On_RV refines the abstract event
PM_Pacing_On_RV by adding new guards and new actions. The guards
of this event state that the actuator of the right ventricle is OFF ; the current
clock counter is equivalent to the atrioventricular interval (AVI), no immedi-
ate pacing is required, there is no pace in the left and right ventricles and the
right ventricular sensor is OFF , or an immediate pacing is required in the
right ventricle; the current clock counter is not 0; there is no pacing in the
right ventricle; and the actuator and sensor of the right atrium are OFF . The
actions of this event state that the actuator of the right ventricle is ON and
it is paced, and the present time is stored for controlling the future pacing
or sensing activity. In the other refined events, we have added the temporal
requirements for specifying the desired pacing and sensing behaviors consid-
ering synchronization in the heart chambers (RA, RV and LV) by observing
the heart behavior.

EVENT PM_Pacing_On_RV Refines PM_Pacing_On_RV
WHEN
grd1 : PM_Actuator_RV = OFF
grd2 : ((now = AV I ∧ Immd_Pace_RV = 0 ∧No_Pace_LV_RV = 0∧

PM_Sensor_RV = OFF)
∨
Immd_Pace_RV = 1)

grd3 : ¬now = 0
grd4 : Pace_RV = 0
grd4 : PM_Actuator_A = OFF ∧ PM_Sensor_A = OFF

THEN
act1 : PM_Actuator_RV := ON
act2 : Pace_RV := 1
act3 : PSRecord := now

END

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 27

A logical clock plays an important role for modeling
the temporal requirements of the CRT pacemaker and
the functional behavior of the heart. In order to de-
sign a logical clock, we introduce a new event tic that
allows to increase the current clock counter by 1 ms.
progressively. This event tic does not have any guard,
but in the further refinements, we introduce a guard
to control different functionalities of the CRT pace-
maker and heart within the restricted time intervals.

EVENT tic
WHEN
THEN
act1 : now := now + 1

END

1.5.3 Second Refinement: Threshold and Heart Blocks

This refinement introduces the functional properties of abnormal behavior of
the heart, such as heart blocks, and threshold is used to detect an appropriate
intrinsic activity for each chamber by the CRT pacemaker. The heart block
introduces perturbation in the heart conduction network that generates some
troubles in the electrical impulse propagation, and it influences the normal
behavior of the heart. We use the landmark nodes to show the different types
of heart blocks in Fig. 1.2. For modeling the heart blocks, we define an enu-
merated set HeartBlockSets to present different types of blocks of the heart.

axm1 : partition(HeartBlockSets, {SA_nodal_blocks}, {AV_nodal_blocks},
{Infra_Hisian_blocks}, {LBBB_blocks}, {RBBB_blocks}, {None})

The sensors play an important role for sensing an intrinsic activity of
the heart. The CRT pacemaker actuator delivers a stimulation for a short
period of time by observing the sensed values and required safety margins.
Each chamber of the heart has different range of threshold values that can be
specified by the physiologist by monitoring the detected intrinsic activities. We
define three constants STA_THR_A, STA_THR_RV and STA_THR_LV
to hold a range of standard threshold values for the right atrium, right ventricle
and left ventricle, respectively in axm1 − axm3. We define a new constraint
using an axiom (axm4) to show that the threshold of the atrium chamber is
less than the threshold of the left and right ventricles.

axm1 : STA_THR_A ∈ N1
axm2 : STA_THR_RV ∈ N1
axm3 : STA_THR_LV ∈ N1
axm4 : STA_THR_A < STA_THR_LV ∧ STA_THR_A < STA_THR_RV

For modeling the dynamic properties of the closed-loop system in this
refinement, we declare some new variables. These variables are: HeartBlocks
– to show the different types of heart blocks; C_Thr – to hold the current
sensing value that is produced by the heart, and it can be used by the CRT
pacemaker for detecting an intrinsic activity of the heart; Thr_State_A – a
boolean state of the right atrium; Thr_State_RV – a boolean state of the right
ventricle; and Thr_State_LV – a boolean state of the left ventricle. Three

28 �

state variables are defined for each chamber (RA, RV and LV) to synchronize
and to maintain the order of sensing activities. We introduce three safety
properties using invariants (inv4, inv5 and inv6) that state that the sensor of
each chamber is OFF when the detected sensor value is greater than or equal
to the standard threshold value and boolean state of the chamber is TRUE.

inv1 : HeartBlocks ∈ HeartBlockSets
inv2 : C_Thr ∈ N
inv3 : Thr_State_A ∈ BOOL ∧ Thr_State_LV ∈ BOOL ∧ Thr_State_RV ∈ BOOL
inv4 : ∀i·i ∈ N1 ∧ i ≥ STA_THR_A ∧ Thr_State_A = TRUE

⇒PM_Sensor_A = OFF
inv5 : ∀i·i ∈ N1 ∧ i ≥ STA_THR_LV ∧ Thr_State_LV = TRUE

⇒PM_Sensor_LV = OFF
inv6 : ∀i·i ∈ N1 ∧ i ≥ STA_THR_RV ∧ Thr_State_RV = TRUE

⇒PM_Sensor_RV = OFF

We introduce a set of events in this refinement to simulate the desired
behavior of the heart block and detecting the intrinsic activities of the heart
chambers using sensors of the CRT pacemaker. A sensor can detect an intrinsic
activity when the threshold value of the detected signal is greater than or equal
to the standard threshold constant. A set of events is introduced to model the
possible behaviors of the heart blocks. A conduction disturbance in the heart
is generated when an impulse produced from the sinus node (A) is blocked
or delayed from depolarizing the atria known as SA block [15, 19]. To model
the SA block, we introduce a new event HeartConduction_Block_A_B_C
that is the refinement of the abstract event HeartKO. The guard of this event
states that the landmark node (A or C) is not visited, the current impulse
propagation time of the node (B or C) does not belong to the given range
of the impulse propagation time, or the current impulse propagation speed of
the path (A 7→ B or A 7→ C) does not belong to the given range of impulse
propagation speed. When the given guard satisfies then the actions show that
the heart is in the abnormal state, and the heart has sinoatrial (SA) nodal
block. Other heart block events are also the refinement of the abstract event
HeartKO, which are modeled in the similar way.

EVENT HeartConduction_Block_A_B_C Refines HeartKO
WHEN
grd1 : (ConductionNodeState(A) = FALSE) ∨

(ConductionNodeState(C) = FALSE) ∨
(CConductionTime(B) /∈ ConductionTime(B)) ∨
(CConductionTime(C) /∈ ConductionTime(C)) ∨
(CConductionSpeed(A 7→ B) /∈ ConductionSpeed(A 7→ B)) ∨
(CConductionSpeed(A 7→ C) /∈ ConductionSpeed(A 7→ C))

THEN
act1 : HeartState := FALSE
act2 : HeartBlocks := SA_nodal_blocks

END

For modeling the threshold for detecting the appropriate intrinsic activities
of the heart using the CRT pacemaker sensors, we do not introduce any new
event in this refinement step. We introduce the functional behavior of thresh-
old by strengthening the guards of the abstract events. The new added guards

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 29

are used to detect an intrinsic activity of the heart by comparing the value
of sensed signal with the standard threshold value for the right atrium, right
ventricle and left ventricle. For example, an event PM_Sensing_Off_A is the
refinement of the abstract event PM_Sensing_Off_A. In the refined event,
we introduce a new variable Thr_A and some new guards (grd8, grd9). The
guard grd8 declares the type of local variable (Thr_A), and the next guard
grd9 compares the sensed value with the selected standard threshold value
of the atria chamber and the sensed value is equivalent to the current sens-
ing value that is produced by the heart model. The variable C_Thr plays an
important role to synchronize the behavior of the CRT pacemaker and heart
in the closed-loop model and to monitor an activity of the right atrium by
comparing the sensed value with the selected threshold value. In this event,
we introduce two extra actions (act12 and act13) to set FALSE state to
both the left and right ventricles. The rest of the guards and actions of this
event are similar to the abstract event. We also modify other events related
to the left and right ventricles to model the desired behavior of the sensors
for synchronizing between the CRT pacemaker and heart models.

EVENT PM_Sensing_Off_A Refines
PM_Sensing_Off_A

ANY Thr_A
WHERE
grd1 : PM_Sensor_A = ON
grd2 : PM_Sensor_RV = OFF
grd3 : PM_Actuator_A = OFF
grd4 : PM_Actuator_RV = OFF
grd5 : PM_Sensor_LV = OFF
grd6 : PM_Actuator_LV = OFF
grd7 : (now < AV I + V AI ∧No_Pace_LV_RV = 0∧

RV_Delay_AV I = 0 ∧Delay_Pace_LV = 0∧
Immd_Pace_RV = 0 ∧ Immd_Pace_LV = 0)∨
(now < PSRecord + V AI)

grd8 : Thr_A ∈ N
grd9 : Thr_A ≥ STA_THR_A ∧ Thr_A = C_Thr

THEN
act1 : PM_Sensor_A := OFF
act2 : PSRecord := 0
act3 : now := 0
act4 : Immd_Pace_LV := 0
act5 : Delay_Pace_LV := 0
act6 : No_Pace_LV_RV := 0
act7 : Immd_Pace_RV := 0
act8 : Pace_LV := 0
act9 : Pace_RV := 0
act10 : Pace_A := 0
act11 : RV_Delay_AV I := 0
act12 : Thr_State_LV := FALSE
act13 : Thr_State_RV := FALSE

END

1.5.4 Third Refinement: Refractory and Blanking Periods and Cellu-
lar Model

This is the last refinement of the closed-loop system that introduces cellular
automata for modeling the concrete behavior of the heart, and the refractory

30 �

and blanking periods for modeling the concrete behavior of the CRT pace-
maker. This final refinement of the heart model provides a simulation model
that includes an impulse propagation at cellular level in the heart chambers.
We define a set of constants and mathematical properties to formalize the de-
sired behavior of the heart using cellular automata (see Fig. 1.3). Each biolog-
ical cell can have one of the following states : Active, Passive and Refractory.
To define the possible cell states, we declare an enumerated set CellStates
in axm1. To simplify the modeling of cellular automata, we consider only
two dimensional structure of the connected cells. In order to define the two
dimensional structure, we declare a constant NeighbouringCells to specify a
set of coordinated positions of the neighbouring cells using axioms (axm2 -
axm4). A function NEXT is declared to define the state of the neighbouring
cells in axm5. Another new function CellS declares to map cell states to the
neighbouring cells in axm6. A set of properties (axm7 - axm9) is introduced
to model the desired functionalities of the cellular automata in two dimen-
sions. The first property states that if the neighbouring cells are in the Active
state then the next state of the neighbouring cells must be in the Refractory
state. The second property states that if the neighbouring cells are in the
Refractory state then the next state of the neighbouring cells must be in the
Passive state. The last property states that if the neighbouring cells are in
the Passive state then the next state of the neighbouring cells must be either
Active state or Passive state.

axm1 : partition(CellStates, {PASSIV E}, {ACTIV E}, {REFRACTORY })
axm2 : x ∈ Z
axm3 : y ∈ Z
axm4 : NeighbouringCells =

{{x, y}, {x + 1, y}, {x− 1, y}, {x, y + 1}, {x, y − 1}}
axm5 : NEXT ∈ P(NeighbouringCells)→ CellStates
axm6 : CellS ∈ NeighbouringCells→ CellStates
axm7 : (∀ param·param ∈ P(NeighbouringCells) ∧ (∀ m,n·{m,n} ∈ param∧

CellS({m,n}) = ACTIV E) ⇒NEXT (param) = REFRACTORY)
axm8 : (∀ param·param ∈ P(NeighbouringCells) ∧ (∀ m,n·{m,n} ∈ param∧

CellS({m,n}) = REFRACTORY) ⇒NEXT (param) = PASSIV E)
axm9 : (∀ param·param ∈ P(NeighbouringCells) ∧ (∀ m,n·{m,n} ∈ param∧

CellS({m,n}) = PASSIV E) ⇒
NEXT (param) = ACTIV E) ∨NEXT (param) = PASSIV E

For modeling the concrete behavior of actuators and sensors of the CRT
pacemaker, we introduce the refractory and blanking periods2 for the right
atrium, right ventricle and left ventricle. These refractory and blanking pe-
riods play an important role to suppress device-generated artifacts and un-
wanted signal artifacts generated from intrinsic activities of the heart. More-
over, these periods also help to identify appropriate sensing events, and to
prevent over sensing events in other chambers. To define the static behavior
of the CRT pacemaker, we declare eight constants Atrial Refractory Period
(ARP), Right Ventricular Refractory Period (RVRP), Left Ventricular Re-
fractory Period (LVRP), Post Ventricular Atrial Refractory Period (PVARP),

2https://www.bostonscientific.com/content/dam/bostonscientific/quality/education-
resources/english/ACL_Cross-Chamber_Blanking_20081219.pdf

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 31

Right Ventricular Blanking Period (RVBP), Left Ventricular Blanking Period
(LVBP), A-Blank after Right Ventricular Activity (ABaRV), and A-Blank
after Left Ventricular Activity (ABaLV) using axioms (axm1 - axm8).

axm1 : ARP ∈ 30 .. 500
axm2 : RV RP ∈ 20 .. 500
axm3 : LV RP ∈ 20 .. 500
axm4 : PV ARP ∈ 50 .. 500
axm5 : RV BP ∈ 5 .. 60
axm6 : LV BP ∈ 5 .. 60
axm7 : ABaRV ∈ 5 .. 150
axm8 : ABaLV ∈ 5 .. 150

The dynamic behavior of cell automata is defined by introducing four new
variables. These four variables are m, n, Transition and NextCellState. The
first two variables m and n are declared to model the coordinate positions
in two dimensions of an active cell during an impulse propagation. The next
variable Transition is defined as boolean type to enable transition between
different states of the cells to model the behavior of a tissue. The last variable
NextCellState is used to store the states of the neighbouring cells after each
transition. In this refinement, we introduce six new safety properties. The first
two safety properties state that the actuator and sensor of the right atrium
become ON when the current clock counter elapses the refractory and blank-
ing periods. To check the refractory period after pacing or sensing activity, we
need to store the time of pacing or sensing activity of the ventricular chambers.
In these safety properties, we use the variable PSRecord to record the time
of previous occurrence of pacing or sensing event for initiating the refractory
periods. The last four safety properties show that the actuators and sensors
of the right and left ventricles become ON when the current clock counter
elapses the refractory and blanking periods. It means that the sensing and
pacing events always occur after elapsing the refractory and blanking periods.

inv1 : m ∈ Z ∧ n ∈ Z
inv2 : Transition ∈ BOOL
inv3 : NextCellState ∈ CellStates
inv4 : PM_Actuator_A = ON ⇒ now ≥ PSRecord + PV ARP∧

now ≥ PSRecord + RV RP ∧ now ≥ PSRecord + LV RP∧
now ≥ PSRecord + ABaLV ∧ now ≥ PSRecord + ABaRV

inv5 : PM_Sensor_A = ON ⇒ now ≥ PSRecord + PV ARP∧
now ≥ PSRecord + RV RP ∧ now ≥ PSRecord + LV RP
∧now ≥ PSRecord + ABaLV ∧ now ≥ PSRecord + ABaRV

inv6 : PM_Actuator_RV = ON ⇒ now ≥ ARP ∧ now ≥ RV BP
inv7 : PM_Actuator_LV = ON ⇒ now ≥ ARP ∧ now ≥ LV BP
inv8 : PM_Sensor_RV = ON ⇒ now ≥ ARP ∧ now ≥ RV BP
inv9 : PM_Sensor_LV = ON ⇒ now ≥ ARP ∧ now ≥ LV BP

For modeling an impulse propagation at cellular level in the heart for two
dimensional structure, we define two events HeartConduction_Cellular and
HeartConduction_Next_UpdateCell. It should be noted that we define these
events abstractly that can be further refined to formalize the concrete behav-
ior of the cellular automata at tissue level corresponding to various states of

32 �

the cell. The event HeartConduction_Cellular enables transition for switch-
ing state of the neighbouring cells of the conduction network by propagating
electrical current. This event allows to set a boolean state as TRUE of the
Transition. The guards of this event state that there is a valid path between
two landmark nodes that belongs to a set of pairs of the conduction network;
the current impulse propagation speed and time flag is TRUE that allows to
synchronize and for preserving the desired behavior of the heart for capturing
the current values of the impulse propagation time and impulse propagation
speed for each node; a set of neighbouring cells is selected in the two dimen-
sional structure; the current cell position (m,n) is in the passive state and
it is equivalent to the next state of the neighbouring cells; and the current
transition state is FALSE.

EVENT HeartConduction_Cellular
ANY p, q, param
WHERE
grd1 : p 7→ q ∈ ConductionPath
grd2 : CCSpeed_CCTime_Flag = TRUE
grd3 : param ∈ P({{m,n}, {m + 1, n}, {m− 1, n}, {m,n + 1}, {m,n− 1}})
grd4 : {m,n} ∈ dom(CellS) ∧ CellS({m,n}) ∈ {PASSIV E,ACTIV E,REFRACTORY }
grd5 : NextCellState = CellS({m,n})
grd6 : Transition = FALSE

THEN
act1 : Transition := TRUE

END

The event HeartConduction_Next_UpdateCell is a new event for calculat-
ing the state of neighbouring cells and to update the position of the current
cell (m, n). The guards of this event state that a set (param) of neighbour-
ing cells is selected in two dimensional structure; the selected set is a domain
of the function NEXT ; and the current transition state is TRUE. The ac-
tions of this event calculates the state of neighbouring cells that is assigned
to NextCellState, sets the current transition state as FALSE, and updates
the current cell (m,n) nondeterministically to propagate an impulse in the
conduction network.

EVENT HeartConduction_Next_UpdateCell
ANY param
WHERE
grd1 : param ∈ P({{m,n}, {m + 1, n}, {m− 1, n}, {m,n + 1}, {m,n− 1}})
grd2 : param ∈ dom(NEXT)
grd3 : Transition = TRUE

THEN
act1 : NextCellState := NEXT (param)
act2 : Transition := FALSE
act3 : m :∈ {m− 1,m,m + 1}
act4 : n :∈ {n− 1, n, n + 1}

END

For modeling the concrete temporal behavior of the CRT pacemaker con-
sidering the refractory and blanking periods, we introduce many guards in
several events. For example, we introduce an event PM_Pacing_On_A that

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 33

refines the abstract event PM_Pacing_On_A by strengthening the guards.
The guards of this event state that the actuator of the right atrium is OFF ;
the current clock counter elapses the AVI + VAI or PSRecord + VAI interval
considering the possible scenarios related to delay pacing, no pacing and im-
mediate pacing for either one chamber (LV or RV) or both chambers (LV and
RV); pacing state of the atrium chamber is 0; and the current clock counter
is elapsed the refractory and blanking periods after detecting an activity of
pacing or sensing in the heart. The actions of this event state that the actuator
of the right atrium generates a small electrical current to pace, and to set the
pacing state of the atrium chamber for synchronizing the pacing and sensing
events of the other heart chambers.

EVENT PM_Pacing_On_A Refines PM_Pacing_On_A
WHEN
grd1 : PM_Actuator_A = OFF
grd2 : (now = AV I + V AI ∧No_Pace_LV_RV = 0 ∧Delay_Pace_LV = 0)

∨
(now = PSRecord + V AI ∧ (Delay_Pace_LV = 2 ∨Delay_Pace_LV = 1
∨No_Pace_LV_RV = 1 ∨ RV_Delay_AV I = 1 ∨ Immd_Pace_RV = 1
∨Immd_Pace_LV = 1))

grd3 : Pace_A = 0
grd4 : now ≥ PSRecord + PV ARP
grd5 : now ≥ PSRecord + RV RP ∧ now ≥ PSRecord + LV RP
grd6 : now ≥ PSRecord + ABaRV ∧ now ≥ PSRecord + ABaLV

THEN
act1 : PM_Actuator_A := ON
act2 : Pace_A := 1

END

We also introduce a new guard in the event tic to describe the correct
temporal behavior of the sensing and pacing events. The provided guard syn-
chronizes the pacing and sensing activities of the CRT pacemaker according to
the biventricular sensing and pacing (BiSP) requirements by monitoring the
heart functionalities. The tic event contains a very large guard to represent
all the possible timing requirements (see Section 1.4). We present below only
a slice of the complete formalized timing requirements to show the progress
of the event tic as the guard conditions according to Fig. 1.5(b).

EVENT tic
WHEN
grd1: (now < AV I ∧ PM_Sensor_LV = OFF ∧ PM_Sensor_RV = OFF∧

No_Pace_LV_RV = 1)
∨
(now ≥ AV I ∧ now < PSRecord + PV ARP ∧ PM_Sensor_LV = OFF∧
PM_Sensor_RV = OFF ∧No_Pace_LV_RV = 1∧
(Pace_RV = 2 ∨ Thr_State_RV = TRUE))
∨
(now ≥ PSRecord + PV ARP ∧ now < PSRecord + V AI∧
PM_Sensor_LV = OFF ∧ PM_Sensor_RV = OFF ∧No_Pace_LV_RV = 1
∧PM_Sensor_A = ON)
∨
. . .
. . .

THEN
act1 : now := now + 1

END

34 �

1.5.5 Model Validation and Analysis

This section presents the proof statistics of the developed closed-loop model,
and the validity of functional behavior of the CRT pacemaker and heart by
simulating the proved formal model in ProB [21]. The Event-B language sup-
ports consistency checking and model analysis, in which the consistency check-
ing shows that the defined events always preserve the given invariants and the
refinement checking ensures that the concrete machine is a valid refinement
of an abstract machine, and the model analysis is used to animate the formal
specification to check the required functional behavior of the system. Model
validation plays an important role for gaining confidence in the developed
formal model in order to check the consistency with system requirements.
In addition, the ProB tool also allows automated consistency checking and
constraint-based checking. This tool helps to identify possible deadlocks and
hidden properties that may be exposed by the generated proof obligations. In
our work, the ProB tool is used to animate the closed-loop model of the CRT
pacemaker and heart at each refinement level to check the required functional
behavior by considering numerous scenarios for validating the developed for-
mal models. This tool effectively assists us in finding potential problems and
to improving the guard conditions in each layer of the refinement. To use
the ProB model checker at each refinement level, we were able to animate all
the abstract and a series of refined models to prove the absence of errors (no
counter example). It should be noted that the ProB tool automatically imports
static and dynamic properties, including safety properties, of the closed-loop
system that are used for consistency checking and model checking to discover
the violation of the given safety properties against the formalized system be-
havior.

Model Total number Automatic Interactive
of POs Proof Proof

Abstract Model 29 25(86%) 4(14%)
First Refinement 261 245(94%) 16(6%)
Second Refinement 35 26(74%) 9(26%)
Third Refinement 70 69(99%) 1(1%)
Total 395 365(92%) 30(8%)

TABLE 1.3: Proof Statistics

Table 1.3 shows the proof statistics of the closed-loop model developed
in the RODIN tool [32]. This formal development generates 395(100%) proof
obligations (POs), in which 365(92%) POs are proved automatically with the
help of inbuilt RODIN provers, and the remaining 30(8%) POs are proved
interactively by simplifying the predicates using the Rodin provers. It should
be noted that the simplifying predicates are quite simple. An integration of
the heart model and CRT pacemaker model generates some extra POs related
to the joint behavior of the closed-loop system and by sharing some common
variables by both the heart and CRT models. For example, the current clock
counter variable (now) is shared, which has been used in the events of the CRT
pacemaker and heart models. The CRT pacemaker shows functional properties

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 35

of pacing and sensing modes under the virtual biological environment of the
heart. The heart model represents normal and abnormal states of the heart,
which is estimated by the physiological analysis. A list of safety properties
is introduced in the incremental refinements to guarantee the correctness of
the functional requirements of the closed-loop model of the heart and CRT
pacemaker.

1.6 DISCUSSION
This paper presents an approach for modeling the closed-loop trustworthy
cyber physical systems (TCPS). The main goal of this work is to provide a
novel modeling technique that helps to community to develop a closed-loop
model of the trustworthy cyber physical system (TCPS) and virtual envi-
ronment. The closed-loop modeling approach is used to analyze the system
requirements of TCPS for verification, validating assumptions, identifying new
emergent behavior, identifying undesired state of the system, strengthening
the given system requirements, what-if analysis and to check inconsistencies
in the given system. If any fault presents in the system then the formalized
system does not behave appropriately as per the environmental requirements.
In fact, we need precise knowledge of the error states for finding any effective
heuristics. All the relevant states that lead to error/hazard states that can be
exploited to discover the desired correct functionalities or improving the exit-
ing system requirements. The combined closed-loop model of the TCPS and
virtual environment generates several new POs that do not appear in both the
TCPS model and environment model, independently. All the generated POs
of the closed-loop system are produced according the required behavior of the
TCPS and the defined environmental requirements. Moreover, the generated
POs allow for strengthening the guards to make system deterministic to meet
the stakeholder needs by describing the concrete behavior of the TCPS and
by removing flaws in the developing model of the TCPS. This can be an ef-
fective approach to guarantee the correctness of the functional behavior and
requirements of the TCPS. Moreover, the result of this approach can be viable
to assist for meeting the requirement of the certification standards. In fact,
the developed closed-loop model is not limited only for analyzing the system
requirements, but we can use it for various purposes during the system devel-
opment, such as automated code generation, automated test case generation,
use as an evidence for safety assurance cases and to assist for evaluating the
product for certification purpose.

In this chapter, we formalized the closed-loop system of the CRT pace-
maker and heart using stepwise incremental refinements. The stepwise refine-
ment approach is a well known technique for developing the dependable sys-
tems, and was championed by Harlan Mills in his work on Box-Structures [28].
For developing the closed-loop system, we used the formal development of the
CRT pacemaker [34] and the formal development of the heart [26] as a basis
for this work. In this work, we formalized the closed-loop model of the CRT

36 �

pacemaker and heart incrementally using the set theoretical notations to check
the desired behavior of the CRT pacemaker, and to find the missing system
requirements by analyzing the given system requirements and environmental
requirements. The formalized environment shows an environmental conditions
that present conditional properties that help to design a system whether the
system provides an appropriate action or solution as a feedback according to
the environmental situation. The closed-loop model of the CRT pacemaker and
heart allows us to evaluate whether the CRT pacemaker provides an appropri-
ate therapy for any arrhythmias. We have provided a list of safety properties in
each refinement to verify the correctness of the defined system behavior. The
given safety properties guarantee that all possible executions of the closed-
loop system are safe, if the generated POs are successfully discharged. The
results of this experiment show that the closed-loop model has potential to ver-
ify the TCPS requirements, to identifying new emergent behavior, checking
requirements consistency and strengthening the given system requirements.
Although the TCPS modeling and environment modeling can be formalized
in many ways by using various techniques, the modeling methodologies for
developing the closed-loop system and to analyze the system requirements
described in this chapter would still remain the same.

1.7 RELATED WORK
Requirement analysis is an important and challenging phase in the software
development lifecycle for eliciting, analyzing and recording the system require-
ments according to stakeholder needs. The recorded requirements must be
precisely defined, unambiguous, formally verified, documented and traceable
by covering the possible requirements. Most common errors related to software
requirements are listed in [22] that presents a detailed survey on the types of
errors and associated root causes for failing the critical systems. These root
causes can be human error, process flaws and program faults. There are several
popular techniques for requirement analysis, such as simulation and prototyp-
ing. A prototype is an early model of the a product that contains partial
features of the system when the system requirements are unclear or indefi-
nite [9]. An approach is proposed in [12] for constructing a prototype using an
algebraic specification language and for executing the developed specification.
A run-time technique for monitoring the system requirements is presented
in [11] that allows to monitor violating properties of the system behavior and
to adapt the new dynamic behaviors by satisfying the higher-level system
goals.

Ian et al. [13] proposed an approach to specify the requirements and en-
vironment of the system, and then capture the assumptions on the physical
components by recording rely-conditions, and later derive a specification of
the computational part of the control system. Moreover, the proposed ap-
proach does not claim that the developed system can be perfectly safe, but
it claims that the proposed approach will help to identify the assumptions

Verifying Trustworthy Cyber-Physical Systems using Closed-loop Modeling � 37

for physical components of the system and to ensure that the requirements
are formally documented. Kishi et al. [30] proposed environment modeling
approach for designing the embedded systems and to rectifying the possible
bugs. A new language is proposed for modeling an environment and to specify
the dynamic behavior for simulating the virtual environment in [18]. Several
other papers [20, 8] also reported work on the environment modeling and
simulation using different techniques.

An environment modeling is an essential approach that is not limited for
simulation only, but it can be used for checking the desired system require-
ments and to use during the system testing. Auguston et al. [3] proposed
environmental behavior model based on Attributed Event Grammar for test-
ing the embedded systems. Heisel et al. [14] discussed the testing approach
by using the specified requirements of the system and environment models in
the UML state machines. Based on environmental constraints, a testing ap-
proach is presented in [10] for describing the behavior of synchronous reactive
software using temporal logic.

Méry et al. [26] proposed the first heart model considering all the required
normal and abnormal behaviors in the Event-B modeling language. Formal
techniques based a closed-loop model of the cardiac pacemaker, for one-and
two-electrode, and heart is presented in [33, 29]. This approach is based on
formal modeling and verification of the cardiac pacemaker. We have adopted
this approach for modeling the closed-loop system of the TCPS and environ-
ment, and we have used a case study, the CRT pacemaker and heart, as an
example to demonstrate the results and benefits.

1.8 CONCLUSION
The trustworthy cyber-physical systems (TCPS) are dependable critical sys-
tems that play a major role in several industrial sectors, like avionic, trans-
portation, medical, space and automotive domains. An increasing demand for
new technology and growing interest, for developing the TCPS within a lim-
ited time period, allow to industrial sectors to adopt the commercial firmware
and software. This rapid adoption of firmware and softwares for developing
the TCPS increases vulnerabilities that may lead to devastating system fail-
ures, including loss of life and economical damage. Mostly, the product design
and engineering flaws, including firmware problems, are identified as the main
causes of the TCPS failures.

In this chapter, we have discussed an approach for requirement analysis
using the closed-loop modeling. We have developed the closed-loop model,
an integration of TCPS and environment, to identify new emergent behavior,
missing system requirements, validating assumptions, identifying undesired
state of the system, strengthening the given requirements, what-if analysis and
to check inconsistencies in the given TCPS. In our work, for modeling both
the TCPS and environment models by supporting the correct-by-construction
approach, we use the Event-B modeling language and Rodin tools [32, 2]

38 �

for managing, developing, verifying and simulating the desired requirements
under the given safety constraints.

To demonstrate the effectiveness of the closed-loop modeling approach,
our goal is to exemplify by integrating the formal models of the CRT pace-
makers and heart to model the closed-loop system for verifying the desired
behavior under relevant safety properties, and to be able to guarantee the
correctness of the functional behavior of the CRT pacemaker. Our experiment
involves formalizing and reasoning about the behavior of a CRT pacemaker,
allows to actuators to pace appropriately whenever required, under normal
and abnormal heart conditions. A set of general and patient condition-specific
temporal requirements is specified that is used to formalize an interactive and
physiologically relevant closed-loop model for verifying the basic and complex
operations of the CRT pacemaker. With the use of model checkers, we demon-
strate that the proposed system is capable of testing the common and complex
heart conditions across a variety of CRT pacemaker modes. This system is a
step toward a modeling approach for medical cyber-physical systems with the
patient-in-the-loop.

Applying the closed-loop approach for developing the TCPS has many
benefits: the exposure of errors which might have not been detected with-
out the environment model; to validate the given assumptions; to increase
confidence and decrease the failure risks; and to promote the use of closed-
loop modeling approach for identifying the emergent behavior and improving
the system requirements for developing the quality TCPS. Moreover, this ap-
proach also allows to consider the feedback from domain experts by simulating
the desired behavior. There are scientific and legal applications for using the
closed-loop modeling approach for better understanding, identifying the de-
sired functional behavior, improving the system requirements and to meet
certification requirements for developing the dependable TCPS.

Bibliography

[1] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, pages 1–84, Dec 1990.

[2] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engi-
neering. Cambridge University Press, New York, NY, USA, 1st edition,
2010.

[3] Mikhail Auguston, James Bret Michael, and Man-Tak Shing. Environ-
ment behavior models for automation of testing and assessment of system
safety. Information and Software Technology, 48(10):971 – 980, 2006. Ad-
vances in Model-based Testing.

[4] S. Serge Barold, Roland X. Stroobandt, and Alfons F. Sinnaeve. Cardiac
Pacemakers Step by Step. Futura Publishing, 2004. ISBN 1-4051-1647-1.

[5] V. N. Bayes de Luna A., Batcharov and M. Malik. "The morphology of
the Electrocardiogram" in The ESC Textbook of Cardiovascular Medicine.
Blackwell Publishing Ltd., 2006.

[6] Jr. Bubenko, J.A. Challenges in requirements engineering. In Require-
ments Engineering, Proceedings of the Second IEEE International Sym-
posium on, pages 160 – 162, March 1995.

[7] M.C. Bujorianu and H. Barringer. An integrated specification logic for
cyber-physical systems. In Engineering of Complex Computer Systems,
2009 14th IEEE International Conference on, pages 291–300, June 2009.

[8] Keungsik Choi, Sungchul Jung, Hyunjung Kim, and Doo hwan Bae. Uml-
based modeling and simulation method for mission-critical real-time em-
bedded. In System DevelopmentĂİ, IASTED Conf. on Software Engi-
neering 2006, 2006, 160âĂŞ165. Mittal, Zeigler and De la Cruz, 2006.

[9] Alan M. Davis. Operational prototyping: A new development approach.
IEEE Softw., 9:70–78, September 1992.

[10] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess:
A specification-driven testing environment for synchronous software. In
Proceedings of the 21st International Conference on Software Engineer-
ing, ICSE ’99, pages 267–276, New York, NY, USA, 1999. ACM.

39

40 � Bibliography

[11] S. Fickas and M. S. Feather. Requirements monitoring in dynamic envi-
ronments. In Proceedings of the Second IEEE International Symposium
on Requirements Engineering, RE ’95, pages 140–147, Washington, DC,
USA, 1995. IEEE Computer Society.

[12] Joseph Goguen and Jose Meseguer. Rapid prototyping: in the obj ex-
ecutable specification language. SIGSOFT Softw. Eng. Notes, 7:75–84,
April 1982.

[13] IanJ. Hayes, MichaelA. Jackson, and CliffB. Jones. Determining the spec-
ification of a control system from that of its environment. In Keijiro Araki,
Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Meth-
ods, volume 2805 of Lecture Notes in Computer Science, pages 154–169.
Springer Berlin Heidelberg, 2003.

[14] Maritta Heisel, Denis Hatebur, and Thomas Santen Dirk Seifert. Testing
against requirements using uml environment models. In in Fachgrup-
pentreffen Requirements Engineering und Test, Analyse & Verifikation,
pages 28–31, 2008.

[15] Robert Plonsey Jaakko Malmivuo. Bioelectromagnetism. Oxford Univer-
sity Press, 1995. ISBN 0-19-505823-2.

[16] Societe franÃğaise cardiologie Jean-Yves Artigou, Jean-Jacques Monsuez.
Cardiologie et maladies vasculaires. Elsevier Masson, 2006.

[17] John von Neumann. Theory of Self-Reproducing Automata. University
of Illinois Press, 1966 Edited by Arthur W. Burks.

[18] Gabor Karsai, Sandeep Neema, and David Sharp. Model-driven architec-
ture for embedded software: A synopsis and an example. Sci. Comput.
Program., 73(1):26–38, September 2008.

[19] M. Gabriel Khan. Rapid ECG Interpretation. Humana Press, 2008.

[20] C. Kreiner, C. Steger, and R. Weiss. Improvement of control software
for automatic logistic systems using executable environment models. In
Euromicro Conference, 1998. Proceedings. 24th, volume 2, pages 919–923
vol.2, Aug 1998.

[21] Michael Leuschel and Michael Butler. ProB: A Model Checker for B,
pages 855–874. LNCS. Springer, 2003.

[22] R.R. Lutz. Analyzing software requirements errors in safety-critical, em-
bedded systems. In Requirements Engineering, 1993., Proceedings of
IEEE International Symposium on, pages 126–133, Jan 1993.

[23] William H. Maisel, Megan Moynahan, Bram D. Zuckerman, Thomas P.
Gross, Oscar H. Tovar, Donna-Bea Tillman, and Daniel B. Schultz. Pace-
maker and ICD Generator Malfunctions: Analysis of Food and Drug Ad-
ministration Annual Reports. JAMA, 295(16):1901–1906, 2006.

Bibliography � 41

[24] John McDermid. Software Engineer’s Reference Book. CRC Press, Inc.,
Boca Raton, FL, USA, 1991.

[25] Dominique Méry and Neeraj Kumar Singh. Technical Report on For-
malisation of the Heart using Analysis of Conduction Time and Velocity
of the Electrocardiography and Cellular-Automata. Technical report,
http://hal.inria.fr/inria-00600339/en/, 2011.

[26] Dominique Méry and Neeraj Kumar Singh. Formalization of heart models
based on the conduction of electrical impulses and cellular automata. In
Zhiming Liu and Alan Wassyng, editors, Foundations of Health Informat-
ics Engineering and Systems, volume 7151 of Lecture Notes in Computer
Science, pages 140–159. Springer Berlin Heidelberg, 2012.

[27] Dominique Méry and Neeraj Kumar Singh. Analyzing requirements us-
ing environment modelling. In Digital Human Modeling. Applications
in Health, Safety, Ergonomics and Risk Management - 5th International
Conference, DHM 2015, Held as Part of HCI International, 2015.

[28] Harlan D. Mills. Stepwise refinement and verification in box-structured
systems. IEEE Computer, 21(6):23–36, 1988.

[29] Dominique MŐry and NeerajKumar Singh. Closed-loop modeling of
cardiac pacemaker and heart. In Jens Weber and Isabelle Perseil, ed-
itors, Foundations of Health Information Engineering and Systems, vol-
ume 7789 of Lecture Notes in Computer Science, pages 151–166. Springer
Berlin Heidelberg, 2013.

[30] N. Noda and T. Kishi. Aspect-oriented modeling for embedded software
design. In Software Engineering Conference, 2007. APSEC 2007. 14th
Asia-Pacific, pages 342–349, Dec 2007.

[31] International Standard Organization. ISO 26262: Road Vehicles – Func-
tional Safety, 2011.

[32] Project RODIN. Rigorous open development environment for complex
systems. http://rodin-b-sharp.sourceforge.net/, 2004.

[33] Neeraj Kumar Singh. Using Event-B for Critical Device Software Sys-
tems. Springer-Verlag GmbH, 2013.

[34] NeerajKumar Singh, Mark Lawford, ThomasS.E. Maibaum, and Alan
Wassyng. Formalizing The Cardiac Pacemaker Resynchronization Ther-
apy. In Digital Human Modeling. Applications in Health, Safety, Er-
gonomics and Risk Management, HCII 2015, LNCS. Springer Interna-
tional Publishing, 2015.

[35] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good
Practice Guide. John Wiley & Sons, Inc., New York, NY, USA, 1st
edition, 1997.

