
Stupid Tool Tricks for Smart Model
Based Design

Mark Lawford(B)

McMaster Centre for Software Certification, McMaster University,
Hamilton, ON L8S 4K1, Canada

lawford@mcmaster.ca

Abstract. Formal methods tools can be used to detect and prevent
errors so researchers assume that industry will use them. We are often
frustrated when we see industrial projects where tools could have been
used to detect or prevent errors in the final product. Researchers often
fail to realize that there is a significant gap between aa potentially useful
tool and its use in a standards compliant, commercially viable, develop-
ment process. In this talk I take a look at seemingly mundane industrial
requirements - qualification (certification) of tools for use in standards
compliant development process for general safety (IEC 61508), Automo-
tive (ISO 26262) and Avionics (DO-178C), Model Based Design coding
guidelines compliance, standards compliance documentation generation
and integration with existing industry partner development processes.
For each of these topics I show how “stupid tool tricks” can be used to
not only increase adoption of academic methods and tools, but also lead
to interesting research questions with industry relevant results.

Keywords: Simulink · Model-based design · Tool qualification · Soft-
ware tools

1 Introduction

The title of this talk is based upon the former television host David Letterman’s
popular “Stupid Pet tricks” segment from the Late Show where people brought
out their pets to perform various tricks. In introducing the segment during the
November 15, 2013 show, Letterman described the segment as follows:

Now please, the pets are not stupid. The people who taught them the
tricks are not stupid. It’s just that it’s a colloquialism for . . . “Oh! Isn’t
that cute!”

In the remainder of the paper I will briefly describe joint work with colleagues
and students from industrial research projects that form the basis of the “Stupid
Tool Tricks” I refer to in the title. In order to avoid confusion about my opinion
of the excellent people I get to work with and the high quality work they produce,
let me rephrase Letterman’s description:
c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 1–7, 2016.
DOI: 10.1007/978-3-319-48869-1 1

2 M. Lawford

Now please, the tools are not stupid. The people who programmed the
tool tricks are not stupid. It’s just that it’s a colloquialism for . . . “Oh!
Isn’t that useful!”

Recently embedded software development has turned to Model Based
Design (MBD) with code generation from models created with tools like Mat-
lab/Simulink. In recent talks John Knight has declared that “Coding is over!”,
basically saying that it doesn’t matter what language you teach anymore. Java,
Python, C, C# are irrelevant. What matters is models. Engineers will create
models and generate the code. Or to think of it another way, “Coding is dead!
Long live encoding! (of models . . . in MATLAB/Simulink)”. As a result man-
agers might think that we do not need software engineers any more. While
domain engineers may create the models, companies will still need the Software
Engineers to help manage the models and abstractions.

A recurring theme at VSTTE is moving the focus up the levels of abstrac-
tion to a more productive layer closer to the engineering problem. For example,
automotive controls engineers will provide insight into how to model and design
control systems using the controls oriented models of Matlab/Simulink, but with
the pace of development, diverse product lines and absolute need for dependable
software and systems will require appropriate software engineering methods and
concepts to be applied. From precise requirements to design for change, software
engineering principles will need to be applied to the models. A problem currently
facing many industries is that the majority of engineers developing the models
are not taught Software Engineering fundamentals such as those pioneered by
Parnas [4]. With the move to Model Based Development, coding is mostly over.
Software Engineering is definitely not over.

It is clear that many industries need help in dealing with Model Based Devel-
opment of software. So why is the industry not using researchers tools, theories
and methods that are promoted at conferences and workshops like VSTTE? In
the remainder we provide some possible answers to this question.

2 What Is Tool Qualification? (and Why Should I Care
About It?)

In a nutshell? Tool qualification comes down to insure that the tool is fit for use
in the intended development context. Researchers should care about it because
it is one of the biggest hurdles to getting their tools and theories used.

Figure 1 represents at the top level what is the main hazard that is of the
utmost concern for most standards regarding tool use - the tool fails to detect an
error or inserts an error. A rudimentary interpretation of the DO-330 Software
Tool Qualification Considerations supplement to the DO-178B/C standard that
is applied to civilian aviation software provides the second level possible causes
that can lead to this hazard. The diagram then provides some detail of the third
level of what could lead to the tool not being properly installed that then results
in the tool failing to detect an error or inserting an error. For the purposes of

Stupid Tool Tricks for Smart Model Based Design 3

Fig. 1. Representation of tool hazard analysis implicit in DO-330

brevity we have not provided the complete third level expansion. Other standards
such as IEC 61508 and ISO 26262 have similar reasoning behind their need for
tool qualification before the tools are used in the development of a critical system.

The successful use of the PVS theorem prover to perform software verification
of the Darlington Nuclear Reactor Shutdown Systems software has been docu-
mented in [6] and a description of how consideration of the entire development
process was important to that success can be found in [7]. One of the key insights
is that while the use of a formal methods tool like PVS provided increased con-
fidence and considerable benefits, the final development process accepted by the
regulator required all of the proofs done in PVS to be performed manually too
in order to mitigate any potential failures of PVS and the supporting tool chain
used in the design verification of Darlington. Tools are great, but they do not
buy you as much as you think if they can be a single point of failure. At the time
of the Darlington Redesign Project the regulator wanted to mitigate a failure of
PVS with a known method, manual proof. It was a reasonable requirement at
the time, but it limited the benefits of the formal methods tools.

In the intervening years since the Darlington Redesign Project was com-
pleted, standards have evolved to provide better guidance to engineers wishing
to use software tools. For example, the Latest version of IEC-61508-3 now pro-
vides better guidance here:

4 M. Lawford

In particular, Note 2 suggests checking of the tool output or use of diverse
tools for the same purpose. DO-330 (S. 4.4(e)) in the avionics domain and ISO
26262 (clause 11.4.1.1) in the automotive domain provide similar guidance in
avoidance of single points of failure in development tool chains.

2.1 Solving the Tool Qualification Problem

The bad news is that in order to get your tools and methods used, you will, in all
likelihood, need to use two different (diverse) tools in order to avoid having to do
work manually because “demonstrating soundness of the tools” to a regulator in
a cost effective way will likely be difficult or impossible. The good news is that
it is not as hard as you might think to knock the tool qualification requirements
down a level by doing the same thing with 2 or more tools. Intermediate Domain
Specific Languages (DSLs) can be used to generate code for multiple theorem
provers, SMT solvers, or model checkers, often providing more than one way to
get the same result. This technique has the additional benefit that it can help
avoid vendor lock-in for verification tools.

In developing tools and methods, researchers need to consider this tool qual-
ification problem if they want industry to use their work. In developing the
Tabular Expression Toolbox for Matlab Simulink [2] this was the main impetus
behind having the completeness and disjointness conditions checkable by both
PVS and an SMT solver. This could then be used as part of an argument to the
regulator the checks for domain coverage and determinism of the specification
would not need to be manual checked. This brings us to

Stupid Tool Trick #1

Do everything twice in two different ways.

3 Integrating with the Development Process and
Documentation

Recent industrial research projects have given us access to a large number of
industrial Matlab/Simulink models that are used for code generation. In an effort
to understand those models, we began examining the explicit dataflow due to
model input/output ports and implicit data flow due to (scoped) data stores and
goto/from blocks in Simulink [1]. This led to the development of tools for Mat-
lab/Simulink that help with model comprehension and refactoring for improved
software qualities such as model comprehension, testability, modularity [3].

Stupid Tool Tricks for Smart Model Based Design 5

bAllowSet

2

eGearSet

1

Merge

Merge

If GearState

u1

u2

u3

u4

u5

u6

if(u1 <= u2)

elseif(u1 == u3)

else

If Gear345 or Else

Action
bAllowSel

eGearSet

bAllowSet

If Gear2

Action
eGearSel

eGearSet

bAllowSet

If Gear1

ActioneGearSel

bAllowSel

eGearSet

bAllowSet

[eGearSel]

[bAllowSel]

[eGearSel]

[eGearSel]

[bAllowSel]

[bAllowSel]

cGear4

cGear5

cGear3

cGear2

cGear1

eGearSelection

3

bAllowSelection

2

eGearState

1

Inputs

Data Store Reads

Updates

Outputs

Data Store Writes

eAllowSet

2

eGearSet

1

bPoweredState

eGrantedGear

Merge

Merge

If GearState

u1

u2

u3

u4

u5

u6

if(u1 <= u2)

elseif(u1 == u3)

else

If Gear345 or Else

If Gear2

If Gear1

[eAllowSet]

[eGearSet]

[eGearSelection]

[bAllowSelection]

[eGearState]

[eGearSel]

[bAllowSel]

[eAllowSet]

[eGearSet]

[eGearSelection]

[bAllowSelection]

[eGearState]

[eGearSel]

[eGearSel]

[bAllowSel]

[bAllowSel]

eGrantedState cGear5

cGear3

cGear2

cGear1

cGear4

eGearSelection

3

bAllowSelection

2

eGearState

1

ActioneGearSel

bAllowSel

eGearSet

bAllowSet

Action eGearSet

bAllowSet

Action
bAllowSel

eGearSet

bAllowSet

Fig. 2. Original Simulink model (top) and with “signature” (bottom)

One tool in particular, the signature tool, made all of the dataflow explicit
by modifying the models to create explicit ports for all of the dataflow, explicit
and implicit, on the left side of the model (see Fig. 2). One could think of this as
the equivalent of a function prototype in a C header file. The industry partner
did not want to modify the layout of their models because of potential code
generation impacts so the tool was initially rejected, but later found use as a
test harness generator when we demonstrated significant improvements in test
coverage, with reduced testing effort, when the signature was used to help make
dataflow explicit to commercial test case generation tools.

Stupid Tool Trick #2

Consider alternative uses of a tool. These might be more useful than your
original purpose.

4 Coding Guideline Compliance and Research

During our examination of implicit dataflow in Simulink models we noted that
many of the models developed by domain experts tended to have the majority
of their data store declarations at the top level of the model hierarchy. This
is equivalent to programming with global variables. Data stores, like variables

6 M. Lawford

in traditional programming languages, should be restricted in scope in order to
avoid inadvertent or unwanted access and help to make the design more modular.

We developed a tool that examined the dataflow and determined where the
data stores were actually accessed and then rescoped the data stores to be as
low as possible in the model hierarchy. This tool was initially called the Data
Store Push-Down Tool and has since been renamed the Data Store Rescope Tool
since it can also move a data store declaration higher up in the model hierarchy
if access is added a part of the model that is not below (i.e., in the scope of)
the data store declaration. Since the development of this tool modeling guide-
lines published by the Japan MathWorks Automotive Advisory Board (JMAAB)
include a rule which strongly recommends positioning Data Store Memory blocks
as low as possible in the model hierarchy, and discourages top level data store
declarations [5].

Noticing that some models had well scoped data store declarations and were
hence easier to understand, we then developed a metric that computed the dif-
ference between the number of data items that subsystems had access to and
the number that it actually used. A lower the total difference might then be
an indicator of better model quality. This in turn has led us to reconsider how
Simulink models can be developed to embody the software engineering principles
such as those in the works Parnas et al. [4].

Stupid Tool Trick #3

If a tool is useful, ask yourself why is it useful. This might lead to inter-
esting research ideas.

5 Conclusion

By working with our industrial partners we were motivated to discover simple
“stupid” tool tricks that improved the applicability of research tools, helping to
improve software engineering methods for Model Based Design and led to inter-
esting research problems that had industrial relevance. The reader is encouraged
to examine their own research tooling efforts in the context of industrial devel-
opment to see if similar stupid tool tricks can lead to improved industry uptake
of research results.

Acknowledgments. The author would like to acknowledge the work of all of the
researchers and students in the McMaster Centre for Software Certification (McSCert).
This work would not have been possible without the support of our industry partners.

References

1. Bender, M., Laurin, K., Lawford, M., Pantelic, V., Korobkine, A., Ong, J., Mackenzie,
B., Bialy, M., Postma, S.: Signature required: making Simulink data flow and inter-
faces explicit. In: Science of Computer Programming, Part 1, vol. 113, pp. 29–50
(2015). Model Driven Development (Selected & extended papers from MODEL-
SWARD 2014)

Stupid Tool Tricks for Smart Model Based Design 7

2. Eles, C., Lawford, M.: A tabular expression toolbox for Matlab/Simulink. In:
Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol.
6617, pp. 494–499. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 38

3. Pantelic, V., Postma, S., Lawford, M., Korobkine, A., Mackenzie, B., Ong, J.,
Bender, M.: A toolset for Simulink: improving software engineering practices in devel-
opment with Simulink. In: 3rd International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD), pp. 50–61. IEEE, February 2015

4. Parnas, D.L.: Software design. In: Hoffman, D.M., Weiss, D.M. (eds.) Software
Fundamentals: Collected Papers by David L. Parnas, pp. 137–142. Addison-Wesley
(2011)

5. The MathWorks. Japan MathWorks Automotive Advisory Board (JMAAB): Con-
trol Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow,
Version 4.01, March 2015. www.mathworks.com/solutions/automotive/standards/
maab.html. Accessed Feb 2016

6. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.)
FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45236-2 9

7. Wassyng, A., Lawford, M.: Software tools for safety-critical software development.
Int. J. Softw. Tools Technol. Transf. (STTT) 8(4–5), 337–354 (2006)

