Verification of Real-Time Control Software Using PVS

Mark Lawford1 and Hongyu Wu
Dept. of Computing and Software
Faculty of Engineering
McMaster University
Hamilton, Ontario Canada L8S 4L7
e-mail: lawford@mcmaster.ca

Abstract — This paper provides preliminary results from an investigation of the use of PVS for the specification and verification of the real-time behavior of control systems software. Preliminary definitions are developed for specifying real-time software requirements. The definitions are used to specify a subsystem of an industrial real-time control system and then PVS is used to detect several errors in a proposed implementation and the original specification. Finally we prove that a corrected version of the implementation satisfies the updated version of the specification.

I. INTRODUCTION

The paper considers a discrete time setting where a supervisory controller periodically samples its inputs and updates its outputs. We provide basic mathematical definitions to precisely specify some common real-time properties of controllers in this setting. The definitions are implemented as a reusable theory for SRI’s automated proof assistant PVS2. We then use PVS to formally specify and verify the real-time behavior of an industrial control subsystem by extending the PVS “Clocks” theory originally developed by Dutertre and Stavridou for the analysis of [3]. These definitions, when combined with PVS’s support for the tabular methods [4] of Parnas et al. [5, 6] provide a useful environment for the specification and verification of basic real-time control properties.

To illustrate the utility of the theory, we specify and verify a simple real-time subsystem of an industrial control system. As we will see, the process of formally modeling the subsystem’s real-time requirements and verifying the proposed implementation against these requirements helps to uncover errors or unexpected behavior in both the specification and the implementation. As a result, both the requirements and implementation are modified and then proven to be correct. The resulting system is safer and we have a higher degree of confidence in its correctness.

Although the method has several limitations, noted below, that will hopefully be addressed by future refinements of the technique, as it now stands the method has proven useful in identifying errors in verification software involving hard real time constraints.

The PVS verification methodology outlined in [1] allows one to perform “block comparisons” verifying the functionality of the input/output logic that often composes the majority of a system requirements. In [1], the authors noted that the method is not readily applicable to the verification of subsystems with hard real-time requirements (i.e., “timing blocks”).

Timing blocks are distinguished by the fact that in addition to requiring that the proper output is produced for a given input (or sequence of inputs), these blocks also require the output to be produced at the correct time. Thus, instead of relating a point in the domain (input) to a corresponding point in the range (output), timing blocks typically involve specifications relating timed sequences of inputs to timed sequences of outputs and hence tend to be more difficult to design and verify. A formal (mathematically sound) method for the verification of timing blocks would therefore significantly aid the design and verification process.

Using theorem proving techniques to verify real-time control software can be viewed as a complementary technique to testing, as theorem proving can be used to deal with the issues of domain coverage and determinism that are difficult or impossible to demonstrate with testing alone due to the well known state explosion problem.

The main advantages of the proposed method are:

- It is straightforward extension of the existing successful (untimed) methods of [1].
- Guaranteed Domain Coverage - PVS forces the verifier to demonstrate that the specification and implementation agree on all possible input sequences.
- Model can closely resembles original requirements specification and design descriptions due to the flexibility of PVS’ type system.
- Counter examples - As described in [1], unprovable cases in PVS can help to provide counter examples that aid in the analysis of the implementation.
- Refutation - If the verifier believes that the implementation is not meeting the requirements for a particular input combination, PVS can be used to perform “refutation” by trying to prove a theorem stating that the specification and implementation are not equal for the specific input.

The main limitations of the method in its current form are its inability to address the issues of inter-sample behavior and different sampling rates, tolerances on timing values and the excessive amount of user intervention required to verify timing properties involving “large” time delays.

II. PRELIMINARIES

This section provides an overview of the (functional) Systematic Design Verification (SDV) procedure used in [1] that is the basis of the real-time software verification problem posed in Section IV. The method makes use of a form of Parnas’ tabular representations of mathematical functions [5, 6] to specify

1This work was partially supported by an NSERC.
the software’s behavior. Tables provide a mathematically precise notation (see [7] for the formal semantics) in a visual format that is easily understood by domain experts, developers, testers, reviewers and verifiers alike [1].

We assume the underlying models of both the Software Requirements Specification (SRS) and the Software Design Description (SDD) are based upon Finite State Machines (FSM). The SDD adds to the SRS functionality the scheduling, maintainability, resource allocation, error handling, and implementation dependencies. Thus the SRS provides a high level description of the required system behavior while the SDD provides the implementation details to implement the required behavior.

Software engineering standards for safety critical software, such as [8], require that the design be formally verified against the SRS and then the code be formally verified against the SDD to ensure that the implementation meets the requirements. These formal verifications are governed by the SDV Procedure and Systematic Code Verification (SCV) Procedure. For the purposes of this paper we will concentrate on the SDV process.

The objective of the SDV process is to verify, using mathematical techniques or rigorous arguments, that the behavior of every output defined in the SDD, is in compliance with the requirements for the behavior of that output as specified in the SRS. The process employed in [1] is based upon a variation of the four variable model of [9] that verifies the functional equivalence of the SRS and SDD by comparing their respective one step transition functions. The resulting proof obligation in this special case:

\[REQ = OUT \circ SOF \circ IN \] (1)

is illustrated in the commutative diagram of Figure 1. Here

\[M \xrightarrow{\text{REQ}} C \xrightarrow{\text{OUT}} \]
\[I \xrightarrow{\text{SOF}} O \]

Fig. 1: Commutative diagram for 4 variable model

\(REQ \) represents the SRS state transition function mapping the monitored variables \(M \) (including the previous pass values of state variables) to the controlled variables and updated state represented by \(C \). The function \(SOF \) represents the SDD state transition function mapping the behavior of the implementation input variables represented by statespace \(I \) to the behavior of the software output variables represented by the statespace \(O \). The mapping \(IN \) relates the specification’s monitored variables to the implementation’s input variables while the mapping \(OUT \) relates the implementation’s output variables to the specification’s controlled variables.

In the 4-variable model of [9], each of the 4 “variable” state spaces \(M, I, O \) and \(C \) is a set functions of a single real valued argument that return a vector of values - one value for each of the quantities or “variables” associated with a particular dimension of the statespace. For instance, assuming that there are \(n_M \) monitored quantities, which we represent by the variables \(m_1, m_2, \ldots, m_{n_M} \), then, the timed behavior of the variable \(m_i \) can be represented as a function \(m_i^t: \mathbb{R} \rightarrow Type(m_i) \), where \(m_i^t(x) \) is the value of the quantity \(m_i \) at time \(x \). We can then take \(M \) to be the set of all functions of the form \(m^t(x) = (m_1^t(x), m_2^t(x), \ldots, m_{n_M}^t(x)) \). Thus the relations corresponding to the arrows of the commutative diagram then relate vectors of functions of a single real valued argument.

In order to simplify the 4-variable model and have it more closely model the dynamics of a digital control system that samples its inputs and updates its outputs at regular intervals, we restrict ourselves to the case where each of the 4 “variables” \(M, I, O \) and \(C \) is a set of “time series vectors”. For example, \(M \) actually refers to all possible sets of observations ordered (and equally spaced) in time, each observation being a vector of \(n_M \) values. We will use the term monitored variable to refer to quantity \(m_i \) which is the \(i \)th element in the vector \((i \in \{1, \ldots, n_M\})\). Let \(m \in M \) be a time series vector of observations of the monitored variables. With a slight abuse of notation, we will use \(m_i(z) \) to denote the \(z \)th observation of the \(i \)th element \((z \in \{0, 1, 2, \ldots, \})\) of the monitored variables for the time series vector \(m \). Similarly \(m(z) \) represents the \(z \)th observation of the \(n_M \) values in the monitored variable vector for time series \(m \).

For this model, the time increment between each of the observations is defined to be \(K \in \mathbb{R}^+ \), where \(\mathbb{R}^+ \) denotes the positive reals. Thus observation \(z \) corresponds to time \((z \cdot K)\). The value of \(m_i \) at any point between two observations (i.e., in the range of time \((z \cdot K, (z + 1) \cdot K)\)) is defined to be equal to \(m_i(z) \).

The verification of real-time properties requires us to consider \(REQ \) and \(SOF \) as mapping from sequences of inputs to sequences of outputs since there is typically no longer a direct relationship between the one step transition functions of the SRS and SDD.

III. SPECIFICATION OF REAL-TIME REQUIREMENTS

The model of time employed by the proposed method builds upon a discrete time “Clocks” theory originally defined in [3]. While the model of time put forward in [3] allows for multiple clocks of different frequency and continuous time functions, we restrict ourselves to discrete time functions of a single clock frequency. The rest of this section describes the underlying real-time setting used to model systems. The section is concluded by a simple example that demonstrates the use of the HELED FOR operator.

We will consider time to be the set of non-negative real numbers. Then for a positive real number \(K \), we define a clock of period \(K \), denoted \(clock_K \), to be a set of “sample instances”

\[clock_K := \{ t_0, t_1, t_2, \ldots, t_n, \ldots \} = \{ 0, K, 2K, \ldots, nK, \ldots \} \]

For a period \(K = 5 \), the clock of period 5 is simply

\[clock_5 := \{ 0, 5, 10, 15, \ldots \} \]

Note that \(clock \), like all clocks as defined above, “starts” at time \(t_0 = 0 \).

To identify the initial clock value and thereby specify initial system states, we define the \(init \) predicate which is \(TRUE \) only at \(t_0 \):

\[init(t_n) := \begin{cases} TRUE, & n = 0 \\ FALSE, & \text{otherwise} \end{cases} \]
Identifying the initial clock value allows one to define recursive functions that use \(t_0 \) as the base case and then define the system state at any clock value in terms of the system state at the previous clock value. To formalize the notion of “previous clock value” and aid in proving termination properties of recursive functions defined over \(\text{clock}_K \), we define the rank of \(t_n \), to be \(n \). Formally: \(\text{rank}_K : \text{clock} \rightarrow \mathbb{N} \) where \(t_n \mapsto n \).

When defining recursive functions that have a clock of period \(K \), for a particular instance of time (clock value) it is often convenient to be able to refer to the next sample time or previous sample time. To this end we can define \(\text{next}_K \) and \(\text{pre}_K \) operators on the elements of \(\text{clock}_K \) as follows:

\[
\begin{align*}
\text{pre}_K(t_n) & := \begin{cases}
t_{n-1}, & n \geq 1 \\
\text{undefined}, & \text{otherwise}
\end{cases} \\
\text{next}_K(t_n) & := t_{n+1}
\end{align*}
\]

When the value of \(K \) is unambiguous from the current context, we will omit the operator subscripts and simply write \(\text{rank}() \), \(\text{next}() \) and \(\text{pre}() \).

Note that \(\text{pre}(t_0) \) is undefined. PVS requires that all functions are total (i.e. defined at every value in their domain). In the case of the \(\text{pre}() \) operator, this is easily accomplished through the use of the subtype:

\[
\text{noninit}_\text{elem}_K := \{t_n \in \text{clock}_K \mid \text{init}(t_n)\}
\]

as the \(\text{pre}() \) operator’s domain. PVS allows the application of a function to any element belonging to a supertype of the function’s domain and then generates a proof obligation or Type Correctness Condition (TCC). The TCC requires the user to prove the element the function is applied to is of the same type as the function’s domain. For example, any time the \(\text{pre}() \) operator is applied to an arbitrary clock value \(t_n \), a TCC is generated requiring the user to prove that \(t_n \) is never equal to 0, and hence has a previous value.

We now state a preliminary definition that will aid us in defining the timing operators in the remainder subsections. For the \(\text{clock}_K \), the set of clock predicates, denoted \(\text{pred}(\text{clock}_K) \), is the set of all boolean functions of \(\text{clock}_K \):

\[
\text{pred}(\text{clock}_K) := \{ f | f : \text{clock}_K \to \{ \text{TRUE}, \text{FALSE} \} \}
\]

Figure 2 contains a simplified version of Dutratre and Stavrados’ [3] PVS specification file that implements the parametrized theory Clocks defining the type clock that corresponds to \(\text{clock}_K \) above.

The \(\text{clockinduction} \) proposition is a simple statement of proof by induction over clock values. It says that for a clock predicate \(P \), if (i) \(P(t_0) \) is \(\text{TRUE} \), and (ii) for any \(n > 0 \), \(P(t_{n+1}) \) is \(\text{TRUE} \) implies that \(P(t_n) \) is \(\text{TRUE} \), then \(P(t_n) \) is \(\text{TRUE} \) for all \(t_n \) in \(\text{clock}_K \). We will use this proposition to prove that an SRS function and SDD function are equivalent at all sample instance (clock values).

We can now define the PVS implementation of the \(\text{HELD}_\text{FOR} \) operator that we will use in the example of section IV. Let \(\text{duration} \) denote a non-negative real number, and \(P \) represent a clock predicate (i.e. \(P : \text{clock}_K \to \{ \text{TRUE}, \text{FALSE} \} \)). \(\text{HELD}_\text{FOR} \) is an infix operator that takes a clock predicate as its first argument, a non-negative real number as its second argument and returns a clock predicate:

\[
\text{HELD}_\text{FOR} : \text{pred}(\text{clock}_K) \times \mathbb{R}^+ \to \text{pred}(\text{clock}_K)
\]

Clocks[K: posreal]; THEORY
BEGIN
non_neg: TYPE = { x: real | x>=0 }
 time: TYPE = non_neg
t: VAR time
 clock: TYPE = { t: time | EXISTS(n: nat): t=n*K }
x: VAR clock
 init(x): bool = (x=0)
 noninit_elem: TYPE ={ x | not init(x) }
y: VAR noninit_elem
 pre(y): clock = y - K
 next(x): noninit_elem = x + K
 rank(x): nat = x/K

clock_induction: PROPOSITION
FORALL (P: pred[clock]):
(FORALL (x: clock): init(x)
IMPLIES P(x)) AND
(FORALL (y: noninit_elem): P(pre(y))
IMPLIES P(y))
IMPLIES (FORALL (x: clock): P(x))

END Clocks

Fig. 2: PVS for Clocks Theory

such that \((P)\text{HELD}_\text{FOR}(\text{duration})(t_n) = \text{TRUE} \) if \((\exists t_j \in \text{clock}_K) \) such that

\[
(t_n - t_j \geq \text{duration}) \land (\forall t_i \in \text{clock}_K)(t_j \leq t_i \leq t_n \Rightarrow P(t_i))
\]

Example 1: Let \(K = 150 \), \(\text{duration} = 295 \), and \(\text{Sensor}(t) \) be a clock predicate as shown in Figure 3. Note that we are ignoring intersample behavior of \(\text{Sensor} \). The truth value of \(\text{HELD}_\text{FOR} \) is only dependent upon the value of \(\text{Sensor} \) at the sampling instances corresponding to the clock values.

The PVS theory defining the \(\text{HELD}_\text{FOR} \) operator is shown in figure 4: The PVS function implementing the \(\text{HELD}_\text{FOR} \) operator is \(\text{HELD}_\text{For} \), defined at the bottom of the theory. It implements the \(\text{HELD}_\text{FOR} \) operator by evaluating the recursive function heldfor, which, as long as \(P(t) \) is \(\text{TRUE} \), backtracks to the previous value of \(t \) until \(t\text{now} - t > \text{duration} \) or equal to duration. If at any point before the recursion terminates \(P(t) \) is \(\text{FALSE} \) or the initial state is reached, heldfor returns \(\text{FALSE} \).

\[
\begin{array}{cccccc}
\text{Sensor} & T & F & F & T \\
\text{time} & | & | & | & | & |
\begin{array}{cccccc}
n & 0 & 1 & 2 & 3 \\
\text{f} & 0 & 150 & 300 & 450 \\
\end{array}
\end{array}
\]

Fig. 3: \(f = (\text{Sensor})\text{HELD}_\text{FOR}(295) \) example
Held_For [K:posreal] : THEORY
BEGIN
IMPORTING Clocks[K]
t, t_now: VAR clock
duration:VAR time
P: VAR pred[clock]

heldfor(P, t, t_now, duration):
 RECURSIVE bool =
 IF P(t) THEN
 IF (t_now - t >= duration) THEN TRUE
 ELSIF init(t) THEN FALSE
 ELSE heldfor(P, pre(t), t_now, duration) ENDIF
 ELSE FALSE
 ENDIF
MEASURE rank(t)

Held_For(P, duration): pred[clock] =
 (LAMBDA (t:clock): heldfor(P, t, t, duration))
END Held_For

Fig. 4: PVS file implementing HELD_FOR operator

The theory simple in Figure 5 illustrates the use of the PVS Held_for theory.

The theorem good is easily proved by the (GRIND) command. This is expected since
the first clock value greater than 1000+duration is 1300 and in this case 1300-1000, 295 while
Sensor is true at 1000, 1300 and all clock values in between.

Attempting to prove bad results in the unprovable sequent:

\[
\begin{align*}
[-1] & \quad n/1 >= 0 \\
[-2] & \quad 50 * n/1 >= 0 \\
[-3] & \quad t/1 = 50 * n/1 \\
[-4] & \quad (50 * n/1 >= 1245) \\
\end{align*}
\]

\[
\begin{align*}
\{1\} & \quad Sensor(50 * n/1 - 300)
\end{align*}
\]

This unprovable sequent corresponds to the equation:

\[
(\forall t_n \in clock) t_n \geq 1245 \Rightarrow Sensor(t_n - 300)
\]

The number 1245 = 1000 + 295 - 50 = 1000 + duration - K. The first clock value greater than or equal to
this number is 1250, but when t|1 = 1250 all formulas are true except 1 since Sensor(950)=FALSE resulting in
an unprovable sequent.

In addition to the HELD_FOR operator, we have defined PVS version of DELAYED_BY and PERIODIC operators
that allow one to formally specify the timing of an output event relative to an input event and periodic behavior respectively.

IV. VERIFICATION OF REAL-TIME REQUIREMENTS

In this section we describe how PVS has been used to verify as simple real-time controller with inputs and output as shown in Figure 6. The Sensor Lock real-time controller takes two
boolean valued inputs, Sensor and Reset, and produces a single boolean valued output SenLock every K = 100ms. When

\[
\begin{align*}
\text{simple} : \text{THEORY} \\
\text{BEGIN} \\
K: \text{posreal} = 50 \\
\text{IMPORTING Held_for[K]} \\
t: \text{VAR clock} \\
\text{Sensor(t):bool = IF (t < 1000) THEN FALSE \hspace{1cm} ELSE TRUE ENDIF} \\
duration:time = 295 \\
\text{good: THEOREM (t >= 1000+duration) IMPLIES Held_for(Sensor, duration)(t)} \\
\text{bad: THEOREM (t >= 1000+duration - K) IMPLIES Held_for(Sensor, duration)(t)} \\
\end{align*}
\]

END simple

Fig. 5: PVS file utilizing Held_for

\begin{center}
\begin{tikzpicture}
\node (Sensor) {Sensor};
\node [right of=Sensor] (SensorLock) {Sensor Lock};
\node [right of=SensorLock] (RT) {RT controller};
\node [right of=RT] (SenLock) {SenLock};
\draw [->] (Sensor) -- (SensorLock);
\draw [->] (SensorLock) -- (RT);
\draw [->] (RT) -- (SenLock);
\end{tikzpicture}
\end{center}

Fig. 6: Block diagram for real-time Sensor lock controller

the value of Sensor is continuously TRUE for \text{ide} = 150ms or longer, then the sensor is “locked” and SenLock is set to TRUE. Once the sensor is “locked”, it stays locked until the
system is manually reset indicated by making \text{Reset} = TRUE. This behaviour is summarized by the following table:

\[
\begin{array}{|c|c|}
\hline
\text{Condition} & \text{Result} \\
\hline
\text{Sensor \& \text{-held_for}(\text{ide})} & \text{SenLock} \\
\hline
\text{NOT \& \text{Sensor \& \text{held_for}(\text{ide})}} & \text{\text{Reset}} \\
\hline
\end{array}
\]

When the conjunction of atomic proposition in a given row of the Condition columns is TRUE, then SenLock is set to the Result value for that row. E.g., when

\[
\text{NOT \& \text{Sensor \& \text{held_for}(\text{ide})}} \wedge \text{\text{Reset}}
\]

then SenLock = False.

The SDD or “implementation” of this specification is given by the following table:

\[
\begin{array}{|c|c|c|}
\hline
\text{Condition} & \text{Elock} & \text{LTi}\text{me} \\
\hline
\text{NOT} & \text{Elock} & \text{LTime} \\
\hline
\text{Sensor} = \text{\text{Lock}} & \text{Elock = \text{\text{Lock}}} & \text{Good} \\
\hline
\text{LTi}\text{me} = \text{0} & \text{Bad} & \text{Lock} \\
\hline
\text{Sensor} \leq \text{\text{ide}} & \text{\text{NC}} & \text{next(LTime)} \\
\hline
\end{array}
\]
Here Elock is a three valued function corresponding to SenLock and LTime is a timer object used to implement the Held_4. For. The designer used a three valued function for Elock so that this output could also provide some information about Sensor to the rest of the system. The idea is that Elock = Lock when the sensor is “locked”, it is Bad when the sensor is unlocked and Sensor = TRUE and it is Good when the sensor is unlocked Sensor = FALSE. The value NC in the Elock column is short for “No Change”.

Due to time and space constraints we do not include the PVS verification file here. It is available from the first author upon request. To apply PVS to this Verification Problem we use the strategy (INDUCT "t" 1 "clock induction"). This breaks proof into two parts: (i) Base Case when t=0, and (ii) inductive case. In the course of proving these cases, we find the following errors:

1. Wrong initial condition for Elock.
2. Elock becomes unlocked without a manual reset.
3. Cases exist where manual reset unlocks the SenLock but not Elock.

The complete specification and design require fail-safe operation so the value of SenLock was initially set to TRUE. In the original design Elock was initialized to Bad.

The SDD becomes unlocked because the LTime counter is reset to 0 when Elock is set to Lock. As a result the system loses the “history” of Sensor. Although Elock does not correctly implement this requirement as specified by SenLock, it also illustrates how SenLock could be made “safer”. When Sensor = TRUE, Elock will not allow a manual reset, while SenLock will permit such a reset if Sensor was FALSE in the recent past.

Taking these issues into consideration, we provide “fixed” versions of the specification and implementation below:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Held for (kelay)</td>
<td>SenLock</td>
</tr>
<tr>
<td>NOT ([Sensor] Held for (kelay)]</td>
<td>Reset</td>
</tr>
</tbody>
</table>

It is possible to use PVS to prove that the new version of the SDD implements the SRS.

V. CONCLUSION

PVS has been used to verify simple timing properties. The main benefit of the PVS Real-Time method is that it delivers a guarantee of domain coverage. When properly applied this method for the verification of timing blocks provides an increased level of confidence in the verification process and aids in detecting subtle timing errors.

The main advantages of the proposed method is that it is a relatively straight-forward extension of an existing methods, it checks all possible input sequences, and in the case when the SRS and SDD are not equivalent it provides some insight into the reasons for any discrepancies. Moreover, when a verifier suspects discrepancy, he can reiteration theorem proving to confirm that the implementation does not satisfy the specification. The work currently has several limitations. Most significantly, the implementation ignores intersample behavior and timing tolerances. Also, more effective proof techniques are required for real-time properties spanning "large" durations.

References

