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Abstract: This paper considers optimal supervisory control of probabilistic discrete event
systems (PDESs). PDESs are modeled as generators of probabilistic languages. The probabilistic
supervisors employed enable/disable events with certain probabilities. We consider the case when
there exists no probabilistic supervisor to match the behaviour of a plant to a probabilistic
requirements specification. First, we define a notion of distance between two probabilistic
generators. Then, given a plant and a desired probabilistic behaviour, we present an algorithm
that minimizes the distance between the desired behaviour and the behaviour of the controlled
plant achievable under probabilistic control.
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1. INTRODUCTION

The control of different models of stochastic discrete event
systems has been investigated in Mortazavian (1993),
Borkar (1991), Kumar and Garg (1998), Chattopadhyay
and Ray (2007), etc. Rabin’s probabilistic automata are
used in Mortazavian (1993) as the underlying model, while
Borkar (1991) investigates the optimal control theory of
Markov chains. The model of Garg (1992a,b) is used in
Kumar and Garg (1998), Chattopadhyay and Ray (2007).

We adopt the supervisory control framework of PDESs
as proposed in Lawford and Wonham (1993). PDESs are
modeled as probabilistic generators from Garg (1992a,b).
A PDES is represented as an automaton with transitions
labeled with events and probabilities. As opposed to the
model of Garg (1992a,b), our probabilistic automaton is
deterministic in the following sense: for each state of the
automaton and any event, there is at most one next state
to which the automaton can move. The probabilities of all
the events in a certain state add up to at most one. Further,
deterministic supervisors for DES are generalized to prob-
abilistic supervisors. The probabilistic supervisors are so
named because they employ the control method of random
disablement : after observing a string s, the probabilistic
supervisor enables an event σ with a certain probability.
Standard (deterministic) control can deterministically en-
able/disable controllable events. The supervisory control
problem considered in Lawford and Wonham (1993) is
to find, if possible, a supervisor under whose control the
behaviour of a plant is identical to a given probabilistic
specification. As shown in Lawford and Wonham (1993),
a plant under probabilistic control can generate a much
larger class of probabilistic languages than deterministic
control. The necessary and sufficient conditions for the
existence of a supervisor for a class of PDESs are given
in Lawford and Wonham (1993). A formal proof of the
necessity and sufficiency of the conditions and an algo-
rithm for the calculation of the supervisor, if it exists, are

presented in Postma and Lawford (2004), Pantelic et al.
(2009).

Analogous to a problem in classical supervisory control
theory, it can happen that, given a plant to be controlled
and a probabilistic specification language, no probabilis-
tic supervisor exists such that the plant under control
generates the pre-specified probabilistic language. In this
case, when the exact solution is not achievable, a designer
tries to find a supervisor such that the plant generates the
behavior closest to the desired behaviour. We consider the
non-probabilistic language generated by the specification
automaton to be a safety constraint in the standard su-
pervisory control sense similar to Kumar and Garg (1998).
We, therefore, generate the supremal controllable sublan-
guage of the intersection of the plant and specification as
the maximal achievable legal non-probabilistic behaviour
of the plant under control. Then, we minimize the dis-
tance between the achievable probabilistic behavior of the
plant under control and the probabilistic behaviour of
the specification (contrained to the supremal controllable
sublanguage). The distance used is in a pseudometric on
the states of probabilistic transition systems.

In Section 2 we present PDES as generators of probabilis-
tic languages, and introduce the probabilistic control of
PDES. The proposed pseudometric is presented in Sec-
tion 3, and two algorithms for the calculation (approxima-
tion) of the distances in this pseudometric are presented.
Section 4 presents the algorithm for finding the closest
approximation to within a prespecified accuracy. Section 5
concludes with avenues for future work. In this paper,
the proofs are omitted due to space restrictions. Complete
proofs can be found in Pantelic and Lawford (2009).

2. PRELIMINARIES

In this section, we present PDES modeled as generators
of probabilistic languages. Then, we introduce the prob-



abilistic control of PDESs, the probabilistic supervisory
problem, and the main results of Lawford and Wonham
(1993), Postma and Lawford (2004).

2.1 Modeling PDES

The probabilistic DES can be modeled as a probabilistic
generator G = (Q,Σ, δ, q0, Qm, p) (Lawford and Wonham
(1993)), where Q is the nonempty set of states (at most
countable), Σ is a finite alphabet whose elements we will
refer to as event labels, δ : Q × Σ → Q is the (partial)
transition function, q0 ∈ Q is the initial state, Qm ⊆ Q is
the set of marking states, which represent the completed
tasks, and p : Q × Σ → [0, 1] is the statewise event
probability distribution. In this paper, we consider only
finite state PDESs (Q is a finite nonempty set). The
transition function is traditionally extended by induction
on the length of strings to δ : Q × Σ∗ → Q in a natural
way. For a state q, and a string s, the expression δ(q, s)!
will denote that δ is defined for the string s in the state q.

The probability that the event σ ∈ Σ is going to occur at
the state q ∈ Q is p(q, σ). For the generator G to be well-
defined, (i) p(q, σ) = 0 should hold if and only if δ(q, σ) is
undefined, and (ii) ∀q

∑

σ∈Σ p(q, σ) ≤ 1. The probabilistic
generator G is nonterminating if, for every reachable state
q ∈ Q,

∑

σ∈Σ p(q, σ) = 1. Conversely, G is terminating
if there is at least one reachable state q ∈ Q such
that

∑

σ∈Σ p(q, σ) < 1. The probability that the system
terminates at state q is 1−

∑

σ∈Σ p(q, σ). Throughout the
sequel, we will mostly consider nonterminating generators
(if a plant is terminating, it can easily be transformed
into a nonterminating one using the technique described
in Lawford and Wonham (1993)).

The language L(G) generated by a probabilistic DES
automaton G = (Q,Σ, δ, q0, Qm, p) is L(G) = {s ∈
Σ∗ | δ(q0, s)!}. The probabilistic language generated by G
is defined as:

Lp(G)(ǫ) = 1

Lp(G)(sσ) =

{

Lp(G)(s) · p(δ(q0, s), σ) if δ(q0, s)!
0 otherwise

Informally, Lp(G)(s) is the probability that the string s is
executed in G. Also, Lp(G)(s) > 0 iff s ∈ L(G).

For each state q ∈ Q, we define the function ρq : Σ ×
Q → [0, 1] such that for any q′ ∈ Q, σ ∈ Σ, we have
ρq(σ, q′) = p(q, σ) if q′ = δ(q, σ), and 0 otherwise. The
function ρq is a probability distribution on the set Σ×Q.
Also, for a state q, we define the set of possible events to
be Pos(q) := {σ ∈ Σ|p(q, σ) > 0}.

2.2 Probabilistic Supervisors: Existence and Synthesis

As in classical supervisory theory, the set Σ is partitioned
into Σc and Σu, the sets of controllable and uncontrollable
events, respectively. Deterministic supervisors for DES
are generalized to probabilistic supervisors. The control
technique used is called random disablement. Instead of
deterministically enabling or disabling controllable events,
probabilistic supervisors enable them with certain prob-
abilities. This means that, upon reaching a certain state
q, the control pattern is chosen according to supervisor’s

probability distributions of controllable events. Conse-
quently, the controller does not always enable the same
events when in the state q.

For a PDES G = (Q,Σ, δ, q0, Qm, p), a probabilistic super-
visor is a function Vp : L(G) × Σ → [0, 1] such that

(∀s ∈ L(G))(∀σ ∈ Σ)Vp(s, σ) =

{

1 if σ ∈ Σu

xs,σ ∈ [0, 1] otherwise.

Therefore, after observing a string s, the supervisor en-
ables the event σ with probability Vp(s, σ). After a set of
controllable events to be enabled has been decided upon
(uncontrollable events are always enabled), the system acts
as if supervised by a deterministic supervisor. Given sets
A,B, we will denote power set of A by P(A), and the set
difference of A and B by A\B. Let q ∈ Q be the state of the
plant after s ∈ L(G) has been observed. The probability
that the event α ∈ Σ will occur after string s has been
observed is equal to:

P (α in Vp/G|s) =
∑

Θ∈P(Pos(q)∩Σc)

P (α|Vp enables Θ after s)·P (Vp enables Θ|s)

where

P (α|Vp enables Θ after s) =











p(q, α)
∑

σ∈Θ∪Σu

p(q, σ) if α ∈ Θ ∪ Σu

0 otherwise

P (Vp enables Θ|s) =
∏

σ∈Θ

Vp(s, σ) ·
∏

σ∈(Pos(q)∩Σc)\Θ

(1 − Vp(s, σ))

The goal is to match the behaviour of the controlled plant
with a given probabilistic specification language. We call
this problem the Probabilistic Supervisory Control Problem
(PSCP). More formally, given a plant PDES G1 and a
specification PDES G2, we want to find, if possible, a prob-
abilistic supervisor Vp such that Lp(Vp/G1) = Lp(G2). An
example of probabilistic generators representing a plant
and a requirements specification is shown in Fig. 1. Con-
trollable events are marked with a bar on their edges.

We now present the conditions for the existence of a prob-
abilistic supervisor for PSCP (that were first presented in
Lawford and Wonham (1993)).

Theorem 1. Let G1 = (Q,Σ, δ1, q0, Qm, p1) and G2 =
(R,Σ, δ2, r0, Rm, p2) be two nonterminating PDESs with
disjoint state sets Q and R. There exists a probabilistic
supervisor Vp such that Lp(Vp/G1) = Lp(G2) iff for all
s ∈ L(G2) there exists q ∈ Q such that δ1(q0, s) = q and,
letting r = δ2(r0, s), the following two conditions hold:

(i) Pos(q) ∩ Σu = Pos(r) ∩ Σu, and for all σ ∈ Pos(q) ∩ Σu,

p1(q, σ)
∑

α∈Σu

p1(q, α)
=

p2(r, σ)
∑

α∈Σu

p2(r, α)

(ii) Pos(r) ∩ Σc ⊆ Pos(q) ∩ Σc, and, if Pos(q) ∩ Σu 6= ∅, then for
all σ ∈ Pos(q) ∩ Σc,

p2(r, σ)

p1(q, σ)

∑

α∈Σu

p1(q, α) +
∑

α∈Pos(q)∩Σc

p2(r, α) ≤ 1.

If the conditions of Theorem 1 are satisfied, the supervisor
can be synthesized via fixpoint iteration as presented in
Postma and Lawford (2004), Pantelic et al. (2009).



The results to be presented are for prefix closed proba-
bilistic specification languages so, in the sequel, we sim-
plify the probabilistic generator G = (Q,Σ, δ, q0, Qm, p) to
G = (Q,Σ, δ, q0, p).

3. THE METRIC FOR THE CLOSEST
APPROXIMATION

In this section, we roughly introduce research done on
metrics on states of probabilistic systems, and present the
chosen metric.

3.1 Literature review

Probabilistic bisimulation is commonly used to define an
equivalence relation between probabilistic systems. How-
ever, probabilistic bisimulation is hardly a robust relation:
roughly speaking, two states of probabilistic systems are
bisimilar if and only if they have the same transitions with
exactly the same probabilities to states in the same equiv-
alence classes. The formal definition follows and represents
a modified version of the definition of bisimulation given
in Barrett and Lafortune (1997).

Definition 1. Let G = (Q,Σ, δ, q0, p) be a PDES. Prob-
abilistic bisimulation on Q is the binary relation ≡ such
that for any q1 ≡ q2 and σ ∈ Σ, the following holds:

(1) For every q′1 such that δ(q1, σ) = q′1, there is q′2 such
that δ(q2, σ) = q′2, p(q1, σ) = p(q2, σ), and q′1 ≡ q′2.

(2) For every q′2 such that δ(q2, σ) = q′2, there is q′1 such
that δ(q1, σ) = q′1, p(q1, σ) = p(q2, σ), and q′1 ≡ q′2.

States q1 and q2 are probabilistic bisimilar if there exists
a probabilistic bisimulation ≡ such that q1 ≡ q2.

As a more flexible way to compare probabilistic systems,
a notion of pseudometric is introduced. A pseudometric
on a set of states Q is a function d : Q × Q → R

that defines a distance between two elements of Q, and
satisfies the following conditions: d(x, y) ≥ 0, d(x, x) = 0,
d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z), for any
x, y, z ∈ Q. If all distances are not greater than 1, the
pseudometric is 1-bounded. In the sequel, we will use the
terms metric and pseudometric interchangeably.

The work of Deng et al. (2006) introduces a pseudometric
on states for a large class of probabilistic automata,
including reactive and generative probabilistic automata.
The pseudometric is based on the Kantorovich metric on
distributions (also known as the Hutchinson metric). The
metric is characterized as the greatest fixed point of a
function. Two states are at distance 0 in this metric if
and only if they are probabilistic bisimilar. For reactive
systems, the work of Deng et al. (2006) is closely related
to Desharnais et al. (2002), van Breugel and Worrell
(2001). This is the metric we are to use in the solution
of our problem. The metric intuitively matches our notion
of the distance between PDESs, and accounts for all
differences between corresponding transition probabilities.
Furthermore, as the metric is suggested for a large class
of systems, it allows for an extension of our work to e.g.,
nondeterministic systems. Also, as it turns out, there is a
simple algorithm to compute distances in this metric for
our generative, deterministic model. For a more detailed
discussion on metrics, see Pantelic and Lawford (2009).

3.2 The metric

First, we introduce some notation. Let G = (Q,Σ, δ, q0, p)
be a nonterminating PDES, where Q = {q0, q1, . . . qN−1}.
This is the system we shall be using throughout the sequel.
Let qq, qr ∈ Q, and let ρqq

and ρqr
be the distributions

on Σ × Q induced by the states qq and qr, respectively.
Assume 0 ≤ i, j ≤ N − 1, Ψ = Pos(qq) ∪ Pos(qr), σ ∈ Σ.
For notational convenience, we will write ρσ,i instead of
ρqq

(σ, qi), and, similarly, ρ′σ,j instead of ρqr
(σ, qj). Next,

we present the slightly changed pseudometric of Deng
et al. (2006) suggested for a large class of automata which
includes our generator.

First, in Desharnais et al. (2002) and Deng et al. (2006),
the class M of 1-bounded pseudometrics on states is
defined with the ordering

d1 � d2 if ∀s, t d1(s, t) ≥ d2(s, t). (1)

Further, it is proved that (M,�) is a complete lattice.

Next, let d ∈ M, and let the constant e ∈ (0, 1] be
a discount factor that determines the degree to which
the difference in the probabilities of farther transitions
is discounted: the smaller the value of e, the greater the
discount on future transitions. We assume that the total
mass of ρqq

is greater or equal to the total mass of ρqr
,

∑

σ∈Ψ
0≤i≤N−1

ρσ,i ≥
∑

σ∈Ψ
0≤i≤N−1

ρ′σ,i. This assumption is not needed

for nonterminating automata. Then, the distance between
the distributions ρqq

and ρqr
, d(ρqq

, ρqr
), (note a slight

abuse of notation) is given as:

Maximize
∑

σ∈Ψ

0≤i≤N−1

aσ,iρσ,i −
∑

σ∈Ψ

0≤i≤N−1

aσ,iρ
′
σ,i (2)

subject to 0 ≤ aσ,i ≤ 1, σ ∈ Ψ, 0 ≤ i ≤ N − 1

aσ,i − aα,j ≤ cσα
ij , σ, α ∈ Ψ, 0 ≤ i, j ≤ N − 1

where

cσα
ij =

{

e · d(qi, qj) if σ = α
1 otherwise

If the total mass of ρqq
is less than the total mass of

ρqr
, d(ρqq

, ρqr
) is defined to be d(ρqr

, ρqq
). This extension

to distributions is also a 1-bounded pseudometric, and
is consistent with the ordering (1) (see Desharnais et al.
(2002), van Breugel and Worrell (2001)).

The pseudometric on states, dmax, is, then, given as the
greatest fixed-point of the function D on M (here we give
a simplified version of that in Deng et al. (2006)):

D(d)(qq, qr) = d(ρqq
, ρqr

), d ∈ M, qq, qr ∈ Q (3)

Compared to Deng et al. (2006), the pseudometric on
distributions (2) is changed so that the distances between
states in our pseudometric are by the factor 1/e larger than
these in pseudometric of Deng et al. (2006) (see Pantelic
and Lawford (2009)). The proofs that the function defined
by (3) is monotone on M, and that it has the greatest
fixed point follow straightforwardly from Desharnais et al.
(2002).

Next, let i(qq, σ) = i such that qi = δ(qq, σ) if δ(qq, σ)!,
and i(qq, σ) = 0, otherwise. Similarly, j(qr, σ) = j such
that qj = δ(qr, σ) if δ(qr, σ)!, and j(qr, σ) = 0, otherwise.



For readability purposes, we will write i instead of i(qq, σ),
and j instead of j(qr, σ). The function D(d) for our model
can be shown to be (see Pantelic and Lawford (2009)):

D(d)(qq, qr) =
∑

σ∈Ψ

max(ρσ,i − ρ′σ,j + cijρ
′
σ,j , cijρσ,i) (4)

where cij = e · d(qi, qj). We arbitrarily choose i(qq, σ) to
be 0 (similarly for j(qr, σ)) when δ(qq, σ) is not defined
although we could have chosen any other i ∈ {1, . . . , N −
1}. This is because when δ(qq, σ)! does not hold, then
ρσ,i(qq,σ) = 0 for any i(qq, σ) ∈ {0, . . . , N − 1}.

The pseudometric dmax is defined on the states of a single
PDES. The distance between two PDESs (with disjoint
sets of states) is the distance between their initial states
in a new PDES that represents the union of the PDESs as
defined in Section 4.1.

3.3 Calculating the Pseudometric: Algorithms

For e ∈ (0, 1), we will prove that the function D has only
one fixed point, d∗, and, consequently, dmax = d∗. Then,
we suggest two algorithms for calculating the distances in
our metric dmax.

First, we introduce some useful definitions and results from
linear algebra. A real n×n matrix A = (aij) defines a linear
mapping from R

n to R
n , and we will write A ∈ L(Rn)

to denote either the matrix or linear function, as we shall
make no distinction between the two. Also, the absolute
value of column vector x = (x1, . . . , xn)T ∈ R

n will be
denoted by |x|, and defined as |x| = (|x1|, . . . , |xn|)

T .

Now, let d ∈ M. Next, we define the function V on M:

V(d) = (d(q0, q0), d(q0, q1), . . . , d(qN−1, qN−1))
T .

Note that the vector V(d) could be further cut down, as
d(s, s) = 0 and d(s, t) = d(t, s) for any s, t ∈ Q. However,
for ease of presentation, we will not decrease the size of
the vector. Therefore, V(d) = (V1(d),V2(d), · · · ,VN2(d))T ,
where Vk(d) for k ∈ {1, . . . , N2} is given as:

Vk(d) = d(qi, qj), i = k div (N + 1), j = (k − 1) mod N.

Now, we redefine the function D in a natural way as
D(V(d)) = (D1(V(d)), . . . ,DN2(V(d)))T , where for any
k ∈ {1, . . . , N2}:

Dk(V(d)) = d(ρqi
, ρqj

), i = k div (N + 1), (5)

j = (k − 1) mod N.

Further, let D0 = {V(d)|d ∈ M}.

Theorem 2. For any d
0 ∈ D0, the sequence

d
n+1 = D(dn), n = 0, 1, . . .

converges to the only fixed point of D in D0, d
∗ = V(d∗),

and the error of convergence is given componentwise as:

|dn
k − d

∗
k| ≤ (1 − e)−1en, n = 1, 2, . . .

Now, using the presented analysis, we suggest the following
two algorithms for the calculation of the distances between
the states of PDESs in the chosen pseudometric.

Algorithm 1 Theorem 2 proves that the system of
equations

d = D(d) (6)

has a unique solution. The equations are linear. Therefore,
the system (6) can be rewritten into the standard form

Ad = b, where A is a N2 × N2 matrix and b is a column
vector of dimension N2. Therefore, the distances in our
pseudometric can be calculated by solving this system of
linear equations. The distances found are exact solutions
(if we disregard the round-off error).

Algorithm 2 Theorem 2 suggests an iterative algorithm
to approximate distances between the states of a prob-
abilistic generator. The algorithm is a straightforward
modification of that of van Breugel and Worrell (2001)
that calculates distances in a pseudometric suggested for
a different kind of probabilistic system and is derived
by using terminal coalgebras. Let d0(qq, qr) = 0 for any
two states qq, qr ∈ Q. As before, let ρqq

and ρqr
be the

distributions induced by the states qq and qr, respectively.
Assume Ψ = Pos(qq) ∪ Pos(qr). The n-th iteration of the
algorithm calculates the pseudometric dn (n ≥ 1), where,
for any qq, qr ∈ Q:

dn(qq, qr) =
∑

σ∈Ψ

max(ρσ,i − ρ′σ,j + cijρ
′
σ,j , cijρσ,i) (7)

where cij = e·dn−1(qi, qj), and i = i(qq, σ) and j = j(qr, σ)
are defined as in (4). The accuracy of the solution found
in n-th iteration is (1 − e)−1en.

The iterative method can be useful for systems with large
K, where the direct method can be rather expensive.
Furthermore, the mathematical apparatus used to reach
the iterative method will be reused in the solution of the
closest approximation problem.

4. FINDING THE CLOSEST APPROXIMATION

Next, we first characterize the closest approximation and,
then, give the algorithm that calculates it with a certain
accuracy. All the results in the sequel hold for e ∈ (0, 1).

4.1 Characterizing The Closest Approximation

First, we repeat the formulation of the nearest approxi-
mation problem. Assume that the plant is given as PDES
Gp = (Qp,Σ, δp, qp0

, pp), and the requirements specifica-
tion is given as Gr = (Qr,Σ, δr, qr0

, pr). If there is no prob-
abilistic supervisor Vp such that Lp(Vp/Gp) = Lp(Gr),
we seek the optimal (closest) solution and characterize it
as follows. The conditions (i) and (ii) of the Theorem 1
for the existence of probabilistic supervisor consist of
two parts. The first part of both conditions corresponds
to controllability as used in classical supervisory theory
(namely, the condition Pos(q) ∩ Σu = Pos(r) ∩ Σu of (i),
and Pos(r) ∩ Σc ⊆ Pos(q) ∩ Σc of (ii)). The remaining
equations and inequalities correspond to the conditions
for probability matching. Hence, before we start looking
for the closest approximation in the sense of probability
matching, we resort to the classical supervisory theory
of supremal controllable languages. We first find L(Gp) ∩
L(Gr), and then the supremal controllable sublanguage of
L(Gp) ∩ L(Gr) (with respect to Gp), K. Then, the DES
that represents this language K, further equipped with
pp distribution (appropriately normalized) becomes the
modified plant PDES G1, and the same DES (correspond-
ing to the supremal controllable language K) equipped
with the distribution pr appropriately normalized becomes
the desired behaviour PDES G2. Formally, let (reach-
able and deadlock-free) DES G = (Q,Σ, δ, q0) represent
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Fig. 1. Plant Gp, requirements specification Gr, PDESs G1, G2, and optimal approximation G′
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the supremal controllable language K. We define PDESs
G1 = (Q,Σ, δ, q0, p), and G2 = (Q,Σ, δ, q0, p2), where the
distributions p, p2 : Q × Σ → [0, 1], for any q ∈ Q,σ ∈ Σ,
are defined as:

p(q, σ) =
pp(qp, σ)
∑

σ∈{σ∈Σ|δ(q,σ)!}

pp(qp, σ)
, p2(q, σ) =

pr(qr, σ)
∑

σ∈{σ∈Σ|δ(q,σ)!}

pr(qr, σ)

where qp = δp(qp0
, s) for s ∈ L(G) such that q =

δ(q0, s), and qr = δr(qr0
, s) for s ∈ L(G) such that

q = δ(q0, s). Note that p and p2 are well-defined as we do
not perform state minimization on automaton representing
the supremal controllable language K.

Next, we check probability matching equations and in-
equalities from Theorem 1. If they are not satisfied (there
is no probabilistic supervisor Vp such that Lp(Vp/G1) =
Lp(G2)), we seek G′

2 = (Q′,Σ, δ′, q′0, p
′) such that there

exists a probabilistic supervisor Vp so that Lp(Vp/Gp) =
Lp(G

′
2) holds, and G′

2 is closest to G2 in the chosen
metric. Without loss of generality, we assume that Q ∩
Q′ = ∅. Also, without loss of generality, we assume
that the nonprobabilistic automata underlying G2 and G′

2
are isomorphic (with labeling of events being preserved).
Therefore, the automata underlying PDESs G2 and G′

2 are
identical up to renaming of states. This assumption is not
restrictive as there cannot be any string in the desired
system that does not belong to L(G2). Our goal is to
find the probabilities of G′

2 as the closest approximation
such that the distance between the initial states of G2
and G′

2 is minimized. As our metric is defined on the
states of a system, in order to define distances between
the states of G2 and G′

2, we can consider the union PDES
Gu = (Q ∪ Q′,Σ, δu, q0, pu) defined as:

δu(q, σ) = δ(q, σ), pu(q, σ) = p(q, σ) if q ∈ Q and σ ∈ Σ,

δu(q, σ) = δ′(q, σ), pu(q, σ) = p′(q, σ) if q ∈ Q′ and σ ∈ Σ.

Then, M is the set of 1-bounded pseudometrics on the
states of the joined system with the same ordering as in (1).
Further, note that nonprobabilistic automata underlying
G1 and G2 are also isomorphic (with the isomorphism
function being the identity function). We next note that,
considering the isomorphism between nonprobabilistic ver-
sions of G2 and G′

2, we will be interested only in the
distances between (probability measures on) states q ∈ Q
of G2 and q′ = f(q) ∈ Q′ of G′

2, where f : Q → Q′ is the
isomorphism between nonprobabilistic automata underly-
ing G2 and G′

2. We assume that, after the occurrence of
string s ∈ L(G1), the PDES G1 is in state q (δ(q0, s) = q).
Then, G2 and its closest approximation G′

2 are in states
q and q′, respectively, and q′ = f(q). Next, we define a
class A of partial functions b : Q × Q′ → [0, 1], such
that ∀q ∈ Q, q′ = f(q) ∈ Q′ b(q, q′) = d(q, q′), where
d ∈ M. Therefore, the class A is the class of all 1-bounded
pseudometrics with domain reduced to Q × Q′, and only
distances between q ∈ Q and q′ = f(q) ∈ Q′ defined. Also,

we introduce the reversed ordering on A to match the one
in (1): d1 �′ d2 if ∀q ∈ Q ∀q′ = f(q) ∈ Q′ d1(q, q

′) ≥
d2(q, q

′).

Let d ∈ A. Let Q = {q0, q1, . . . qN−1}, and Q′ =
{q′0, q

′
1, . . . q

′
N−1}, where q′i = f(qi), i = 0, . . . , N − 1. Fur-

ther, we are now able to substantially simplify the notation
used in the previous section. Let ρq be the probability
distribution induced by the state q ∈ Q of G2 and let
ρ′q′ be the probability distribution induced by the state

q′ ∈ Q′. Assume Ψ = Pos(q), Ψu = Pos(q) ∩ Σu, and
Ψc = Pos(q)∩Σc. Also, for σ ∈ Ψ, we will write i instead of
i(q, σ) ∈ {0, . . . , N − 1}, ρσ instead of ρq(σ, qi), ρ′σ instead
of ρ′q′(σ, q′i) and pσ instead of p(q, σ). It can be shown

(see Pantelic and Lawford (2009)) that relevant minimal
achievable distances in our pseudometric correspond to the
greatest fixed point of the function P : A → A defined as
(q ∈ Q and q′ = f(q) ∈ Q′):

P(d)(q, q′) = Minimize
ρ′

σ

∑

σ∈Ψ

max(ρσ − ρ′σ + ciρ
′
σ , ciρσ), (8)

where, for each σ ∈ Ψ, ci = e · d(qi, q
′
i) s.t. qi = δ(q, σ)

subject to

pσ
∑

α∈Ψu

pα

=
ρ′σ

∑

α∈Ψu

ρ′α
, σ ∈ Ψu, (9)

∑

α∈Ψu
pα

pσ

ρ′σ +
∑

α∈Ψc

ρ′α ≤ 1, σ ∈ Ψc, (10)

0 ≤ ρ′σ ≤ 1, σ ∈ Ψ, (11)
∑

α∈Ψ

ρ′α = 1 (12)

Hence, for q′ ∈ Q′, distribution ρ′q′ is given by the

values of decision variables ρ′σ, σ ∈ Ψ, for which the
minimum in P(d)(q, q′) is reached under the conditions
for the existence of probabilistic supervisor given by the
constraints (9), (10), (11), (12).

4.2 Minimizing the Distance: Algorithm

We suggest an iterative algorithm to calculate minimum
achievable distance (i.e. the only fixed point of the function
P) up to a desired accuracy and probability distribution of
the achievable behaviour of the system when this distance
is achieved. We use the notation from the Section 4.1.
Also, we follow the proof pattern used in the Section 3.3.
However, as mentioned before, only relevant distances are
the ones between q ∈ Q and q′ = f(q) ∈ Q′. Let d ∈ A.

Further, let us define V̂(d) = (V̂1(d), . . . , V̂N (d))T as:

V̂(d) = (d(q0, q
′
0), d(q1, q

′
1), . . . , d(qN−1, q

′
N−1))

T .

Therefore, for k = 1, . . . , N , V̂k(d) = d(qk−1, q
′
k−1). Fur-

ther, let P0 = {V̂(d)|d ∈ A}. We redefine the function P



in a natural way as P(V̂(d)) = (P1(V̂(d)), . . . ,PN (V̂(d)))T ,

where Pk(V̂(d)) = P(d)(qk−1, q
′
k−1) for any k ∈ {1, . . . , N}.

Theorem 3. For any d̂
0 ∈ P0, the sequence

d̂
n+1 = P(d̂n), n = 0, 1, . . .

converges to the only fixed point of P in P0, d̂
∗, and the

error of convergence is given componentwise as:

|d̂n
k − d̂

∗
k| ≤ (1 − e)−1en, n = 1, 2, . . .

The objective function in (8) is nonlinear, but trans-
formable into a linear one by introducing variables yσ. We
now present the iterative algorithm for finding the fixed
point of function P. Let d0(q, q′) = 0 for all q ∈ Q, q′ =
f(q) ∈ Q′. The distance dn(q, q′) between the states of
q ∈ Q and q′ = f(q) ∈ Q′ in the n-th iteration (n ≥ 1) is
given as:

Minimize
∑

σ∈Ψ

yσ (13)

subject to

ρσ − ρ′σ + ciρ
′
σ ≤ yσ , σ ∈ Ψ

ciρσ ≤ yσ , σ ∈ Ψ

where, for σ ∈ Ψ, ci = e · dn−1(qi, q
′
i) s.t. qi = δ(q, σ)

pσ
∑

α∈Ψu

pα

=
ρ′σ

∑

α∈Ψu

ρ′α
, σ ∈ Ψu,

∑

α∈Ψu
pα

pσ

ρ′σ +
∑

α∈Ψc

ρ′α ≤ 1, σ ∈ Ψc,

0 ≤ ρ′σ ≤ 1, σ ∈ Ψ,
∑

α∈Ψ

ρ′α = 1

After the n-th iteration, the values of decision variables
ρ′σ that represent the unknown transition probabilities,
are such that that the distance between the (initial states
of) systems G2 and G′

2 is within (1 − e)−1en of the
minimal achievable distance between the two systems (in
our pseudometric). Further, for each of the state of G2

(typically, the number of states of G2 is much smaller
than |Qp| · |Qr|), simplex method can be used to efficiently
solve the linear programming problem (13). The worst-
case time complexity of simplex method is exponential
in the number of decision variables. In our case, the
number of decision variables is twice the number of events
possible from the state q. As this number is typically
small in practical applications, this exponential complexity
does not generally present a limitation of the algorithm.
Furthermore, the number of iterations needed to reach the
accuracy of ǫ is ⌈loge(ǫ(1 − e))⌉.

4.3 Example

For a plant Gp as depicted in Fig. 1, there does not
exist a probabilistic supervisor Vp such that G(Vp/Gp) =
Gr. First, PDESs G1 and G2 are found as suggested in
Section 4.1. Then, using our iterative algorithm with 20
iterations, we find that the closest behaviour (for e = 0.5)
achievable with probabilistic control is as given in Fig. 1.

5. CONCLUSIONS

Although the rate of convergence of the algorithm to the
minimal distance is known, we would also like to inves-
tigate how unknown probabilities change as the distance

converges. Also, the question of uniqueness of the closest
approximation remains open as well as probabilistic con-
trol with marking.
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