
Formal Verification of Implementability of
Timing Requirements

Xiayong Hu and Mark Lawford? and Alan Wassyng?

Software Quality Research Laboratory, Department of Computing and Software
McMaster University, Hamilton, Canada L8S 4K1

huxy@mcmaster.ca, lawford@mcmaster.ca, wassyng@mcmaster.ca

Abstract. While there has been a large amount of work on validation
of timing requirements, there has been relatively little work on the im-
plementability of timing requirements. We have previously provided def-
initions of fundamental timing operators that explicitly considered tol-
erances on property durations and intersample jitter [1]. In this work we
refine the model and formalize the analysis of the Held for operator of
[1] in the PVS theorem prover. We formalize different implementation
environments incorporating nonuniform samples with bounded jitter and
for one of the environments provide a full formal proof of necessary and
sufficient conditions for when it is possible to implement a Held for re-
quirement. We briefly describe how these results can then be used to
formally verify a sample module implementing a requirement that uti-
lizes the Held for operator and describe an example application.

1 Introduction

Specifying, implementing and verifying real-time requirements for embedded
software systems can be a difficult and time consuming task. Hence real-time
systems have become an active area of research in the formal methods commu-
nity. The extensive survey of formal methods for the specification and verifica-
tion of real-time systems in [2] contains references to over 200 publications. The
overwhelming majority of the cited works are dedicated to the specification and
validation of real-time requirements. Despite this intensity of research, relatively
little work has been done on formally modeling timing tolerances.

Implicit in many of the formal models of timing requirements is the assump-
tion that the real-time system implementing the timing requirements contin-
uously monitors its inputs and can instantaneously react to the occurrence of
an “event” (a significant change in the inputs). Due to their clock driven na-
ture, computer control systems must typically sample some set of inputs and
then update a set of outputs. Models that consider the sampling required for a
computer controlled implementation of system requirements will often make the
simplifying assumption that all samples are uniformly spaced and sufficiently
fast to guarantee system response.
? Partially supported by the Natural Sciences and Engineering Research Council of

Canada

2

Practical implementations have to worry about sampling rates, schedulabil-
ity, computation time, latency, and jitter, all of which involve tolerances in some
form when interfacing a physical plant and a software control system.

Motivated by our work on the Darlington Nuclear Generating Station Shut-
down Systems software redesign project [3] and the difficulties and effort involved
with the verification of timing requirements on that project, we began studying
timing requirements with tolerances. In [1] we justified use of several different
types of tolerances that must be fully specified at the requirements level in order
to properly deal with the timing tolerances that are inherent in the system im-
plementation. These included tolerances on functional timing requirements, and
tolerances on performance timing requirements that allow for deviation from the
idealized behaviour specified by the requirements models. By modeling these
requirements, we were able to come to a somewhat surprising result that allows
some timing requirements to be verifiably implemented at a significantly lower
CPU bandwidth than normally assumed.

In this work we refine the model and formalize the analysis of the Held for
with tolerance operator of [1] in the PVS1 theorem prover. We identify different
clock information assumptions for implementations, showing how changing the
order of quantifiers in a high order logic formula can capture what is required
to implement the Held for requirement under each of the clock information as-
sumptions. For the “perfect clock at sample times case” that was implicit in the
manual analysis of [1], we provide a full formal proof of necessary and sufficient
conditions for when it is possible to implement a requirement that a boolean con-
dition has been sustained for a duration d within a tolerance of [d− δL, d + δR]
with a discrete implementation with nonuniformly spaced samples where the
intersample spacing is bounded by minimum and maximum sample intervals.
As a result of the formalization in PVS, we discovered a missing boundary case
in the original theorem statement of [1] (see section 4 for details). Similar to
the original theorem statement of [1], the fixed theorem statement provides an
easy to evaluate formula relating the tolerances on duration to the tolerances
on intersample spacing that must be satisfied for the requirement to be imple-
mentable when the boolean condition is filtered so that it changes state no more
than once per sample interval.

At the requirements level we assume that inputs are sampled arbitrarily fast
while at the implementation level sampling occurs at most once every Tmin time
units and at least once every Tmax time units. We provide an intermediate rep-
resentation of the Held for requirement on the implementation’s sampled signals
that we use to prove a code level implementation model of the Held for require-
ment correct via a two step process. First we show that the implementation is
equivalent to the intermediate representation on the samples and then show that
the intermediate representation is within tolerance allowances of the arbitrarily
fast sampling requirements model.

Once the implementation has been verified in PVS, to prove any specific
requirement is correctly implemented by the implementation we only have to

1 PVS files available at http://www.cas.mcmaster.ca/∼lawford/papers/FM08.html

http://www.cas.mcmaster.ca/~lawford/papers/FM08.html

3

instantiate the PVS theorems with appropriate values and then the verification is
reduced to a standard untimed verification on the remainder of the requirement’s
functionality. We demonstrate this process with a simple Sensor Lock example
in section 6.

1.1 Related Work

Recent work has begun to address the issue of timing tolerances required to
verify implementations of requirements modeled as timed automata with ASAP
semantics [4,5]. Wulf, et al, consider the case of implementing a continuous-time
controller with a discrete-time system, assuming that there is a delay ∆ associ-
ated with the controller’s reaction to the environment. Both the controller and
the plant are first modeled as timed automata. Their control objective is to
ensure that the closed-loop system satisfies a safety property by avoiding bad
states. Provided that all control actions can be delayed by up to some fixed
∆ > 0 without violating the safety property, they say that the controller is “im-
plementable”. A PSPACE-complete decision procedure to test implementability
is described in [5], while [4] provides a semi-decision procedure to compute the
maximal reaction delay ∆ allowable by the implementation that still preserves
the correctness of the closed loop system. They further show that the system
is implementable by a cyclic executive with loop time upper bound ∆L and a
finite precision clock with a resolution of ∆P , provided that ∆ > 3∆L +4∆P . In
our work, response allowance ra, and sample interval ts, correspond most closely
to ∆ and ∆L in [4]. Based on our definitions, and using simple mathematical
arguments, we are able to come to a somewhat surprising result that allows some
timing requirements to be verifiably implemented at a significantly lower CPU
bandwidth [1]. We derive tolerance bounds on ts for the correct detection of a
sustained condition.

The temporal logic of actions (TLA) in [6] reasons about safety properties
of a real-time system from a concurrent perspective. To specify the timing re-
quirements, Lamport et al. use the TLA formula V Timer(t, A, δ, v) to control
the occurrence of the step A until it has been enabled for δ time units and
MaxTime(t) to set the upper-bound of the timer t. Conjoining these two for-
mulas, one can interpret the timing requirements that a step A (an action from
one state to another) must occur if A has been continuously enabled for δ long
time.

The Held for operator defined in [1] and restated in Section 2 serves a simi-
lar purpose to the |P |, “since P” operator in the dense time setting of [7] where
system actions can occur at any positive rational number. Both operators do
not require the introduction of explicit counter variables. Saying “do X when
time since P was true is greater than 5 seconds”, can be phrased as “do X when
NOTP has Held for 5 seconds”. The |P | operator is more expressive since it
returns the exact time since P was last TRUE. We note that in a sampled sys-
tem this information is not typically available. On the other hand the P Held
for duration operator returns a value of TRUE when P has been TRUE at all
time instances in a duration within tolerance of a nominal value. We provide

4

conditions under which this requirement is implementable via a sampling imple-
mentation. The theory developed in [7] is used to verify invariants for Fischer’s
mutual exclusion protocol and a railroad crossing example. The definitions de-
scribed in this paper have been used on safety critical industrial process control
applications and we are now adding some mechanized support.

Giotto is an embedded software model that also focuses on the implementa-
tion [8] in a manner that is independent of the execution platform, but that is
much closer to executable code than a mathematical model. The code generation
task of Giotto is partitioned into two steps. In the first step, program generation,
a given mathematical model is transformed into an embedded software model,
which is entirely independent of any execution platform. In the second step,
compilation, the software model is transformed into executable code for a target
platform. Program generation specifies only the reactivity of the system relative
to a physical environment, while compilation ensures the schedulability of the
system in a specific execution environment.

Giotto simplifies the jitter and tolerance by a fixed logical execution time
(FLET) assumption in Giotto semantics. In Giotto, the logical execution time of
a task is always exactly the period of the task (i.e., the period of the surrounding
case block), and the logical execution times of all other activities (switch blocks,
data transfer across links, etc.) are always zero. This leads to two important
consequences. First, sensors are read only at the beginning of a task’s period,
and actuators are updated only at the end of a task’s period, which minimizes
the jitter but also means Giotto does not consider clock sampling jitter and
timing tolerances. Second, all inter-task (data) communication happens at period
boundaries, which also means the data provided from one task to another will
not be refreshed until the source task produces outputs after the current hyper-
period. However, this assumption has the potential to cause “stale data” if the
execution time of the task takes too long to output the data.

The assumption of zero-time for computational action in the model language
is impossible to ensure on the target platform in the implementation language [9].
Thus the predictable design approach introduced an ε-hypothesis to fill the gap
between the physical domain and the software domain [10]. This ε-hypothesis
requires the model and its realization to have the same observable execution
sequence. Also, time deviations between activations of corresponding actions in
the model and realization should be less than ε seconds. In the predictable de-
sign approach, the generation tool called Rotalumis takes the model coded with
model language POOSL, and automatically generates the executable for the tar-
get platform. We note that this hypothesis is very close to what we call “response
allowance” (see [1]), one of our performance timing requirements, which is mea-
sured from the time the event actually occurred in the physical domain, until the
time the value of the controlled variable is generated and crosses the application
boundary into the physical domain. Our research also covers the tolerances in
timing requirements when crossing from the physical domain to the software
domain, which is not discussed in [9,10].

5

The summarized research above is focused on connecting the requirements
and implementation. We notice that we can categorize most of the current ap-
proaches into two trends: platform-independent approach and global tolerance
approach. Most research based on the platform-independent idea will plug in
another layer between the high level requirements and coding implementation,
e.g, “program generation” in Giotto approach [8] and POOSL model in [9,10].
These approaches cannot tell us whether a system can be implemented on a
target platform or not until the final scheduling stage is finished. In the case
of the generation of an unimplementable result, the designer has to improve
the hardware performance or relax the timing requirements, both of which are
problematic.

The approaches with global tolerances (e.g, reaction delay parameter ∆ in [4]
and ε-hypothesis in [10]) all define a global constraint as the constant upper
bound of the delay during implementation. The benefit of a single global tol-
erance is clear. It is easy to analyze since it simplifies the problem. However,
in most industrial applications, it is clear that it is advantageous to define dif-
ferent tolerances on different timing components of the system. This may allow
us to build implementations on hardware that would not allow us to meet all
our timing requirements if we had to meet a global timing requirement. Instead,
for more stringent requirements, a piece of code (implementing the stringent
timing behaviour) may appear several times in a cyclic loop, while behaviour
with less stringent timing requirements would appear just once. The results we
have so far (see Section 2.1) allow one to consider things like jitter associated
with such a stringent requirement being implemented by repeated calls within a
cyclic executive.

The remainder of this paper is organized as follows: Section 2 provides the
notation and definitions of terms and the Held for operator from [1]. Section 3
describes the different assumptions that can be made about the timing informa-
tion available to the implementation. The results of the PVS formalization of
the Perfect Clock implementation assumption are given in Section 4, while Sec-
tions 5 and 6 provide an example implementation and its application to meet a
specification involving a functional timing requirement, respectively. Conclusions
and future work are discussed in Section 7.

2 Preliminaries

Parts of this section, including Figs. 1, 2 and 3 are repeated from [1].
A common functional timing requirement is one that specifies that a condi-

tion must be sustained over a particular time duration. For example, to filter
out the effect of a noisy signal we may specify that an event in which a sensor
signal is above its setpoint should be sustained for 300 ms before it can cause a
“trip”. This means that the implementation must guarantee that if the sensor
event is sustained for less than 300 ms, the trip must not occur. Similarly, if the
sensor event is sustained for 300 ms or longer, the trip must be generated. With-

6

out tolerances on the time duration, these requirements would be impossible to
meet.

We can introduce tolerances on the time duration in the above example.
Assume that the sensor trip condition should be sustained for 300 ±50 ms as
shown in Fig. 1. Let us assume that the sample intervals are ts0, ts1, ts2, etc.

time (ms)

notTrip

trip

setpoint

m_signal

0 100 200 300 400

Two compliant implementations

Sensor event in physical domain

250 - 350

notTrip

trip

notTrip

trip

c_result

c_result

c_result

One strange implementation

Fig. 1. Two Valid Implementations of a Sustained Timing Requirement

Since our analysis has to hold for real industrial applications, we do not assume
a constant sample interval. We do assume that we can place limits on the sample
intervals. We can call these limits Tmin and Tmax. Once we have these limits,
we know that Tmin ≤ tsj ≤ Tmax for each j ∈ {0..n}. Let Sample : N → R≥0 be
a sequence of sample times such that ∀n : Tmin ≤ Sample(n + 1)− Sample(n) ≤
Tmax. We can assume Sample(0) = 0 and then for n ≥ 1, Sample(n) =

∑n
i=1 tsi

in Figure 2 and ∀i : Tmin ≤ tsi ≤ Tmax.

2.1 Results from Earlier Work

Here we summarize the results we need from [1].
Fig. 3 graphically shows the essential components and behaviour of the Held

for operator.
The formal definition of Held for is given in Fig. 4.
Using the formal Held for, we can now formally capture the desired behaviour

of the m-c pair shown in Fig. 1 by the tabular expression in Fig. 5.

7

ts0 ts1 ts2
tsn-1 tsn

δL + δR

d − δL d + δR

0 1 2 3 n-1 n n+1

Event detected at this time

event must
have

occurred in
this interval

sample times decision must be
made based on
values current at

this time

ts0

decision must not be based on
values from this time interval

decision must be based on
values from this time interval

d
measured from earliest time event could have occurred

δR
δL

Legend:

Fig. 2. Sample Intervals Required for Sustained Events

The implementability conditions for Held for are:

Case 1: 0 < Tmax ≤ 1
2
(δL+δR) In this case it is easy to see that it is always

possible to implement the sustained event.

Case 2: 1
2
(δL + δR) < Tmax ≤ (δL + δR) Let kmin = bd−δL

Tmax
c, and kmax =

bd−δL
Tmin

c. Then kmin = kmax is a necessary condition for a feasible implementa-
tion. A sufficient condition when k = kmin = kmax is that (k+2)·Tmax ≤ d+δR.

Case 3: (δL + δR) < Tmax The sustained event cannot be implemented.

At this stage we should note that in [1] we implicitly considered only the Perfect
Clock case as described in Section 3.

3 Assumptions about the Implementation Environment

For the purposes of this paper we are ignoring response allowance, the compu-
tation time that the system is allowed to take to recognize and respond to a
situation. For this work we are merely determining when it is possible to detect
a Held for requirement with functional timing tolerance if the implementation
has non-uniform sampling. In [1] we treated the case of specifying a response
allowance separately from functional timing requirements. In any case, if we are
unable to even detect a sustained condition within the tolerance specified in the
requirements then meeting computational time bounds specified as response al-
lowances is irrelevant. We hope to formalize the relationship between functional

8

Condition

T

F

(Condition) Held for (d, δL, δR)

T

F

duration duration

d d

d+δR

d-δLd-δL

d+δR

time

Fig. 3. Held for Functional Timing Requirement

timing requirements and response allowance in the future but it is beyond the
scope of the current work.

There are several different implementation environment assumptions govern-
ing how we might have to recognize a sustained event. These are:

Omniscient: We know the exact time of the “event” t when the condition
becomes true but can only react at sample times.
In order to implement the Held for requirement in this case we must consider
every possible sequence of sample times, Sample, satisfying the bounded
jitter constraint ∀n : Sample(n + 1)− Sample(n) ∈ [Tmin, Tmax]. The event
could take place at any point t between successive samples Sample(n0) and
Sample(n0+1). Then there must be a sample point in the future, Sample(n),
when we can react such that Held for has been true for at least d− δL and
no more than d + δR, i.e.:

d− δL ≤ Sample(n)− t ≤ d + δR.

Putting this all together we get the higher order logic formula:

∀Sample : ∀n0 : ∀(t|Sample(n0) ≤ t ≤ Sample(n0 + 1)) : ∃n :
d− δL ≤ Sample(n)− t ≤ d + δR

(1)

Perfect Clock: We know the value of the condition only at sample instances
but we know the exact timing of samples (i.e. we can look at a perfect real
valued clock).
To determine if we can implement the Held for requirement in this case we
again need to consider every possible sequence of sample times. The main

9

(Condition :bool) Held for (d: R>0, δL, δR : R≥0) :bool
where duration(Condition: bool): [d− δL, d + δR]

Event start time(Condition :bool) : R≥0

Initially: duration = any value in [d− δL, d + δR]
Event start time−1 = 0
Condition−1 = False

duration Event start time

(Condition = True) & (Condition−1 = False)
Any value in
[d−δL, d+δR]

tnow

(Condition = False) OR (Condition−1 = True) No Change No Change

Held for

Condition = True
tnow− Event start time≥ duration True
tnow− Event start time< duration False

Condition = False False

Fig. 4. Formal Definition of “(Condition) Held for (d, δL, δR)”

c result

(m signal ≥ setpoint) Held for (300±50) trip
NOT [(m signal ≥ setpoint) Held for (300±50)] notTrip

Fig. 5. Tabular expression formalizing desired behaviors in Fig. 1

difference now is that our future decision point at Sample(n) must work for
any possible event time between Sample(n0) and Sample(n0 + 1), i.e. we
exchange the order of the last two quantifiers to obtain:

∀Sample : ∀n0 : ∃n : ∀(t|Sample(n0) ≤ t ≤ Sample(n0 + 1)) :
d− δL ≤ Sample(n)− t ≤ d + δR

(2)

Imperfect Clock: This situation is the same as in (2) but with access to an
imperfect clock (e.g. finite precision, bounded drift, etc).
To precisely specify this situation we need to first model the imperfect clock
and then account for it in choosing our decision point. We leave the formal-
ization of the various possible subcases associated with different imperfect
clock assumptions for consideration in future work.

No Clock: Knowledge only of Tmin and Tmax and the number of samples since
the condition became true.
In this case we have no recourse in our implementation but to simply count
the number of samples since we first detected the event. In this case we need
“count” value n that will work under any possible bounded sample spacing

10

and actual time of event occurrence. Thus we have:

∃n : ∀Sample : ∀n0 : ∀(t|Sample(n0) ≤ t ≤ Sample(n0 + 1)) :
d− δL ≤ Sample(n0 + n)− t ≤ d + δR

(3)

By formalizing the conditions that must be satisfied to detect the Held for
with tolerance requirement we have eliminated a significant source of ambiguity
in interpreting the results and understanding their applicability to a particular
situation. The formalization of the system implementation environment

4 Results for Perfect Clock Case

Below we define the predicate Feasible(d), restating the condition for imple-
mentability in the Perfect Clock case given in (2) as a function of the sustained
condition’s nominal duration, d, assuming that the other parameters - δL, δR,
Tmin and Tmax are fixed.

Feasible(d) : bool = ∀Sample : ∀n0 : ∃n : ∀(t|Sample(n0) ≤ t ≤ Sample(n0 + 1)) :
d− δL ≤ Sample(n)− t <= d + δR

We assumed that we would be able to prove the implementability results from
Section 2.1 in PVS once we had formalized the implementation environment. We
were able to prove Case 1 and Case 3 with relative ease but in the most interesting
case, Case 2, when 1

2 (δL+δR) < Tmax ≤ (δL+δR), we were unable to prove that
Feasible(d) was equivalent to Kmin = Kmax. In particular, the proof failed at
the boundary case when Tmin is reduced to the point where Kmax first becomes
greater than Kmin, that is when Tmin is an integer multiple of d− δL, i.e.

bd− δL

Tmin
c ∗ Tmin = d− δL

In this case
Tmin =

d− δL

Kmin + 1
. (4)

In all cases when Kmin = Kmax then

d− δL

Kmin + 1
=

d− δL

Kmax + 1

=
d− δL

bd−δL

Tmin
c+ 1

<
d− δL

d−δL

Tmin

, since b d− δL

Tmin + 1
c >

d− δL

Tmin

= Tmin

Combining (4) with the above provides us with a new condition that combines
the Kmin = Kmax case with the missing boundary case, giving:

Tmin ≥
d− δL

Kmin + 1
(5)

11

A counter example corresponding to this missing boundary case is illustrated in
Fig. 6. For this particular example we take Tmin = 10, Tmax = 12, d = 25, δL =

10 20 30 400

Tmin Tmin

Tmax

d− δL

Tmax Tmax

Tmin

d + δR

Fig. 6. Example of boundary case missed in [1]

5, δR = 11. Then d− δL = 20, d + δR = 36 and

Kmin = b(d− deltaL)/Tmaxc = b20/12c = 1
Kmax = b(d− deltaL)/Tminc = b20/10c = 2

Thus Kmin 6= Kmax but Feasible(d) can be shown to be true in PVS. We can
intuitively see from Fig. 6 why this might be the case.

If the condition becomes true between 0-10 time units, we can always wait un-
til the third sample to make our decision. The top sequence shows the maximum
spacing for samples while the second row show shows the minimum spacing. All
other sampling sequences would fall somewhere in between these two extremes.
But even if the condition became true at some time point t just before 10 time
units 30− t ≥ 30− 10 = d− δL, so elapsed time is not less than d− δL. On the
other hand, if t occurred just after time 0, then 36 − t ≤ 36 − 0 = d + δR, so
elapsed time is not greater than d + δR.

Replacing the Kmin = Kmax condition in Case 2 of the main result of [1]
with (5), we obtain a new result which has been proven in PVS.

Theorem 1. Assume that Tmin < Tmax, δL, δR > 0, and d > max(δR, Tmax +
δL). Let Kmin = b(d− deltaL)/Tmaxc. Then

Case 1 : If Tmax ≤ δL+δR

2 then Feasible(d)
Case 2 : δL+δR

2 < Tmax ≤ δL + δR then

Tmin ≥
d− δL

Kmin + 1
∧ (Kmin + 2) ∗ Tmax <= d + δR ⇔ Feasible(d)

Case 3 : Tmax > δL + δR then ¬Feasible(d)

12

5 One Implementation of Held for with Tolerance

In the implementation environment corresponding to the Perfect Clock case of
Section 3, a simple way to implement the Held for operator is to have a timer
that you update by the time between the last sample and the current sample
when the input condition CurrentP is true until it exceeds d− δL. We can then
define a Timer() function that calls the TimerUpdate function at each sample
instance with appropriate arguments.

TimerUpdate(CurrentP, TimeOut, previous, step): tick =
table

previous < TimeOut previous ≥ TimeOut

CurrentP previous + step previous

¬ CurrentP 0 0

endtable

Held For I(P, duration, Sample)(ne): bool =
∃ (n0: nat | Sample(ne)− Sample(n0) ≥ duration− delta L):
∀ (n: nat | n0 ≤ n ∧ n ≤ ne): P (Sample(n))

Timer General: theorem
Held For I(P , timeout, Sample)(n + 1) ≡

Timer(P , Sample, timeout− δL)(n) + Sample(n + 1)− Sample(n) ≥ timeout− δL

Fig. 7. Timer update function to implement Held for

5.1 Verifying the Implementation’s Correctness

We perform the verification via a two step process. First we show that the
module is equivalent to the following intermediate representation of the Held for
requirement that only considers the values of the condition at sample times. We
then show that under a mild filtering condition on the sampled input signal, the
intermediate Held for representation is equivalent to the original requirements
level Held for operator with its arbitrarily fast clock tick.

The Timer General theorem in Fig. 7 represents the first part of the proof.
Below we provide the filtering assumption that is required to connect the sampled
intermediate representation of Held for with the arbitrarily small clock “tick”
version of the requirements given in Section 2.1. For this we make use of predicate
subtypes.

13

FilteredTickPred : type+ = {P : [tick → bool]|∀tj , t, tn :
tj < t < tn ∧ P (tj) 6= P (t) ⇒
P (t) = P (tn) ∨ tn − tj > Tmax}

Pf: var FilteredTickPred
We can then show that there exists a duration in the tolerance range such

that requirements Held for is true when the intermediate version Held For I is
true.

6 Example

The Sensor Lock System is a watchdog control system. As shown in Figure 8, it
monitors the plant parameter Sensor and reacts to send the output “lock” to
shutdown the system only if anomalous behavior is observed for plant parameter
Sensor for an extended period of time [11,12]. Once the Sensor Lock System
produces a “channel lock” to force the shutdown of the plant, the channel will
not be “unlocked” until the manual reset button is pushed.

Sensor

Reset

SenLock
Sensor Lock

RT controller

Fig. 8. Block diagram for real-time Sensor lock controller

When the value of Sensor is continuously TRUE for ldelay time units or
longer, the sensor is “locked” and SenLock is set to TRUE. Once the sensor is
“locked”, it stays locked until the system is manually reset by making Reset =
TRUE. As a step further to the work in [11,12], the tolerance δL and δR are
introduced to the variable ldelay.

The Held For I operator defined in section 2.1 is used to construct the real-
time system requirements. The Software Requirement Specification (SRS) of the
Sensor Lock System is shown in Fig. 9. The first row of the SRS table indicates
that SenLock should be TRUE if sensor has been TRUE for ldelay time units
or longer. The remaining three rows indicate that only a manual reset in a safe
sensor input situation can make SenLock FALSE.

The Software Design Description (SDD) is shown in Fig. 10. We applied
ElockUpdate function to handle the control logic and the TimerUpdate function
in section 5 to plug in the timing behaviour implementation of Held For I op-
erator (the function TimerUpdate is listed with parameters previous and step

14

Result
Condition SenLock

(Sensor) Held For I (ldelay,δL,δR) True

NOT [(Sensor) Held Reset ¬Sensor False
For I (ldelay,δL,δR)] Sensor No Change

¬Reset No Change

Fig. 9. The SRS of SenLock System (with tolerance)

due to the space). The variable lastSamplePeriod indicates the time frame be-
tween the current sample and previous sample. With the Timer General theorem
pre-verified (section 5), the final verification is completed painlessly.

Results
Condition Elock lLockDly

n=0 Lock TimerUpdate(0,0)
¬ n=0 ¬pre(sensor) ElockUpdate(sensor,reset) TimerUpdate(pre(lLockDly),0)

pre(sensor) ElockUpdate(sensor,reset) TimerUpdate(pre(lLockDly),lastSamplePeriod)

Fig. 10. The SDD of SenLock System (using Timer and Elock Update functions)

7 Conclusions

Timing behaviour is clearly of crucial concern in hard real-time systems. Real, in-
dustrial systems require that we explicitly consider tolerances in this behaviour.
There are currently few attempts to include tolerances in all aspects of timing
behaviour in hard real-time systems.

Within the timed automata formalism, [13] provides a sufficient condition
for implementability of the timed automata in terms of a global upper bound on
the system latency.

In our previous work [1], we laid the foundations for a comprehensive ap-
proach to this problem. In comparison with [13], we provide a necessary and
sufficient condition for the implementability of the basic real-time sustained con-
dition requirement in terms of tolerance on the duration, the sample rate and
the jitter. Our theory allows for per requirement tolerances to be specified and
verified rather than requiring all parts of the implementation meet some global
minimum response time.

This current paper is both a verification of that work and an extension of
it. Using PVS we have verified that the feasibility conditions that we developed
for implementation of a Held for requirement are correct. An important and
interesting side-effect of that verification is that we discovered an example that

15

shows just how useful a theorem prover like PVS can be. We could not confirm
that our conditions were both necessary and sufficient - for the simple reason
that they were not. We had missed a feasible range that was uncovered by PVS.
This range is not practically useful, but is mathematically viable. PVS made
sure we did not miss it. We have managed to use the ideas from our PVS proofs
to construct a PVS template that provides a pre-verified implementation of a
Held for requirement.

7.1 Future Work

We plan to complete the work of formalizing the feasibility condition of the Held
for operator with tolerance under different imperfect clock implementation as-
sumptions. We will then extend the analysis of Section 4 to other clock informa-
tion assumptions. We already have preliminary results for the “No Clock” case.
Next we will work on formally incorporating response allowance by explicitly
considering non-zero computation time. The variants of the periodic operator of
[1] and other fundamental timing operators can be treated in a similar manner.
With the analysis of the operators in place we can then work on using them to
develop a library of pre-verified real-time components that can be validated and
refined by using them on further application examples.

References

1. Wassyng, A., Lawford, M., Hu, X.: Timing tolerances in safety-critical software.
In Fitzgerald, J., Hayes, I., Tarlecki, A., eds.: FM 2005: Formal Methods: Interna-
tional Symposium of Formal Methods Europe Proceedings. Volume 3582 of LNCS.,
Newcastle, UK, Springer-Verlag (2005) 157 – 172

2. Wang, F.: Formal verification of timed systems: A survey and perspective. Pro-
ceedings of the IEEE 92(8) (2004) 1283 – 1307

3. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In Araki, K., Gnesi, S., Mandrioli, D.,
eds.: FME 2003: International Symposium of Formal Methods Europe Proceedings.
Volume 2805 of Lecture Notes in Computer Science., Pisa, Italy, Springer-Verlag
(2003) 133–153

4. De Wulf, M., Doyen, L., Raskin, J.F.: Almost asap semantics: From timed models
to timed implementations. In: In the Proc. of HSCC04. Volume 2993 of Lecture
Notes in Computer Science. (2004) 296 – 310

5. De Wulf, M., Doyen, L., Markey, N., Raskin, J.F.: Robustness and implementability
of timed automata. In: Proc. of FORMATS04,. Volume 3253 of Lecture Notes in
Computer Science., Grenoble (2004) 152–166

6. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems 16(5) (1994) 1543–1571

7. Shankar, N.: Verification of real-time systems using PVS. In Courcoubetis, C., ed.:
Computer-Aided Verification, CAV ’93. Volume 697 of Lecture Notes in Computer
Science., Elounda, Greece, Springer-Verlag (1993) 280–291

8. Henzinger, T.A., Kirsch, C.M., Sanvido, M.A., Pree, W.: From control models to
real-time code using giotto. In: Proceedings of the Second International Work-
shop on Embedded Software, Lecture Notes in Computer Science, Springer-Verlag
(2002)

16

9. Florescu, O., Voeten, J., Huang, J., corporaal, H.: Error estimation in model-
driven development for real-time software. In: Forum on specification and Design
Languages. (2004) 228–239

10. Huang, J., Voeten, J., Florescu, O., van der Putten, P., Corporaal, H.: Predictabil-
ity in real-time system development. In: Advances in Design and Specification
Languages for SoCs, Kluwer Academic Publishers (2005)

11. Lawford, M., Wu, H.: Verification of real-time control software using pvs. In
Ramadge, P., Verdu, S., eds.: Proceedings of the 2000 Conference on Information
Sciences and Systems. Volume 2., Princeton, NJ, Dept. of Electrical Engineering,
Princeton University (2000) TP1–13–TP1–17

12. Wu, H.: Formal verification of real-time software. Master’s thesis, McMaster
University (2001)

13. De Wulf, M., Doyen, L., Raskin, J.F.: Systematic implementation of real-time
models. In Fitzgerald, J., Hayes, I., Tarlecki, A., eds.: FM 2005: Formal Methods:
International Symposium of Formal Methods Europe Proceedings. Volume 3582 of
LNCS., Newcastle, UK, Springer-Verlag (2005) 139 – 156

