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Abstract. There has been relatively little work on the implementability
of timing requirements. We have previously provided definitions of funda-
mental timing operators that explicitly considered tolerances on property
durations and intersample jitter. In this work we identify three environ-
mental assumptions and compare the implementability of a Held For
operator in each of them, formalizing this analysis in PVS. We show how
to design a software component that implements the Held For operator
and then verify it in PVS. This pre-verified component is then used to
guide the design of more complex components and to decompose their
design verification into simple inductive proofs as demonstrated through
the implementation of a timing requirement for an example application.

1 Introduction

Specifying, implementing and verifying real-time requirements for embedded
software systems can be a difficult and time consuming task. Hence real-time
systems have become an active area of research in the formal methods commu-
nity. The extensive survey of formal methods for the specification and verifica-
tion of real-time systems in [1] contains references to over 200 publications. The
overwhelming majority of the cited works are dedicated to the specification and
validation of real-time requirements. Despite this intensity of research, relatively
little work has been done on formally modeling timing tolerances.

Implicit in many of the formal models of timing requirements is the assump-
tion that the real-time system implementing the timing requirements contin-
uously monitors its inputs and can instantaneously react to the occurrence of
an “event” (a significant change in the inputs). Due to their clock driven na-
ture, computer control systems must typically sample some set of inputs and
then update a set of outputs. Models that consider the sampling required for a
computer controlled implementation of system requirements will often make the
simplifying assumption that all samples are uniformly spaced and sufficiently
fast to guarantee system response.
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Practical implementations have to worry about sampling rates, schedulability,
computation time, latency, and jitter, all of which involve tolerances in some form
when interfacing a physical plant and a software control system.

Motivated by our work on the Darlington Nuclear Generating Station Shut-
down Systems software redesign project [2] and the difficulties and effort involved
with the verification of timing requirements on that project, we began studying
timing requirements with tolerances. In [3] we justified the use of several differ-
ent types of tolerances that must be fully specified at the requirements level in
order to properly deal with the timing tolerances that are inherent in the system
implementation. These included tolerances on functional timing requirements
(FTRs), and tolerances on performance timing requirements (PTRs) that allow
for deviation from the idealized behaviour specified by the requirements models.
By modeling these requirements, we presented Implementability Results which
allow some timing requirements to be verifiably implemented at a significantly
lower CPU bandwidth than normally assumed.

In this paper we investigate different environmental timing assumptions and
present the implementability results for each of them. This can provide detailed
answers to questions that are of interest to real-time system engineers. For ex-
ample, nowadays, with cheap, high performance chips, more and more industry
implementations take the “easy” approach, which is to use chips with high sam-
pling rates to achieve the PTR. An obvious question to ask is: “Is it always
necessary to sample at fast sampling rates and is it safe to assume that sampling
faster is the best way to implement the system?” Another important question is:
“The timing environment has been changed, how do I know my implementation
will still work for the new timing environmental assumption?”

In order to formally provide answers to the above questions, we refined the
model and formalized the analysis of the Held For operator of [3] in the PVS1

theorem prover. Held For is an operator that describes “sustained behaviour”’
with tolerances on the timing duration. For example, (signal ≥ setpoint)
Held For (300±50ms) specifies that the result shall be true if (signal ≥ setpoint)
is true for (300±50ms). Now consider an environmental timing assumption that
the software “knows” the exact timing of the sample instances. For this assump-
tion, we provide a full formal proof of necessary and sufficient conditions for
when it is possible to construct a discrete implementation of such a requirement,
with duration d and tolerances of [d− δL, d + δR]. The implementation may use
nonuniformly spaced samples, as long as the intersample spacing is bounded. As
a result of the formalization in PVS, we discovered a missing boundary case in
the original theorem statement of [3]. The implementability results under two
new environments are also formally verified and presented. Also, by compar-
ing the results in different environments we can predict the implementability of
real-time timing requirements under new environmental assumptions.

We provide an intermediate representation of the Held For requirement on the
implementation’s sampled signals, that we use to verify an implementation model
of the Held For requirement via a two step process. Once the implementation has

1 Files available at http://www.cas.mcmaster.ca/~lawford/papers/FMICS08.html

http://www.cas.mcmaster.ca/~lawford/papers/FMICS08.html
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been verified in PVS, we can verify the implementation of any specific requirement
by simply instantiating the PVS theorems with appropriate values. Thus the ver-
ification is reduced to a standard untimed verification on the remainder of the
requirement’s functionality. We demonstrate this process with a simple Delayed
Trip System (DTS) example in Section 5.

1.1 Related Work

Recent work addresses the issue of timing tolerances required to verify imple-
mentations of requirements modeled as timed automata with ASAP semantics
[4,5]. De Wulf, et al, consider the case of implementing a continuous-time con-
troller with a discrete-time system, assuming that there is a delay Δ associated
with the controller’s reaction to the environment. The implementation (e.g., C
code on a BrinkOS platform) can be generated from the controller’s automata.

The assumption of zero-time for computational action in the model language
is impossible to ensure on the target platform in the implementation language [9].
Thus the predictable design approach introduced an ε-hypothesis to fill the gap
between the physical domain and the software domain [10]. This ε-hypothesis
requires the model and its realization to have the same observable execution
sequence. Also, time deviations between activations of corresponding actions in
the model and realization should be less than ε seconds.

The approaches with global tolerances (e.g, reaction delay parameter Δ in [4]
and ε-hypothesis in [10]) define a global constraint as the constant upper bound
of the delay during implementation. However, in most industrial requirements,
it is typical that different timing requirements need different tolerances. Our
approach replaces a very conservative global tolerance by including tolerances
on each individual timing requirement. We have found that this may significantly
reduce unnecessary load on the target platform. This is illustrated by the Delayed
Trip System example in Section 5.

Most research based on the platform-independent idea will plug in another
layer between the high level requirements and coding implementation, e.g, “pro-
gram generation” in the Giotto approach [8] and in the POOSL model [9,10].
These approaches cannot determine the feasibility of an implementation on a
target platform until the scheduling stage is finalized. In the case of the gener-
ation of an unimplementable result, the designer has to improve the hardware
performance or relax the timing requirements, both of which are problematic. In
our approach, the implementability of the system is predictable in the first stages
of analysis, avoiding unnecessarily complex implementation and verification.

The remainder of this paper is organized as follows: Section 2 presents the
preliminary work in [3] and a two step Systematic Design Verification (SDV)
procedure. Section 3 introduces four different environmental assumptions and
shows the relationship between the implementability results under each of them.
An estimation approach is also provided, which allows one to estimate or even
precisely predict the implementability of the timing properties in a new environ-
ment. Sections 4 and 5 present the approach to refine and implement the high
level timing requirements (e.g., Held For), through an Implementation Template
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(e.g., a pre-verified timer design). An example is provided to demonstrate how
the implementation and verification work has been efficiently reduced. Conclu-
sions and future work are discussed in Section 6.

2 Preliminaries

2.1 Functional and Performance Timing Requirements

We differentiate between Functional Timing Requirements (FTRs) and Perfor-
mance Timing Requirements (PTRs). FTRs are timing requirements that are
directly related to the required behavior of the application. PTRs are really
timing tolerances that we specify so that the application does not have to ad-
here to the idealized behavior described by the requirements model. For more
background on PTRs and FTRs, readers are referred to [3].

Definition of the Held For operator with tolerance. Held For is a com-
mon FTR which specifies a condition must be sustained over a particular time
duration. A formal definition of the Held For operator was specified in [3] as
shown in Fig. 1.

(Condition) Held For (d: R
>0, δL, δR : R

≥0) :bool
Initially: duration = any value in [d − δL, d + δR], Event start time−1 = 0,
Condition−1 = FALSE

duration Event start time

(Condition = TRUE) & (Condition−1 = FALSE)
Any value in

[d − δL, d + δR]
tnow

(Condition = FALSE) OR (Condition−1 = TRUE) No Change No Change

Held For

Condition = TRUE
tnow− Event start time≥ duration TRUE
tnow− Event start time< duration FALSE

Condition = FALSE FALSE

Fig. 1. Formal Definition of “(Condition) Held For (d, δL, δR)”

There are a number of important points to emphasize. i) Duration is measured
from when the event started in the physical domain. It does not make sense to
define timing requirements with reference to when events are detected. ii) Many
different implementations are valid. The behavior between [d−δL, d+δR] is not
deterministic. iii) Even though we have introduced tolerances into the require-
ment, Held For is a FTR and still describes idealized behavior understood within
the constraints of the requirements model. For instance, it does not take into
account that processing time is not infinitely small, and it makes no reference
to how often the application samples the values of the sensor.
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As one of the PTRs introduced in [3], the Response Allowance (RA) for a
controlled-monitored variable pair specifies an allowable processing delay. The
RA is measured from the time the event actually occurred in the physical domain,
until the time the value of the controlled variable is generated and crosses the
application boundary into the physical domain.

The Timing Resolution (TR) for a monitored-controlled variable pair, can be
thought of as the minimum duration event involving those variables that must
be detected by the software [3].

2.2 Requirements Refinement and SDV Procedure Overview

In this section we provide an overview of our verification process in a two step ap-
proach based on the Systematic Design Verification (SDV) procedure introduced
in [11]. In the first step, a pseudo-SRS2 is created and verified as a refinement of
the high level requirements. In the second step, we verify that the Software De-
sign Description (SDD) is in compliance with the requirements for the behavior
as specified in the pseudo-SRS.

To ensure the pseudo-SRS is a correct refinement, we must verify the pseudo-
SRS based on all the timing requirements that are specified in the high level re-
quirements. Let pseudo-REQ and REQ denote the pseudo-SRS state transition
function and the high level Software Requirements Specification, respectively.
The proof obligation of our first verification step can be formalized as:

pseudo-REQ ⊆ REQ

We restrict the pseudo-SRS to be a functional refinement of the high level
requirements. The second step of the verification process is the SDV procedure
based on a modified 4 variable model [11,12].

pseudo-REQ

SOF

IN OUT

M

O

C

I

Fig. 2. Modified Commutative Diagram for 4 Variable Model

In Fig. 2, pseudo-REQ represents the pseudo-SRS state transition function
mapping the monitored variables M to the controlled variables represented by
C. SOF represents the SDD state transition function mapping the behavior of

2 Imagine a version of the Software Requirements Specification (SRS) that is decom-
posed so that the data flow of the reorganized SRS is the same as that of the software
design. This reorganized SRS is known as the “pseudo-SRS” [2].
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the implementation input variables (represented by I) to the behavior of the soft-
ware output variables (represented by O). The mapping IN models hardware
functionality and relates the specification’s monitored variables to the imple-
mentation’s input variables. Similarly, the mapping OUT also models hardware
functionality, and relates the implementation’s output variables to the specifica-
tion’s controlled variables. The resulting proof obligation:

pseudo-REQ = OUT ◦ SOF ◦ IN (1)

is illustrated by the solid lines in the commutative diagram of Fig. 2, which ver-
ifies the functional equivalence of the pseudo-SRS and SDD by comparing their
respective one step transition functions [13]. Here ◦ is used to denote functional
composition.

Through this two step SDV procedure, the high level requirements are con-
nected with the low level implementation. In each of the steps, the verification
can be formally conducted (e.g., by PVS). In later sections, we demonstrate this
approach and provide the reader with an example.

2.3 Sample Instances

Let Sample be a possible sequence of sample times and Sample(n) be the time
of the (n + 1)-th sample (n ∈ N). Sample is assumed to satisfy the bounded
jitter constraint, where Tmin and Tmax are the minimum and maximum sample
intervals over the complete range of sample intervals, respectively.

Sample(0) = 0 ∧ ∀n : Sample(n + 1) − Sample(n) ∈ [Tmin, Tmax].

We then also assume that the first sample point happens when t = 0, which
is Sample(0) = 0. Note that when Tmax=Tmin, the problem is simplified to a
fixed sample interval scenario, which is discussed in [14] for Held For without
tolerances.

In the example shown in Fig. 3, we assume Tmin = 10 and Tmax = 20. The
first sample Sample(0) occurs when t = 0, and the interval between any two
consecutive sample points is in the range [10, 20], e.g., Sample(6)− Sample(5) =
85−70 = 15. Further details on the example in Fig. 3 can be found in Section 3.1.

Tmax
Tmin

Sample(1) (2) (3) (4) (5) (6) (7)

10 20 30 40 50 60 70 80 90 100

t

0

d+ R
d- L

Initial Event Occur time
setpoint

Fig. 3. An Example of Decision Points
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3 Environmental Assumptions and Their Impact on
Implementability

We have shown in [3] that the implementability results of the Held For operator
with tolerance are determined by the interaction between the FTRs (e.g., dura-
tion tolerances of the Held For operator, δL and δR) and PTRs (the upper and
lower bound of sample intervals: Tmin and Tmax).

In this section, we show feasibility analyses to answer the questions listed in
Section 1. We first formally analyze the implementability results under three
different environmental assumptions. By comparing the results across the envi-
ronments, we develop an estimation approach based on the relationship between
the environments. Finally we show that it is possible to estimate the range or
even precisely predict the implementability results for a new environment.

3.1 Environmental Assumptions

We consider four different implementation environments which govern how we
recognize a sustained event like the Held For operator. They are the Omniscient,
the Perfect Clock, the Imperfect Clock and the No Clock environments. We limit
the scope of the analysis by assuming the implemented system will refresh the
output at each sample point, which is a polling based rather than interrupt
driven setting.

Perfect Clock: This environment provides the value of the condition only at
sample instances and we know the exact timing of samples by using a perfect
real valued clock. We can take actions (e.g., produce outputs) on the events only
at sample times.

To properly state the environment conditions for implementation, we define
the predicate Feasible(d) as a function of the sustained condition’s nominal dura-
tion d and assume that the other parameters, δL, δR, Tmin and Tmax, are fixed.
The feasibility function of the Perfect Clock environment is defined as follows.

Definition 1. Feasible PerfectClock(d) : bool = ∀Sample : ∀n : ∃nd :
∀(t|Sample(n) < t ≤ Sample(n + 1)) : d− δL ≤ Sample(nd)− t ≤ d + δR

In the function above t represents the event start time and nd is the index
of the sample where we will make our decision. It is known from earlier work
[3] that if the system behavior is specified in the form of (Condition)Held For
(d, δL, δR), the final decision as to whether Held For generates TRUE or FALSE
based on the sampled values, cannot be made until we are sure that a time period
with length d − δL has elapsed since the event occurred in the physical domain
(i.e. d − δL ≤ Sample(nd) − t). The decision also must be made before d + δR
has elapsed since the event occurred.

To explain this, we introduce an input signal and the duration with tolerances
to the example in Fig. 3. The initial event (when the signal goes above the
setpoint) occurs between Sample(1) and Sample(2). It is not hard to find that all
the sample points up to and including Sample(5) are too early for us to determine
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the value of the Held For operator, and all the sample points from Sample(7)
onwards are too late for us to make the decision. Only when t = Sample(6), is
it the right sample for us to make the decision.

Omniscient: This environment provides full read access to the timing of the
events that happen in the physical domain. In this environment, we know the
exact time of each event when the condition becomes TRUE or FALSE. However,
we can only take actions on these events at sample times. The difference in
comparison to the Perfect Clock environment is the relaxation of the existence
requirement for the decision point. For any t between Sample(n) and Sample(n+
1), a different decision sample point Sample(nd) is acceptable. Putting this all
together we can find the feasibility function in the Omniscient environment.

Definition 2. Feasible Omniscient(d) : bool = ∀Sample : ∀n :
∀(t|Sample(n) < t ≤ Sample(n + 1)) : ∃nd : d − δL ≤ Sample(nd) − t ≤ d + δR

Imperfect Clock: This environment is the same as in the Perfect Clock en-
vironment but with access to an imperfect clock (e.g. finite precision, bounded
drift, etc). We leave as future work, the formalization of possible subcases that
are associated with different imperfect clock assumptions. At the end of this
section we will apply our estimation approach to this environment, which al-
lows us to predict the implementability without having to perform complicated
feasibility analyses and verification.

No Clock: Under this environmental assumption, our access to the timing
of the events becomes very limited. The exact time of samples is not exposed
even in the software domain. Our knowledge is only that each sample interval
is between Tmin and Tmax and we also know the number of samples since the
condition became TRUE. In this case we have no recourse in our implementation
but to simply count the number of samples since we first detected the event. In
this case we need a “count” value nd that will work under any possible bounded
sample spacing and actual time of occurrence of the event. Let Sample(n+nd) be
the decision sample point, which is the ndth sample point since Sample(n). Then
we have the definition of the feasibility function in the No Clock environment as
follows:

Definition 3. Feasible NoClock(d) : bool = ∃nd : ∀Sample : ∀n :
∀(t|Sample(n) < t ≤ Sample(n + 1)) : d − δL ≤ Sample(n + nd) − t ≤ d + δR

3.2 Latest Environment Based Feasibility Analyses

Manual analysis in [3] shows that the only way that we can ensure the feasibility
is to make sure that we have at least two sample points inside that interval
[d − δL, d + δR]. After the recent PVS formal verification work, it turns out
this is a necessary condition, but it is not sufficient. In this section, we will
demonstrate how manual analysis with Fig. 4 provides a neat roadmap to guide
us to the major results and how PVS formal verification captured a missing case
in the manual analysis.
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δL + + δR
d − δL d + δR

(δL + + δR)R)

2

Case 1Case 1

Case 2Case 2

Case 3Case 3

Always 2 samples in the rangeAlways 2 samples in the range

Sometimes 2 samples in the rangeSometimes 2 samples in the range

Never 2 samples in the rangeNever 2 samples in the range

Fig. 4. Sample Points in the Duration Interval

Case 1: 0 < Tmax ≤ (δL + δR)/2. In this case, we can guarantee there are
always at least two sample points in the time interval [d− δL, d + δR] in Fig. 4,
based on which we can ensure the implementability of Held For. Theorem 1 is
proved for both the Perfect Clock and Omniscient environments.

Theorem 1. Assume Tmax ≤ (δL + δR)/2. Then

Feasible PerfectClock(d) ∧ Feasible Omniscient(d)

In the No Clock environment, implementability cannot be assumed. To under-
stand this new result, shown in Theorem 2, we consider the two extreme cases,
when the sample intervals are always Tmin or Tmax. For the Tmin case, the first
sample that is guaranteed to be on the right side of d − δL is

⌈
d−δL
Tmin

⌉
+ 1. If

k =
⌈

d−δL
Tmin

⌉
+ 1, then it is obvious that for feasibility in the Tmax case, we must

have that k × Tmax cannot be to the right of d + δR.

Theorem 2. Assume Tmax < (δL + δR)/2. Then
((⌈

d − δL

Tmin

⌉
+ 1

)
× Tmax ≤ d + δR ⇔ Feasible NoClock(d)

)

Case 2: (δL+δR)/2 < Tmax ≤ (δL+δR). It may happen that the hardware
platform is not fast enough for us to arrange a sample interval that always works
as defined in Case 1. Alternatively, we might be interested in operating at a
slower sample rate in order to conserve power. In Case 2, two sample points will
be in the time interval [d − δL, d + δR] under certain conditions, which guides
us to identify the necessary and sufficient conditions to implement Held For.

Let Kmin =
⌊

d−δL
Tmax

⌋
and Kmax =

⌊
d−δL
Tmin

⌋
, then the feasibility result for Case

2 is given by the following theorem:
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Theorem 3. Assume (δL + δR)/2 < Tmax ≤ δL + δR ∧ Tmin �= Tmax. Then

Tmin ≥ d − δL

Kmin + 1
∧ (Kmin + 2) × Tmax ≤ d + δR ⇔ Feasible PerfectClock(d)

We note that in [3] the conjunct Tmin ≥ d−δL
Kmin+1 was incorrectly stated as

Kmin = Kmax. During the course of formalizing the results of [3] in PVS, we
identified a missing boundary condition which is also feasible under Case 2. The
missing boundary case resulting in the new statement shown in Theorem 3 is
when Kmax = Kmin+1 and Kmax×Tmin = d−δL. This is when equality holds in
the new conjunct (i.e. Tmin = d−δL

Kmin+1 ). While the latter condition restricts the
application of this boundary case in practice, for the completeness of our results,
this scenario needs to be considered to obtain the correct necessary and sufficient
conditions for Case 2 under the Perfect Clock and No Clock environmental
assumptions.

Case 3: Tmax > (δL + δR). In Case 3, there is at most one sample point in
the range of [d − δL, d + δR] (shown in Fig. 4). Therefore, it is not possible to
implement the Held For operator.

Theorem 4. Assume Tmax > δL + δR. Then

¬Feasible PerfectClock(d) ∧ ¬Feasible NoClock(d) ∧ ¬Feasible Omniscient(d)

3.3 Comparing the Feasibility Results in Different Environments

In this section, we provide an overview and comparison of the feasibility results
in the three environments: Perfect Clock, No Clock and Omniscient.

To compare the results we introduce the following two feasibility conditions.

Condition 1 :
(⌈

d − δL

Tmin

⌉
+ 1

)
× Tmax ≤ d + δR

Condition 2 : Tmin ≥ d − δL

Kmin + 1
∧ (Kmin + 2) × Tmax ≤ d + δR

Table 1 provides the comparison of the feasibility results and other important
facts in each environment. The column headings of the table are Environments,
Case 1, Case 2, Case 3, Event Visibility and Clock Readable. The Environments
column lists the environments. The Imperfect Clock case will be discussed at the
end of this section. Columns Case 1-3 list the necessary and sufficient conditions
of the feasibility function for that case in the different environments. Event
Visibility specifies in which domain we can access the timing of any physical
event. The final column of the table is Clock Readable, indicating whether the
clock is accessible in the environment. Taking the Perfect Clock environment as
an example, here is the approach we used to fill in the values in this comparison
table.
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Table 1. Comparison of Implementability Results

Environments Case 1 Case 2 Case 3 Event Visibility Clock Readable

Omniscient TRUE TRUE FALSE Physical Domain Y ES
Perfect Clock TRUE Condition 2 FALSE Software Domain Y ES
Imperfect Clock ??? Condition 2 FALSE Software Domain Y ES
No Clock Condition 1 Condition 2 FALSE Software Domain NO

We filled in TRUE for Case 1 because we do not require any additional
condition to attain feasibility for Case 1. For Case 2 and Case 3, the values
are Condition 2 and FALSE respectively, based on Theorem 3 and Theorem 4.
We set Event Visibility to “Software Domain” because we will not be able to
observe any event in the physical domain until the next sample point occurs in
the software domain. Based on our discussion in Section 3.1, the value for Clock
Readable should be Y ES.

We can now discuss the comparisons contained in Table 1. At one extreme, the
Omniscient environment assumes that the time of the event is instantaneously
reported to the software domain and the controller can calculate and produce
the output simultaneously. The idealization embodied by this assumption allows
us to design the implementation of the Held For operator in a simpler way
than any practical capability will allow. In Case 2, this environment does not
require any feasibility condition. On the other hand, the No Clock assumption
completely forbids access to the clock during the implementation process, which
increases the difficulty of the implementation. Therefore, even in Case 1, an
implementation is not always feasible. In Case 3, the Held For operator is not
implementable under any of the three environmental assumptions.

Note that the difficulty of the implementation of the Held For operator in-
creases as we progress down Table 1. The following states this more formally.

Theorem 5. Feasible NoClock(d) =⇒ Feasible PerfectClock(d)∧
Feasible PerfectClock(d) =⇒ Feasible Omniscient(d)

The relationship between the feasibility functions under different environmental
assumptions determines the difficulty of implementing Held For in those envi-
ronments. For example, Feasible NoClock(d) =⇒ Feasible PerfectClock(d), so
we find that for any of the Cases 1-3, the condition to implement Held For is
always equivalent or more restricted under the No Clock environmental assump-
tion than under the Perfect Clock environmental assumption. Now we consider
the possible Imperfect Clocks described in Section 3.1. The information available
to the implementation in this environment falls in between the Perfect Clock and
No Clock cases. Since the latter two scenarios have the same necessary and suf-
ficient conditions in Case 2, we can conclude that Condition 2 is necessary and
sufficient for any imperfect clock environment! For Case 1 the Imperfect Clock
case shows ??? since the precise feasibility function may depend upon what clock
imperfections are considered, but it should be no stronger than Condition 1.
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4 Implementation of the Held For Operator

In this section, we briefly describe an implementation of the Held For operator
with tolerance in the Perfect Clock environment and refer the reader to [17]
for a more detailed account. We refine our model of time to a discrete time
model that assumes arbitrarily small clock ticks, which allows us to apply a
straightforward inductive proving approach to verify the implementation of the
Held For operator.

The Held For operator defined in Fig. 1 specifies the tolerance on the duration
of the sustained window, and it leads to indeterminism in the implementation of
the system. In particular, if the Condition has been sustained for an interval that
is in the range [d− δL, d + δR), then the current value of the Held For operator
can be either TRUE or FALSE. Based on the first step in Section 2.2, we can
refine the requirements of the Held For operator to a deterministic subset of
the high level requirements that matches our implementation’s behaviour at the
sampling points. This is done by defining the Held_For_S operator as follows:

Held_For_S(P,duration,Sample)(ne):bool=
EXISTS(n0|Sample(ne)-Sample(n0) >= duration):
FORALL (n: nat | n0 <= n AND n <= ne): P(Sample(n))

When this operator defined on sample indexes is lifted to the arbitrarily fast
clock tick level of the requirements in the natural way, it can be shown to be
a refinement of the original Held For operator under an appropriate PTR as-
sumption [17].

4.1 Timer Implementation of Held For S

Timer S and TimerUpdate Functions. To implement the Held_For_S op-
erator, we can design a timer that updates its value at every sample instance.
In Fig. 5, the Timer_S PVS function updates its value through a TimerUpdate
function, by passing the following information: the condition at both the current
and last sample instances, the pre-set timeout value, the current value of the
timer and the elapsed time since the last update of the timer.

Then the TimerUpdate function will update the timer by returning the latest
value.

In our design, we pass the values of the current and last sample instances,
P(Sample(ne)) and P(Sample(ne-1)), to TimerUpdate as the first and second
parameters, CurrentPP and PreviousPP. The TimerUpdate function will reset
the Timer to 0 when any of them is FALSE. When both of them are TRUE,
TimerUpdate will update the Timer function by adding the elapsed time (step)
to the previous Timer value. If the previous value has exceed the TimeOut value,
the TimerUpdate function will do nothing but return the previous value to avoid
an eventual overflow error.

We can then verify that an appropriately defined predicate on the current in-
put value and the PVS function Timer_S is an implementation of the Held_For_S
function.

Held_For_S
Held_For_S
Timer_S
TimerUpdate
TimerUpdate
P(Sample(ne))
P(Sample(ne-1))
TimerUpdate
CurrentPP
PreviousPP
TimerUpdate
Timer
TimerUpdate
Timer
Timer
TimeOut
TimerUpdate
Timer_S
Held_For_S
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TimerUpdate(CurrentPP, PreviousPP, TimeOut, PreviousTimerValue, step): tick =
TABLE

%+-----------------------------+------------------------------++
|[ PreviousTimerValue < TimeOut| PreviousTimerValue >= TimeOut]|

%-----------------------------+-----------------------------+------------------------------++
| CurrentPP AND PreviousPP | PreviousTimerValue + step | PreviousTimerValue ||
%-----------------------------+-----------------------------+------------------------------++
|NOT(CurrentPP AND PreviousPP)| 0 | 0 ||
%-----------------------------+-----------------------------+------------------------------++
ENDTABLE

Timer_S(P, Sample, TimeOut)(ne): RECURSIVE tick =
TABLE
%--------+----------------------------------------------------------------------------++
| ne = 0 | TimerUpdate(P(Sample(ne)), FALSE, TimeOut, 0, 0)
%--------+----------------------------------------------------------------------------++
| ne > 0 | TimerUpdate(P(Sample(ne)), P(Sample(ne - 1)),

TimeOut, Timer_S(P, Sample, TimeOut)(ne - 1), Sample(ne) - Sample(ne - 1)) ||
%--------+----------------------------------------------------------------------------++
ENDTABLE

MEASURE ne

Fig. 5. TimerUpdate and Timer S Functions

TimerGeneral_S1: THEOREM Held_For_S(P, timeout - delta_L, Sample)(n+1)

IFF (P(Sample(n + 1)) AND Timer_S(P,Sample,timeout-delta_L)(n) +

Sample(n+1)-Sample(n)>=timeout-delta_L)

The Timer_S design yields a relatively easy implementation of the Held_For_S
operator. Other equivalent implementations can be defined, and, in practice,
there could be many similar implementations using the same design pattern. Our
objective here is not to create a strict formula for software designers to follow,
but to provide a generic design pattern like Timer_S, so that designers can cus-
tomize the Timer_S design based on different situations. In the next section, we
present the DTS example. By utilizing the general theorem TimerGeneral_S1,
a large amount of the verification work is saved by proving the equivalence of
the customized timer implementation to the original Timer_S implementation.

5 Example: Delayed Trip System with Tolerances

We now revisit the Delayed Trip System (DTS) [16] which was implemented
and verified in [14] - but without explicitly considering timing tolerances. A
modified Software Requirement Specification (SRS) for the DTS with explicit
tolerances is shown at the top of Fig. 6. In this version, the requirements are
specified with the Held For operator with tolerances. If the condition PP has
held for timeout1, the relay must be open. When the power drops below PT
or the pressure becomes lower than DSP, the relay must not close until after
another time period of timeout2. The bottom portion of Fig. 6 presents part of
the PVS for the Software Design Description (SDD) of the DTS, the function
RelayUpdate. With the help of the pre-verified TimerGeneral_S1 theorem, we

Timer_S
Held_For_S
Timer_S
Timer_S
TimerGeneral_S1
Timer_S
TimerGeneral_S1
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Result
Condition relay

(PP) Held For(timeout1,δL1,δR1 ) TRUE
(¬ [(PP) Held For (timeout1, δL1, δR1 )]) Held For (timeout2, δL2, δR2 ) FALSE

¬ (PP) Held For(timeout1,δL1,δR1 ) ∧
¬ (¬ [(PP) Held For (timeout1, δL1, δR1 )]) Held For (timeout2, δL2, δR2 ) No Change

where PP (t) = Power(t) ≥ PT ∧ Pressure(t) ≥ DSP

SDD_State: TYPE =

[# Relay: Relay_State, Timer1: tick, Timer2: tick,

PreviousInput1: bool, PreviousInput2: bool #]

RelayUpdate(timeout1, timeout2, CurrentPP, S, step): Relay_State =

TABLE

%----------------------------------------------------------------+-------++

| CurrentPP&(Timer1(S)+step>=timeout1) |OPEN ||

%----------------------------------------------------------------+-------++

| NOT(CurrentPP&Timer1(S)+step>=timeout1)&Timer2(S)+step>=timeout2|CLOSED||

%----------------------------------------------------------------+-------++

| NOT(CurrentPP&Timer1(S)+step>=timeout1)&

NOT (Timer2(S)+step>=timeout2) |Relay(S)||

%---------------------------------------------------------------+--------++

ENDTABLE

Fig. 6. The SRS (top) and SDD (bottom) for the DTS with Tolerances

can clearly identify the functional behaviour of the DTS mapping from SRS to
SDD tables. For example, the (PP)Held For(timeout1,. . . ) in the first row is
implemented by Timer1 and current condition CurrentPP (as shown in the first
lines of both tables). Similarly, Timer2 (with its current condition) implements
the Held For (with timeout2 ), as shown in the seconds line of both tables.

Both of the Timer functions call the TimerUpdate function to update them-
selves. Function RelayUpdate updates the current output of the relay, based on
the timeout1 and timeout2, the current condition PP and step (as introduced
for TimerUpdate). Here the variable S is of record type SDD_State. It stores the
system state - the status of the Relay, values of Timer1 and Timer2 and the in-
put conditions of each timer at the previous sample time, PreviousInput1 and
PreviousInput2. These last two fields are passed to the TimerUpdate function
applications as PreviousPP parameters, in order to determine whether the timer
should add a step increment or perform a reset.

Note that the Held For operator with duration timeout1 has tolerance set-
tings δL1 and δR1 and another Held For operator with duration timeout2 has
its own tolerance settings δL2 and δR2. This may better fit a real-world engi-
neering specification, where timeout1 and timeout2 may differ by more than an
order of magnitude. In this case it typically would not make sense for the timing
requirements to share a single global tolerance. For example, we may want time-
out1=300±2 seconds and timeout2=2±0.1 seconds. This provides an example

Timer1
CurrentPP
Timer2
Timer
TimerUpdate
RelayUpdate
PP
step
TimerUpdate
S
SDD_State
Relay
Timer1
Timer2
PreviousInput1
PreviousInput2
TimerUpdate
PreviousPP
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in which the requirements of the system do not fit into a global tolerance model
(e.g, the reaction delay parameter Δ of the Almost ASAP semantics in [4] and
ε-hypothesis in [10]). Instead of performing a scheduling check in the final stage
[8,10], our approach can also determine whether further work on an implementa-
tion is worthwhile as soon as the timing requirements have been specified (based
on the feasibility analyses discussed in Section 3.2).

We have shown (in the complete PVS source code) how to reuse this result to
reduce the verification work of the customized timer components, through the
TimerGeneral_S1 theorem. This general theorem requires more than 16 lemmas
and 600 PVS commands to complete. This one time effort can benefit other going
forward. In the DTS example, 51% of the total PVS prover commands used in
the verification are eliminated by repeated instantiations of this theorem. More
details on the DTS example are available in [17].

6 Summary

In this paper, we expand the scope of our feasibility analyses to explicitly in-
clude environmental assumptions. Our latest results show that implementability
of timing requirements (e.g., Held For operator) is determined by both the im-
plementation environment and the interaction of the timing requirements. Now
we are in a position to answer the questions we proposed in Section 1.

“Is it always necessary to sample at fast sampling rates and is it safe to assume
that sampling faster is the best way to implement the system?” The latest feasi-
bility analyses show that sampling faster is not always the only option and also
not always the correct choice in implementing real-time systems. The feasibility
analyses show that it is still possible to implement the Held For operator when
Tmax > (δL + δR)/2 , which provides an alternative solution to the designer of
real-time systems, when coping with hardware limitations. On the other hand,
the results of Case 1 in the No Clock environment show that it is not always
safe to assume implementability when Tmax ≤ (δL + δR)/2.

“The timing environment has been changed, how do I know my implementa-
tion will still work for the new timing environmental assumption?” This could
be easily determined since we have the implementability results for different en-
vironments. Further, if the target environment is altered for a particular timing
requirement, the relationships between feasibility functions under different en-
vironmental assumptions can help us estimate the implementability results for
the new environment.

We have introduced a pre-verified Implementation Template, which benefits
real-time software in two respects. First, it allows domain experts to specify
different tolerances for each functional timing requirement, instead of a global
tolerance for the timing behavior on the target system. Second, it helps to sim-
plify and reduce the effort required in both the implementation and verification
stages.

TimerGeneral_S1
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