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Automatic Calibrations Generation for Powertrain Controllers Using MapleSim

Abstract

Modern powertrains are highly complex systems whose development
requires careful tuning of hundreds of parameters, called calibrations.
These calibrations determine essential vehicle attributes such as per-
formance, dynamics, fuel consumption, emissions, noise, vibrations,
harshness, etc. This paper presents a methodology for automatic gen-
eration of calibrations for a powertrain-abstraction software module
within the powertrain software of hybrid electric vehicles. This mod-
ule hides the underlying powertrain architecture from the remaining
powertrain software. The module encodes the powertrain’s torque-
speed equations as calibrations. The methodology commences with
modeling the powertrain in MapleSim, a multi-domain modeling and
simulation tool. Then, the underlying mathematical representation of
the modeled powertrain is generated from the MapleSim model using
Maple, MapleSim’s symbolic engine. Maple is further used to manip-
ulate the powertrain equations to produce the representation required
for calibrations extraction. The methodology has been applied suc-
cessfully in a research project with a large automotive OEM (Original
Equipment Manufacturer), leading to significant improvements in the
calibrations generation process. It has since been integrated into the
OEM’s model-based development process.

Introduction

Motivation

Model-based design is a prevalent paradigm in development of em-
bedded control systems across industries. As with any development
paradigm, its industrial success depends largely on the practicality of
supporting tools [1]. Matlab/Simulink has been a de facto standard
for design and analysis of embedded automotive systems. While both
controller design and plant modeling can be performed within Mat-
lab/Simulink, tools exist that are better suited for plant modeling and
analysis than Matlab/Simulink. MapleSim [2] by Maplesoft is one
of them. MapleSim is a tool for modeling and simulation of physi-
cal systems, with the powerful underlying symbolic mathematical en-
gine Maple. 1t offers the flexibility of component-based modeling that,
combined with the Maple’s symbolic capabilities, enables the develop-
ment of highly accurate and customizable models, leading to reduced

development costs. Furthermore, MapleSim’s symbolic capabilities,
including symbolic simplification and symbolic optimization of gen-
erated code, enable complex models to be simulated at speeds that al-
low real-time simulation for Hardware-In-the-Loop testing. The tool
has been used in different industries, including safety critical indus-
tries [3]. Furthermore, the tool has been applied in powertrain model-
ing and analysis [4, 5, 6]. For example, [4] uses MapleSim/Maple for
modeling and rapid prototyping of a powertrain.

In model-based development, the calibration process makes up a sig-
nificant portion of overall development efforts [7]. The calibration
process deals with tuning system parameters—calibrations—to meet
multiple requirements. Within the powertrain controls, calibrations
typically reflect parameters (e.g., filters’ parameters, delays, thresh-
olds, etc.) that are used for fine-tuning performance, fuel-efficiency,
safety and drivability of vehicles. Our work focuses on generating
calibrations for a module of the Hybrid Powertrain Controller (HPC),
the main controller within the powertrain control software of a hybrid
electric vehicle. The module captures the powertrain’s equations of
motion expressing a desired set of torques as a function of a differ-
ent set of torques and speeds. The coefficients in these equations are
called Torque Speed Coefficients calibrations or TSC cals. The mod-
ule effectively represents a powertrain-abstraction layer (in software
engineering terms, a hardware hiding module [8]) within the power-
train software that hides the deployed powertrain architecture from the
remaining powertrain software, allowing for a high degree of software
reuse across different powertrain architectures in multiple vehicle de-
signs.

Our approach for automatic calibrations generation of the TSC cals
for the HPC controller is as follows. First, a model representing a
low-fidelity, rigid body dynamics of the powertrain is developed in
MapleSim from the powertrain schematics. Then, MapleSim’s under-
lying computation engine, Maple, is used to automatically generate
symbolic equations representing the behavior of the system. Maple is
further used to manipulate the equations to produce a form suitable for
easy extraction of the relevant coefficients representing the desired cal-
ibrations. We note that only steady-state responses are considered: the
models corresponding to each of the plausible modes of operation of a
powertrain are considered without analyzing the transient responses as
the calibrations of interest do not depend on the transient response of
the powertrain.



Prior Work

Model calibration is the process of adjusting parameters of a model
so that it complies with a reference system [9]. The reference system
can be either the actual physical system or a trusted reference model.
MapleSim and Maple have been previously used in the calibration
phase of a lithium-ion battery modeling [10] to estimate the param-
eters of a MapleSim model of the lithium-ion battery. In that work, the
homotopy optimization method of [11] was used to match the model’s
input/output behavior to experimental data. Our work, however, does
not involve a parameter estimation approach that uses an optimization
method to minimize the difference between the model’s input/output
behaviour and experimental data. Instead, our reference model is a
low-fidelity model of a physical powertrain. The model’s underly-
ing mathematical representation is then generated automatically using
Maple. Maple is further used to manipulate the representation to an
appropriate set of equations so that the coefficients of the equations
represent the calibrations of interest.

Contributions

This paper presents a novel approach in the generation of the TSC
calibrations for powertrain controllers. The generation is highly au-
tomatic: after the model of a powertrain architecture is developed in
MapleSim, a generic script template is adapted for the specific archi-
tecture to pick out the relevant coefficients from the (automatically
generated) mathematical representation of the modeled system. The
practicality of the approach has been validated in an industrial setting:
the calibrations generation process has been integrated into the existing
model-based development process of a large automotive OEM (Origi-
nal Equipment Manufacturer) proving to be superior to the previously
used calibrations generation process. Moreover, although our work
focuses on the calibration phase of controller synthesis in the model-
based development using a low-fidelity plant model of the powertrain
developed from its schematics, this MapleSim model can be reused in
plant modeling and analysis after being appropriately augmented with
additional details to provide a higher-fidelity plant model of the power-
train model. It can then be used in a number of applications, including
high-performance real-time hardware simulations, thanks to Maple’s
powerful symbolic engine.

In the following sections, we first summarize the capabilities of the
MapleSim/Maple environment. Then, the calibrations generation
methodology is presented and demonstrated on a simple transmission,
and its industrial application on a real-world powertrain of a hybrid
electric vehicle is illustrated. Further, the integration of the method-
ology into the existing model-based development process of our in-
dustrial partner is detailed. Finally, we offer some useful insights into
benefits and limitations of the methodology, and then conclude the pa-
per with avenues for future work.

Tools

The Matlab/Simulink environment offers excellent capabilities for
modeling, simulation and analysis of embedded systems. Once a phys-
ical system is decomposed into block diagram structures with causal
interactions, it can be efficiently modeled within the Matlab/Simulink
framework. Often, a significant effort in terms of analysis and ana-
lytical transformations is needed to obtain a model in this form. Fur-
thermore, this effort is error-prone. In order to allow reuse of compo-
nent models, the equations could be stated in a neutral form without
making assumptions on the order of computations. This, so-called
acausal modeling, allows for describing a system’s physical struc-
ture and essence as opposed to an algorithmic procedure or structure.
Acausal modeling languages allow use of an object-oriented represen-

tation that permits an intuitive definition of a system model by graphi-
cally describing its topology—components can be connected and their
relationship defined without a need to make a decision regarding which
signals are inputs and which are outputs.

While Matlab/Simulink supports causal modeling essentially describ-
ing system behaviour—with a main emphasis on what the system
does—acausal modeling tools like MapleSim, Dymola, SimulationX
and AMESim emphasize what the system represents. It should be
noted that Matlab/Simulink’s framework also recently provided a
means for acausal modeling, using Simscape. However, the core ben-
efit of using MapleSim for the purpose of this work is its underly-
ing symbolic engine, Maple, which ultimately provides the means to
retrieve model’s equations in their symbolic form, together with the
seamlessly integrated environment (between Maple and MapleSim) to
efficiently manipulate and analyze them—which Simscape does not.
As a consequence, MapleSim, together with Maple, could be a great
addition to an already existing Simulink-based toolchain. It provides
connectivity to Simulink, whether it is achieved by exporting models
into S-functions or using Functional Mockup Interface (FMI).

Within MapleSim, engineers create the system diagram on-screen and
the model equations are generated automatically. The equations can
be viewed and manipulated within the Maple environment, where en-
gineers can take advantage of Maple’s standard packages for dynamic
system analysis, optimization, statistics, and more. The Maple pro-
gramming language can be used to further manipulate and create ap-
plications around developed models. MapleSim builds on Maple’s nu-
meric and symbolic computation to perform simulations of complex
models. The equations generated from the model are simplified sym-
bolically and higher index DAEs (Differential Algebraic Equations)
are reduced using Maple’s index reduction algorithms, which also re-
move redundant equations and flag inconsistencies within the model.
The simplified model is numerically simulated, with compilation op-
tions for further gain in speed of execution. MapleSim has the ability
to convert models to C code using Maple’s code generation and opti-
mization tools. Maplesoft also offers numerous toolboxes for export of
models into various simulation environments such as Simulink, Lab-
VIEW (a graphical programming environment for measurement, test-
ing and modeling of control systems) and ControlDesk (dSPACE’s ex-
periment software for electronic control unit (ECU) development and
validation).

Calibrations Generation

In this section we will describe the methodology used to obtain the
TSC calibrations. First, the problem is precisely defined and the lim-
itations of the previous solution are explained. Then, the steps of the
proposed methodology are described using a simplified transmission.

Problem Statement

The main controller within the powertrain software of electrified
vehicles of our industrial partner, a large automotive OEM, opti-
mizes the vehicle’s energy consumption (fuel economy) and driv-
ability. The controller is called the Hybrid Powertrain Controller
(HPC) and is implemented in Matlab/Simulink. A module of the HPC
captures powertrain’s dynamics relating the powertrain’s speeds and
torques. The module represents a powertrain-abstraction layer within
the controller—it encodes the powertrain architecture using a set of
calibrations, so-called Torque Speed Coefficients calibrations or TSC
cals, so that the rest of the powertrain software is not aware of the un-
derlying powertrain architecture and can therefore be reused through-
out different powertrain architectures.



In the original calibrations generation process of the OEM, for a given
powertrain architecture, the powertrain’s dynamics relating power-
train’s speeds and torques were represented using symbolic, manually
derived equations within hand-coded Matlab’s scripts. Using Matlab’s
symbolic solver, the TSC calibrations were then generated as relevant
coefficients from these equations. The approach suffered from a num-
ber of issues. The manual derivation of speed-torque dependencies
for each powertrain configuration using schematics is a tedious, time-
consuming, and error-prone process. An in-house tool was used to val-
idate the calibrations derived manually. However, the tool had many
drawbacks that eventually rendered it inadequate for use in the cali-
brations generation process. Most notably, the tool lacked proper de-
bugging facilities. Furthermore, the tool did not provide support for
all typical powertrain components (e.g., one-way clutches were not na-
tively supported), and was unintuitive to use.

Given the aforementioned drawbacks of the described manual calibra-
tions generation process, we seek for a highly automated calibrations
generation methodology whose application will result in a substantial
reduction of modeling and analysis efforts, as well as significantly de-
crease the potential for errors.

Methodology

This section presents our proposed methodology to tackle the presented
problem. We use a four-speed automatic transmission from [12] as a
simple running example.

First, we define the inputs to the methodology. The schematic of the
powertrain is an input to the methodology. The schematic of the exam-
ple four-speed automatic transmission is shown in Figure 1. The trans-
mission consists of five clutches, each of which can be either locked or
unlocked. This allows for different gear ratios between the input and
the output of the transmission which, in turn, allow for different modes
of operation. PG, represents a planetary gear composed of ring, car-
rier, and sun gears (R,, C,, and S, respectively). Clutches C'23,
Cs4, and CR can directly connect the respective gears to the engine
(input in the figure). Clutches C1R and Ca4 are used to ground the
gears by locking them to the transmission casing.
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Figure 1. Schematic of the four speed automatic transmission

Next, the desired calibrations are defined for each mode. The four-
speed automatic transmission has five modes of operation:

C1R and C123 locked; other clutches unlocked,

(24 and C123 locked; other clutches unlocked,

(C's4 and C123 locked; other clutches unlocked,

C's4 and C24 locked; other clutches unlocked,
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Figure 2. Schematic of Gear 2

e (1R and CR locked; other clutches unlocked.

For conciseness of exposition, we illustrate how calibrations are de-
fined on only one mode of the four speed transmission, the mode Gear
2. As shown in Figure 2, Gear 2 is achieved by locking clutches Ca4
and C123 while the rest of the clutches remain unlocked. Let us as-
sume that the desired calibrations for Gear 2 are defined as coefficients
in the following equations where 7T; represents the input torque, 15
represents the torque at clutch x, and 7T, represents the output torque.

1
T, = G2_ToFromTi - T; + G2_ToFromTCIR - Tcir M

+ G2_ToFromTC8} - Tcsa + G2_ToFromTCR - Tcr

Tci2s = G2_TC123FromTi - T; + G2_TC123FromTCI1R - Tcir
+ G2_TC123FromTC384 - Tcsa
+ G2_TC123FromTCR - Tcr

(@)

Teoa = G2_TC24FromTi - T; + G2_TC2/FromTCI1R - Tcir
+ G2_TC24FromTC3} - Tcsa
+ G2_TC24FromTCR - Tcr
3)

Now that the inputs to the methodology (the powertrain schematic,
modes and desired calibrations) have been defined, we outline the steps
of the proposed methodology.

1. Modeling Powertrain in MapleSim. In the first step of the
methodology, the powertrain architecture is modeled from its
schematic using MapleSim. Figure 3 contains the (non-linear)
MapleSim model of the schematic powertrain from Figure 1. In
the figure, 77 and 7% are the input and output torques, respec-
tively, and I; represents the input inertia.

2. Generating Powertrain Modes. The MapleSim models corre-
sponding to different modes of the powertrain are generated man-
ually from the model in Figure 3 by locking/unlocking clutches.
A locked clutch corresponds to a rigid connection and an added
torque sensor, while unlocking a clutch includes removing the
clutch and the connections on either side of the clutch. The
MapleSim model of the Gear 2 mode of the four-speed trans-
mission is shown in Figure 4. In the figure, 7' and T_O rep-
resent the input and output torques, respectively; 7'S; and 7'S»



b. The speed and torque variables of interest are defined
(the variables are first renamed for clarity and aesthetic
reasons)—see Figure 6. In this example, only torques are

required.
T I v m T,
ey o pad - & e >
b T = § 521 % N > #The map (fcn, expr) command applies the function fen to the elements of
F, the expression expr. In the instance below, varsinterest consists of all
v of the elements on the right hand side of the varSubstitution list.
L..w > varSubstitutions := [T I(t) = Ti(t),
L] T o(t) - To(t),
T_CIR(t) = TCIR(t),
T €123(s) — TC123 (%),
= T €24(t) = TC24(t),
T_C34(t) = TE34(t),
L_.Y_q_‘ T _CR(t) = TCR(t)]:
'FJ !-UR varsInterest := map(rhs,varsubstitutions):
_Y_
o 1t

Figure 6. Variables of interest

c. The set of equations generated in a) is reduced to only in-
clude the equations containing the variables of interest de-
fined in Figure 6. The corresponding part of the script and

Figure 3. MapleSim model of four speed automatic transmission the resulting equations are shown in Figure 7.

> #The select(condition, expression) command selects the operands of the

expression which satisfy the condition.

> #The expand(expression) command distributes products over sums in the

K :i I o expression.
/i‘ G, > #The subs (a=x, expression) command substitutes a for x in the expression.
> equations := [op(select(has,expand(subs (varSubstitutions,DAEs union
Definitions)) ,varsInterest))]:
T 5 > equationsVector := convert(equations,Vecter) ;
4 Fa Y
Tt & _ SIPG2 sun tau(t) R2 _ S1PG2 su_taulf) T =0
ad RIS2 RI
Vi PGI_carrier_tau(t) + %j—m“m — To(t) =10
T.CI123
PGI_carrier_tau(t) + %ﬁmm + PG2_sun_tauit) + Ti(t) =0
Figure 4. Linearized model for Gear 2 GI uit) = Tolt)
GI_y(t) =Tolt)
Ti_rauir)=Ti(

v

v

are torque sensors; F represents ground, while GG; represents a
gain.

Generating Equations and Extracting Calibrations. Equations
defining the dynamics of the powertrain in a mode are automat-
ically generated from the corresponding MapleSim model, in a
fully symbolic and parametrized form, using Maple. Each of the
MapleSim models representing a mode of a given powertrain has
a Maple script attached to it. The script automates the manipula-
tion of the corresponding mode’s equations to a form needed to
retrieve the desired calibrations. For Gear 2, the equations gov-
erning the behaviour of the model of Figure 4 are manipulated
into the form given by Equations 1, 2, and 3. We next explain the
Gear 2 script in more detail, focusing on its most important parts.

a. First, Maple’s GetEquations command in Figure 5 gen-
erates a mathematical representation of a physical system
represented using MapleSim—the command retrieves the
set of equations underlying the MapleSim system from Fig-
ure 4.

#The LinkModel() cormmand creates an object that allows access to the
MapleSim model.

restart;

A := MapleSim:-LinkModel ('filename' = "4 Speed Gear 2.msim"):
A:-SetSubsystemName (" Speed") :

ret :=— A :- GetEquations('output' — 'all', 'filter' — {},
"simplify' = true):

Figure 5. Linking to the MapleSim model and obtaining equations

equationsVecior ==

1)

T2 _tau(t) = Tolt)
TCI23(t) = Til1)
TC24(t) = PG2_sun_tau(t)
TSI _RO(t) = Til1)
PGI_sun_tau(t) = Ti(f)
T1_flange tau(t) = -Ti(t)
T2 _flange tau(t) = -To(t)
TSI_CB_u(t) =Ti(z)
TI51_CB_y(r) =Ti(1)
TSI_TS tau(t) = Tilt)
PGI_PG3P sun_tau(t) = Ti(t)
T51_TS_flange_a_rau(t) = Ti(t)
T51_TS flange b_rau(r) = -Ti(t)
TSI _flange_a tau(t) = Ti(1)
TSI flange b tau(t) = -Ti(1)

t
t

Figure 7. The model equations

d. The solving variables are then chosen (7'C123, TC24,
and 70):

solvingVars := [TC123(t),TC24(t),To(t)];

e. Using Maple’s solve command, the equations are solved
symbolically (Figure 8) for the defined solving variables
and intermediary variables (not including the variables of
interest that are not solving variables—i.e., TCR, TCR1,
TC34 and T7). Next, the relevant dependencies for the
solving variables are extracted from the resulting equations
(Figure 9). The resulting dependencies of interest for the
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solving variables Tc123, Tc24, and T, shown as matrices,
can be seen in Figure 10.

#The solve(equations, variables) command solves a set of equations for a set of

variables

#The indets (expr,typename) command returns a set containing all of the indeterminates

of the expr that are of type typename.

#The minus and union commands are the set operations complement and union
respectively.
#The op (expr) command extracts operands from the expression expr

#The dependentAccelerations vector is not needed for this example, however, since the

script is generic, it is included in the cods.

dependenthAccelerations := {ni_dot(t),nc dot(t)};
soluticns := solve (equations, [op (indets (equaticns,function) minus {op(varslnterest)}
union {op(solvingvars)} minus dependenthAccelerations)]): solutionsVector := convert

(solutions, Veector) ;
_ Ti(t) (R1S2 + R2S1 + §152)
51(52+ R2)

_ Ti(r) (RIS2+ R2S1+ 5152)
S1(52+R2)
TI_rau(t) = Tilt)
Ti(t) (R152 + R2S1 + 5152)
S1(52+R2)
TC123(t) = Ti(£)
Ti(f) RIS2
TC24(1) = 51((5327+R2)
TSI _RO(1) = Ti(t)
_ TH(f) (RIS2 + R251 + 5152)
S1(S2+R2)
(RI+581) Ti(e)
81
PGI_sun_tau(t) = Ti(1)
Ti(t) RIS2
S1(52+R2)
T1 flange_tau(t) = -Ti(t)
Ti(t) (RI52 + R251 + 5152)
51(52+R2)

T51_CB_u(r)=Ti(r)

T51_CB_y(t) =Ti(r)

TSI_TS tau(t) = Ti(t)
PGI_PG3P_sun_tau(t) = Tilt)
T5I_TS_flange_a_tau(r) = Ti(r)

TSI _TS flange b_tau(t) = -Ti(t)
TSI_flange_a_tau(t) = Ti(1)
TSI _flange b tau(t) = -Ti(t)

Gi_u(t)=

Gl y(r) =

T2 rau(t) = -

To(t) =

PGI_carrier_tau(t) = -
solutionsVector =

PG2_sun_tau(t) =

T2 flange_tau(t) =

Figure 8. Solving the equations

> #Select cquations of interest from the solutions Vector
> res TC123 :— expand(select (x—>Lhs(x) — TGL23(t), op(solutions)));
ras_TC123:= [TCI23(f) = Ta(1) ]
> res TG24 := ewpand (sslsct (x->1hs(x) = TG24(t), op(solutions)));
_ _  Ti(t)RIS2
res_TC24 {7024(1) (S }
> res To := ewpand(sslsct (x->1hs(x) = To(t), op(solutions)));
_ _ __Ti(r)RIS2  Ti(t)RZ _ Ti(1) 52
res To= |10 = Griss v Ry m+R2 | R+ R2

Figure 9. Obtaining the dependencies of interest

f. Finally, the parameter values for the gear ratios, inertias,
and damping are substituted in to obtain the numeric cali-
bration coefficients. For instance, the calibration value for
T, from T; is -1.45 (i.e. T, = —1.45- T;), as shown in
Figure 11.

The script is generic and self-documenting. For other modes of
the same architecture, the only trivial change is the choice of solv-
ing variables.

4. Printing. The same Maple script generates the calibrations in a
“.m” (Matlab file) format as seen in Figure 11. These numeri-
cal calibrations can then used by a Simulink controller model for
code generation, compilation, and eventual real-time execution
of the controller’s functionality.

> #Rewrite the equations of interest (that show the dependencies) as matrices

N

sVars TC123 := [Ti(t),TC1R(t),TC24(t),TCR(t)]:

> A TC123,b TCl23 := LinearAlgebra:-GenerateMatrix([rhs(op(res _TC123))-lhs (op (res TC123)
)=01,sVars_TC123):

> b_TC123 — convert(customSimplify (A TC123) ,Vector) ,convert (sVars_TC123,Vector) ;

1 Ti(1)
o || TCIR(n)
| reias = |
o [| Tc24(r)
0| TCR(n)
>
> svars_TC24 := [Ti(t),TCIR(t),TC34(t),TCR(E)]:
> A_TC24,b_TC24 := eval (LinearAlgebra:-GenerateMatrix (expand ([rhs (op (res_TC24))-1hs (op

(res_Tc24))=0]) ,svars Tc24)):

> b TC24 = convert (customSimplify (A TC24) ,Vector) ,convert(sVars TC24,Vector) ;

RIS2
STS2+ K2) ™o
TCIRI
[ re24(n) |= 0 ()
TC34(1)
TCR(t)
>
> sVars To := [Ti(t) ,TClR(t),TC34(t),TCR(L)]:
> A To,b To := eval(LinearAlgebra:-GenerateMatrix(expand([rhs (op(res To))-lhs (op(res To)
)=01) ,sVars To)):
> b _To = convert(customSimplify (A To) ,Vector),convert (sVars To,Vector) ;
(-R2—52) 51 —RIS2
SI(S2+R2) 7i(1)
TCIR
[ To(t) ]: o L 0
0 TC34(t)
0 TCR(1)
Figure 10. Relevant dependencies for Gear 2
%
% Gear 2 Torgue Eguations
%
% Dependent Variables: Ti, TC1lR, TC34, and TCR
G2 _ToFromTi = single( yr
G2_ToFromIClR = single( }i
G2_ToFromIC34 = single( Vi
G2_ToFromICR = single( ¥
V. Ti, TC1R, TC34, and TCR
G2_TCl23FromTi = gingle{ = 1.0000000000 Yy
G2_TCl23FromIClR = gingle{ = = 0.0000000000 Y
G2_TCl23FromIC34 = single( = 0.0000000000 yi
G2_TCl23FromTCR = single{({ = ©0.0000000000 )y
% Dependent Variables: Ti, TClR, TC34, and TCR
G2_TC24FromTi = single( yi
G2_TC24FromTCI1R = single( O );:
G2 _TC24FromIC34 = single( yr
G2_TC24FromICR = single( }i

Figure 11. Calibrations for Gear 2

Industrial Application

Application on Real-World Powertrain

The proposed methodology is scalable to most conventional or hybrid
powertrain architectures that are currently used in the automotive in-
dustry. It has already been successfully implemented on three indus-
trial hybrid powertrain configurations. To illustrate the methodology
on a real-world application, we apply the methodology to an industrial
powertrain configuration, a two-mode Electrically Variable Transmis-
sion (EVT). However, for confidentiality reasons, we disclose neither
the powertrain schematics, nor the details of all the steps of the method-
ology applied on it. We merely intend to show that the methodology
scales to production-scale applications. Moreover, its benefits are far
more obvious on the real-world example given that the relevant speed-
torque dependencies are far more complex than for the simple example
of the four-speed automatic transmission.

We focus on Step 3 of the methodology (generating relevant equa-
tions). The script described in the previous section (for the four-speed
automatic transmission), only slightly modified, is used to generate



equations for the EVT. The major difference between the two scripts
is the choice of solving variables, as highlighted in Figure 12. This
configuration is much more involved than the simple example of the
four-speed automatic transmission. It includes 5 relevant speed vari-
ables, 7 torques, 2 accelerations, 8 inertias, and 5 dampeners. The
diff command is used to calculate the partial derivative of the speed
variables n3(t) and n5(t)) with respect to time, resulting in acceler-
ations n3_dot (t) and n5_dot (t)), respectively.

> torqueSubs := [EVT T1(t} = T1(t),

EVT_T2(t) = T2(t),

EVT T3(t) = T3(t),

EVT_T4(t) = T4(t),

EVT TS(t) = T5(t),

EVT_T6(t) = T6(t),

EVT_T7(t) = T7(£)]:
accelSubs = [EVT_nS_dot(t} = 113_;101:(1:) .
EVT n5 dot(t) = n5 dot(t),

diff (n3(t),t) = n3 dot(t),
diff (n5(t),t) = n5 dot(t)]:

solvingVars := [T7(t), T6(t), T4(t)];
dependentAceelerations := {n3_dot(t), n5_dot(t)};

Figure 12. Variables of interest and solving variables

Some of the equations that define the behaviour of one of the modes of
the EVT are shown in Figure 13. In the equations, 7%, ni, and ni_dot
refer to torque, speed, and acceleration variables at node 4, respectively.
I;, B;, and f3 refer to inertia, dampening, and gear ratios, respectively.

res_T4_T7 := expand(select(x->lhs(x) = T4(t), op(solutions))):
svars_T4_T7 := [T1(t),T2(t),n6(t),n3(t),n5(t),n3_dot(t),n5_dot(t),T6(t),T3(t),TT(t)]:
A_T4_T7,b_T4_T71 := eval(LinearAlgebra:-GenerateMatrix(expand([rhs(op(res_T4_T7))-lhs(op(res_T4_T7))=0]), sVars_T4_T7)):

b_T4_T7 = convert(customSimplify(A_T4_T7),Vector),convert(svars_T4_T7,Vector);
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sVars_T7 := [T1(t),T2(t),n5_dot(t), n3_dot(t),T4(t),n5(t),n3(E)]:
A_T7,b_T7 := eval(LinearAlgebra:-GenerateMatrix(expand([rhs(op(res_T7))-1hs(op(res_T7))=0]),svVars_T7)):

b_T7 = convert(customsimplify(A_T7),Vector),convert(svars_T7,Vector);
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Figure 13. Equations defining a specific mode
Integration into Existing Process

The calibrations generation methodology has been integrated into the
model-based development process of our industrial partner. The re-
sulting process is depicted using the process flowchart in Figure 14. It
consists of the following phases:

1. Model the powertrain in MapleSim from its schematic.

2. For each mode of the configuration, the required torque and speed
equations governing its behaviour are generated manually, using
the laws of motion. In parallel with the manual derivation, the
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Figure 14. Calibrations generation process flow chart

torque and speed equations are automatically generated from the
MapleSim model of each of the modes using the methodology
presented in this paper.

3. The manually derived equations are compared to the automati-
cally generated equations. A mismatch indicates an error in ei-
ther manual derivation or automatic generation. The engineer
then troubleshoots, and corrects any issues. Once the equations
are identical, calibrations are automatically generated from the
retrieved equations.

In summary, our methodology is currently employed in the existing
calibrations generation process as part of calibrations validation: the
manually derived equations representing the behaviour of a powertrain
are validated against equations generated using MapleSim/Maple in
our methodology. If the equations match, the calibrations are automat-
ically printed into an “.m” file.

For the two-mode EVT from the previous section representing a real-
world industrial example, the calibrations generation process as de-
picted in Figure 14 takes one day. In comparison, the application of
the original calibrations generation process that used an in-house tool
for validation took five days. Moreover, for more complex models,
which may include a higher number of clutches, planetary gears, in-
ertias, etc., the presented calibrations generation methodology shows
even greater reduction in modeling and validation efforts, while being
far less error-prone. It is worth noting that, for the two-mode EVT, the
methodology requires insignificant computing resources. More pre-



cisely, the solve command, by far the most resource-intensive con-
stituent of the methodology, takes only 63 ms of CPU time and 7.56
MB of memory on an Intel Core i5-3570K quad-core 3.4 GHz machine
with 16 GB of RAM to solve the system of 258 equations underlying
the EVT. Since the solve command can easily handle large systems
of thousands of equations, the methodology is easily scalable to con-
siderably more complex powertrains.

Finally, we note that the current application of the methodology as
shown in Figure 14 represents merely part of a transition leading to
a new calibrations generation process relying solely on the methodol-
ogy: after the engineers get used to using the tool and increase their
confidence in the modeling and calibrations generation using MapleS-
im/Maple as proposed in this paper, the process from Figure 14 will
collapse to our methodology.

Discussion

The introduction of a symbolic physical modeling tool into the con-
troller synthesis process of a large OEM provides significant reduction
in the calibrations generation efforts, while providing greater confi-
dence in the correctness of the generated calibrations. Once the cal-
ibrations have been generated for a given powertrain architecture, in
the case when the architecture undergoes modifications, engineers can
easily change the MapleSim model accordingly, and re-run the Maple
script (potentially, slightly modified) instead of manually re-analyzing
a model and re-calculating the calibrations. In a similar manner, the
Maple script requires only trivial modifications to be applied to it in
order to be used for the calibrations generation for a different architec-
ture.

The models used for calibrations generation in this paper are high-
level models of powertrain transmissions: they depict only mechani-
cal, rigid-body dynamics of a transmission incorporating basic models
of clutches, gear sets, and shafts, including their corresponding iner-
tia and damping parameters. For this particular application, higher fi-
delity is not required. However, MapleSim can also be used in plant
modeling and analysis—in fact, this is exactly where it excels. More
precisely, the high-level model of a powertrain, as used in this paper
for controller synthesis, can be used as an initial model to be refined
into higher-fidelity MapleSim models of the plant that would then be
used in real-time simulations, sensitivity analysis, parameter estima-
tion, HIL (Hardware-in-the-Loop) testing, etc. This would allow for a
tighter integration of tools in a company’s toolchain.

Further, given the complementary roles of MapleSim and Simulink,
as well as the ubiquity of Simulink, the integration of MapleSim
with Simulink-based toolchain is very important. MapleSim and
Simulink can be integrated using Maplesoft’s MapleSim Matlab Con-
nector [13]. The tool is capable of exporting MapleSim models to
Simulink: it generates S-function blocks from MapleSim models so
that they can then be included within Simulink models. Furthermore,
Maplesoft’s MapleSim Connector for FMI [13] provides a means for
simulation/co-simulation with numerous free and commercial symbol-
ic/mumeric physical modeling tools for seamless integration with the
existing toolchain using the FMI (Functional Mockup Interface) stan-
dard [13].

The correctness of the calibrations generated using the methodology
depends on the correctness of symbolic transformations performed by
Maple’s engine. Having a symbolic model (and Maple’s symbolic en-
gine) at hand provides the means for automatic verification and vali-
dation of transformations of symbolic equations to calibrations using
automated theorem provers (e.g., PVS [14], Coq [15]). Preliminary
work on this topic appears in [16]. Using this method could help to

eliminate tool related single-points of failure in the calibrations gener-
ation process for safety critical applications.

Conclusions and Future Work

A novel methodology for automatic generation of calibrations for pow-
ertrain controllers was presented. The methodology has been shown
to significantly reduce the time required to generate calibrations for a
module of the main powertrain controller within hybrid electric vehi-
cles. Additionally, it reduces human error, which is a common source
of error present in the manual calibrations generation process. As the
approach is based on the Maple/MapleSim environment, integration
with existing model-based development processes and tool chains is
made easier with tools such as Maplesoft’s MapleSim Matlab Connec-
tor and MapleSim Connector for FMI. In the event that the methodol-
ogy is not completely integrated, it still provides a powerful tool for
independent verification of manually generated calibrations.

One of the drawbacks of the methodology is the learning curve of the
Maple/MapleSim environment. A non-shallow understanding of it is
required to adapt the scripts and models to new powertrain architec-
tures. To remedy this issue, the following steps can be taken in future
work:

1. Generating (linear) MapleSim models representing modes of op-
eration of a powertrain from a generic, non-linear MapleSim
model of the powertrain is currently done manually. This pro-
cess could be automated by modifying the underlying code of the
non-linear MapleSim model to generate all the feasible modes of
operation automatically.

2. The scripts can be improved to further automate the process. A
simple user interface could be created that would allow a user
to provide only the MapleSim model of the powertrain and then
select the calibrations that need to be extracted.

As already mentioned, verification of the generated calibrations is a
topic that needs to be investigated. The methodology can be modified
to automatically generate theorems that prove the correctness of the
calibrations and the processes that generate them. These theorems can
then be proven via automated theorem provers such as PVS and Coq.
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