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Abstract: This paper focuses on a framework for probabilistic supervisory control of probabilis-
tic discrete event systems (PDES). PDES are modelled as generators of probabilistic languages,
and the supervisors used are probabilistic. In our previous work, we presented and solved a
number of supervisory control problems inside the framework. We also suggested a pseudometric
to measure the behavioural similarity between PDES, and used the pseudometric in the solution
of two optimal supervisory control problems defined in the framework. In this paper, we survey
these results and introduce a real-world application of the framework. Further, we investigate
a relationship between our framework and that of Markov Decision Processes, that could prove
beneficial for both control synthesis and probabilistic model checking.
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1. INTRODUCTION

A framework for supervisory control of probabilistic dis-
crete event systems (PDES) was developed in our previous
work (Lawford and Wonham, 1993; Postma and Lawford,
2004; Pantelic et al., 2009; Pantelic and Lawford, 2010,
2009; Pantelic, 2011; Pantelic and Lawford, 2012a,b). This
paper integrates the precursory work with novel results
pointing to important avenues for future research.

In the framework, PDES are modelled as probabilistic
generators: an extension of regular generators used in
supervisory control theory. More precisely, every transition
in the regular generator is extended with its probability of
occurrence: the probabilities of all the transitions from a
state should not be greater than 1. The control used in
our framework is probabilistic: instead of only being able
to enable/disable a controllable event, the probabilistic
supervisor enables a controllable event with a certain prob-
ability. First, Lawford and Wonham (1993), Postma and
Lawford (2004) and Pantelic et al. (2009) focused on the
solution of the Probabilistic Supervisory Control Problem
(PSCP). The PSCP tries to find a probabilistic supervisor
such that the plant’s behaviour under probabilistic control
satisfies a given probabilistic specification. The solution
gives necessary and sufficient conditions for the existence
of a probabilistic supervisor, and, if the conditions are
satisfied, synthesizes the supervisor. Then, in Pantelic and
Lawford (2009) and Pantelic and Lawford (2012a), an op-
timal supervisory control problem inside the probabilistic
framework is posed and solved. As in classical supervisory
theory, if there does not exist a (probabilistic) supervisor
such that the controlled plant’s behaviour can exactly
match a prespecified probabilistic behaviour, a supervisor
is synthesized such that the controlled plant’s behaviour is
“as close as possible” to the desired behaviour. The mea-

sure of similarity is a pseudometric on states of probabilis-
tic generators. The concept of the pseudometric is useful
outside the control framework: the pseudometric measures
behavioural similarity between probabilistic generators,
and can be used for e.g., model reduction as explored
in Pantelic and Lawford (2012b).

The contributions of this paper are as following. First,
we survey the previous results in the framework. Then,
an example of an application of the framework is pre-
sented that has not been published anywhere except in
the Ph.D. thesis of the first author (Pantelic, 2011). Then,
we focus on Markov Decision Processes (MDPs), a widely
used framework for control of probabilistic discrete event
systems, with the goal of exploring the relationship be-
tween our framework and MDPs. Initial results on the
relationship were presented in the Ph.D. thesis of the first
author (Pantelic, 2011). We show that a probabilistic gen-
erator can be viewed as a (probabilistic) policy for MDPs
(see Pantelic (2011)). On the other hand, a probabilistic
supervisor as defined in our framework can be represented
as an MDP. This duality between the plant to be controlled
and the controller might provide interesting connections
between probabilistic model checking and supervisory con-
trol theory. Therefore, the duality might pave the road for
the exchange of results between the two frameworks.

The outline of the paper is as following. Section 2 presents
the main results in the framework. More precisely, some
previous results are summarized (solutions of probabilistic
matching and optimal control problems), and a new, real-
world application is presented. Then, Section 3 discusses
the interplay between the framework and MDPs. Section 4
concludes the paper and sketches future work.



2. THE FRAMEWORK

This section introduces probabilistic generators as the
model for PDES. Then, probabilistic control is defined,
and some previous results are presented: control problems
in the framework and their solutions, and a pseudometric
that measures the behavioural similarity of probabilistic
generators. Also, an application of the results is presented.

In the sequel, for given sets A and B, the power set of A
will be denoted by P(A), and the set difference of A and
B by A\B. Further, BA will be used to denote a set of
functions from A to B.

2.1 Probabilistic Generators: The Model

In our framework, a PDES is modeled following Lawford
and Wonham (1993) as a probabilistic generator G =
(Q,Σ, δ, q0, p), where Q is the nonempty finite set of states,
Σ is a finite alphabet whose elements we will refer to as
event labels, δ : Q × Σ → Q is the (partial) transition
function, q0 ∈ Q is the initial state, and p : Q×Σ→ [0, 1]
is the statewise event probability distribution, i.e. for any
q ∈ Q,

∑
σ∈Σ p(q, σ) ≤ 1. The probability that the event

σ ∈ Σ is going to occur at the state q ∈ Q is p(q, σ).
For the generator G to be well-defined, p(q, σ) = 0 should
hold if and only if δ(q, σ) is undefined. The probabilistic
generator G is nonterminating if, for every reachable state
q ∈ Q,

∑
σ∈Σ p(q, σ) = 1. Conversely, G is terminating

if there is at least one reachable state q ∈ Q such
that

∑
σ∈Σ p(q, σ) < 1. The probability that the system

terminates at state q is 1−
∑
σ∈Σ p(q, σ). Throughout the

sequel, unless stated otherwise, we assume nonterminating
generators. If a PDES is terminating, it can easily be
transformed into a nonterminating one using the technique
described in Lawford and Wonham (1993).

The transition function is traditionally extended by induc-
tion on the length of strings to δ : Q×Σ∗ → Q in a natural
way. For a state q, and a string s, the expression δ(q, s)!
will denote that δ is defined for the string s in the state
q. The language L(G) generated by a probabilistic DES
generator G = (Q,Σ, δ, q0, p) is L(G) = {s ∈ Σ∗ |δ(q0, s)!}.
The probabilistic language generated by G is defined as:

Lp(G)(ε) = 1,

Lp(G)(sσ) =

{
Lp(G)(s) · p(δ(q0, s), σ), if δ(q0, s)!

0, otherwise.

Informally, Lp(G)(s) is the probability that the string s is
executed in G. Also, Lp(G)(s) > 0 iff s ∈ L(G).

For each state q ∈ Q, we define the function ρq : Σ ×
Q → [0, 1] such that for any q′ ∈ Q, σ ∈ Σ, we have
ρq(σ, q

′) = p(q, σ) if q′ = δ(q, σ), and 0 otherwise. The
function ρq is a probability distribution on the set Σ×Q
induced by q. Also, for a state q, we define the set of
possible events to be Pos(q) := {σ ∈ Σ|p(q, σ) > 0}.
Next, the synchronous product of (nonprobabilistic) dis-
crete event systems (DES) that underlie PDES is de-
fined in a standard manner. For a probabilistic generator
G = (Q,Σ, δ, q0, p), the (nonprobabilistic) discrete event
system (DES) that underlies G will be denoted Gnp, i.e.,
Gnp = (Q,Σ, δ, q0) throughout this paper. Let Gnp1 and
Gnp2 be the nonprobabilistic generators (DES) underlying

G1 = (Q1,Σ, δ1, q01
, p1) and G2 = (Q2,Σ, δ2, q02

, p2),
respectively, i.e., Gnp1 = (Q1,Σ, δ1, q01

) and Gnp2 =
(Q2,Σ, δ2, q02

).

Definition 1. The synchronous product of Gnp1 = (Q1,Σ,
δ1, q01

) and Gnp2 = (Q2,Σ, δ2, q02
), denoted Gnp1 ‖ G

np
2 , is

the reachable sub-DES of DES Ga = (Qa,Σ, δ, q0), where
Qa = Q1×Q2, q0 = (q01

, q02
), and, for any σ ∈ Σ, qi ∈ Qi,

i = 1, 2, it holds that δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))
whenever δ1(q1, σ)! and δ2(q2, σ)!.

2.2 Probabilistic Supervisory Control of PDES

The set Σ is partitioned into the uncontrollable event
set Σu and the controllable event set Σc. Deterministic
supervisors for DES are generalized to probabilistic super-
visors. Instead of deterministically enabling or disabling
controllable events, probabilistic supervisors enable them
with certain probabilities. This means that, upon reaching
a certain state q, the control pattern is chosen according
to supervisor’s probability distributions of controllable
events. Consequently, the controller does not always enable
the same events when in the state q.

Definition 2. Let x : L(G) → [0, 1]Σc . For a PDES
G = (Q,Σ, δ, q0, p), a probabilistic supervisor is a function
Vp : L(G)→ [0, 1]Σ such that

(∀s ∈ L(G))(∀σ ∈ Σ)Vp(s)(σ) =

{
1, if σ ∈ Σu
x(s)(σ), otherwise.
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Fig. 1. Plant Gp and requirements specification Gr

Therefore, after observing a string s ∈ L(G) (all the events
are assumed to be observable), the supervisor enables
event σ with probability Vp(s)(σ). More precisely, for event
σ, the supervisor performs a Bernoulli trial with possible
outcomes enable (that has the probability Vp(s)(σ)), and
disable (with probability 1 − Vp(s)(σ)), and, depending
on the outcome of the trial, decides whether to enable
or disable the event. After (independent) Bernoulli trials
have been performed for all controllable events, control
pattern Θ is determined as a set of controllable events
such that a controllable event belongs to Θ if and only if its
corresponding Bernoulli trial resulted in outcome enable.
Thus the controllable event set probability of Θ, i.e., the
probability that Vp enables the controllable event in Θ
after observing string s is given by:

P (Vp enables Θ|s) =
∏
σ∈Θ

Vp(s)(σ) ·
∏

σ∈(Pos(q)∩Σc)\Θ

(1− Vp(s)(σ))

(1)
After Θ has been decided upon, the system acts as if
supervised by a deterministic supervisor. Let q ∈ Q be
the state of the plant after s ∈ L(G) has been observed.
The plant G under the control of the supervisor Vp will be
denoted Vp/G. The probability that the event α ∈ Σ will



occur in the controlled plant Vp/G after string s has been
observed is equal to:

P (α in Vp/G|s) (2)

=
∑

Θ∈P(Pos(q)∩Σc)

P (α|Vp enables Θ after s) · P (Vp enables Θ|s)

where

P (α|Vp enables Θ after s)

=


p(q, α)∑

σ∈Θ∪Σu

p(q, σ) if α ∈ Θ ∪ Σu

0 otherwise.

2.3 Probabilistic Supervisory Control Problem (PSCP)

The goal is to match the behaviour of the controlled plant
with a given probabilistic specification language. We call
this problem the Probabilistic Supervisory Control Problem
(PSCP), or, alternatively, Probabilistic Model Matching
Problem. More formally:

Given a plant PDES Gp and a requirements specification
PDES Gr, find, if possible, a probabilistic supervisor Vp
such that Lp(Vp/Gp) = Lp(Gr).

An example of probabilistic generators representing a
plant and its desired behaviour (a requirements specifi-
cation) is shown in Fig. 1. Controllable events are marked
with a bar on their edges.

The following theorem presents the conditions for the exis-
tence of a probabilistic supervisor for the PSCP (Lawford
and Wonham, 1993; Pantelic et al., 2009).

Theorem 1. Let Gp = (Qp,Σ, δp, qp0 , pp) and Gr =
(Qr,Σ, δr, qr0 , pr) be two nonterminating PDES with dis-
joint state sets Qp and Qr. There exists a probabilistic
supervisor Vp such that Lp(Vp/Gp) = Lp(Gr) iff for all
s ∈ L(Gr) there exists q ∈ Qp such that δp(qp0 , s) = q
and, letting r = δr(qr0 , s), the following two conditions
hold:

(i) Pos(q)∩Σu = Pos(r)∩Σu, and for all σ ∈ Pos(q)∩Σu,

pp(q, σ)∑
α∈Σu

pp(q, α)
=

pr(r, σ)∑
α∈Σu

pr(r, α)

(ii) Pos(r) ∩ Σc ⊆ Pos(q) ∩ Σc, and, if Pos(q) ∩ Σu 6= ∅,
then for all σ ∈ Pos(q) ∩ Σc,

pr(r, σ)

pp(q, σ)

∑
α∈Σu

pp(q, α) +
∑

α∈Pos(q)∩Σc

pr(r, α) ≤ 1.

The first part of both conditions of Theorem 1 corresponds
to controllability from classical supervisory control theory
(namely, the condition Pos(q) ∩ Σu = Pos(r) ∩ Σu of (i),
and Pos(r) ∩ Σc ⊆ Pos(q) ∩ Σc of (ii)). The remaining
equations and inequalities correspond to the conditions for
probability matching.

For each uncontrollable event possible from a state in a
plant, the equation to be checked reflects the fact that the
ratio of probabilities of uncontrollable events remains the
same under supervision. This comes from the fact that
after a control pattern has been chosen, the probabilities

of disabled events in the plant are redistributed over
enabled events in proportion to their probabilities. All
possible uncontrollable events are always enabled, hence
the ratios of their probabilities remain unchanged. Also, an
inequality for each possible controllable event σ is derived
from the upper bound on the probability of the occurrence
of σ in the supervised plant, that is reached when the
controllable event is always enabled.

When the conditions are satisfied, a solution to the PSCP
exists. After a string has been observed, the control input
is given as a solution to the system of nonlinear equations
given by (2). This solution can be approximated by the
fixpoint iteration algorithm as presented in the following
theorem (Postma and Lawford, 2004; Pantelic et al., 2009).

Theorem 2. Assume that conditions (i) and (ii) of Theo-
rem 1 are satisfied. Let Γ(s) = Pos(q) ∩ Σc if Pos(q) ∩
Σu 6= ∅, and Γ(s) = (Pos(q) ∩ Σc)\{γ} otherwise, where
γ ∈ Pos(q) is chosen such that for every σ ∈ Pos(q),
pr(r,γ)
pp(q,γ) ≥

pr(r,σ)
pp(q,σ) is satisfied. Let x0(s) ∈ [0, 1]Γ(s) and

f(s) : RΓ(s) → RΓ(s). For x0(s) = 0, the sequence

xk+1(s) = f(s)(xk(s)), k = 0, 1, . . . , where (3)

f(s)(x)(σ) =
pr(r, σ)

pp(q, σ)h(s)(x)(σ)
, σ ∈ Γ(s), x ∈ RΓ(s) and

h(s)(x)(σ)

=
∑

Θ∈P(Γ(s)\{σ})

1

1−
∑
α∈Θ

pp(q, α)

∏
α∈Θ

(1− x(s)(α))
∏

α∈Γ(s)\{σ}\Θ

x(s)(α)

converges to the control input x∗(s) (i.e., Vp(s) = x∗(s)).

For the example from Fig. 1, the probabilistic supervisor
for the PSCP is given in Fig. 2.
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α : 0.162

Fig. 2. Probabilistic supervisor Vp such that L(Vp/Gp) =
L(Gr) for Gp and Gr from Fig. 1

We note the special case from Theorem 2: in a certain
state, only controllable events can happen in the plant
(Pos(q) ∩ Σu = ∅). Then, a probabilistic supervisor can
disable them all which would cause termination. However,
as we consider nonterminating generators, this is not
allowed. An elegant solution turns out to be to always
enable an appropriately chosen event (an event γ with
the maximal ratio pr,γ/pp,γ): this event effectively becomes
uncontrollable.

2.4 Application: An Example

We now present an application for the framework. We
adapt the simplified model of a distributed robot control
system presented in Li et al. (1998) to our setting. The



example is simple, but illustrative of one class of applica-
tion. A processor processes the readings from two sensors.
The sensors models are shown at the top of Figure 3.
For i = 1, 2, event αi stands for “sensor i requests the
processor”, event βi for “sensor i uses the processor”, and
γi is “sensor i releases the processor”. The resulting plant
is given in the same figure. Its nonprobabilistic behaviour
is given as the shuffle of two DES that represent the
sensors. Sensor 1 uses the processor more frequently. For
example, sensor 1 reads the speed of the robot at a fixed
rate, while sensor 2 sends warning signals when the robot
approaches an obstacle. Probabilities attached to transi-
tions are such that the probabilities of α1, β1, γ1 are 0.95,
while the probabilities of α2, β2, γ2 are 0.05.

sensor 1
1

γ10 2

β1

sensor 2

α2 β2

0′

1′

2′γ2

α1

(0, 0′)

γ1 : 0.95

β1 : 0.95

β1 : 0.95α1 : 0.95

α1 : 0.95

α1 : 0.95
γ2 : 0.05

α2 : 0.05

γ1 : 0.95

γ1 : 0.95

β1 : 0.95

α2 : 0.05
γ2 : 0.05

(1, 0′)
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(2, 1′)

(2, 0′)

β2 : 0.05

α2 : 0.05

β2 : 0.05
β2 : 0.05

γ2 : 0.05
(0, 1′)

(0, 2′)

Fig. 3. Sensors and resulting plant

The requirements specification Gr1 is given in Figure 4.
The nonprobabilistic part of the specification expresses
the mutual exclusion requirement: two sensors cannot use
the processor at the same time. Therefore, state (2, 2′)
in Figure 3 is the forbidden state of the plant. The
probabilistic part of the requirements specification reflects
a need for a prioritization of sensor 2 when both sensors
have requested the processor. More precisely, at state r4,
after both sensors have requested the processor, sensor 2
should be four times more likely to use the processor than
sensor 1.

In order to solve the PSCP for the given plant and
requirements specification, the results of Section 2.3 are
used. The probabilistic supervisor for the PSCP exists, and
it disables event β1 at state (1, 2′) and event β2 at state
(2, 1′), while event β1 is enabled with probability 0.2105
at state (1, 1′) (as calculated by Theorem 2).
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Fig. 4. Requirements specification Gr1

2.5 Measuring Similarity Between PDES

Behavioural similarity between the systems in our frame-
work is measured using a pseudometric 1 . The pseudomet-
ric is based on the pseudometric of Deng et al. (2006)
suggested for a large class of automata which includes our
generator. The pseudometric is defined on the states of
automata as a fixed point of a function that is given as a
linear programming problem.

Let G = (Q,Σ, δ, q0, p) be a PDES, where Q =
{q0, q1, . . . qN−1}. First, Deng et al. (2006) introduce the
class M of 1-bounded pseudometrics on states with the
(partial) ordering

d1 � d2 if ∀qq, qr ∈ Q d1(qq, qr) ≥ d2(qq, qr) (4)

as was initially suggested in Desharnais et al. (2002).
The ordering in (4) is reverse so that bisimilarity can be
characterized as the greatest fixed point of a function. It
can be proved that (M,�) is a complete lattice. Then,
let d ∈ M, and let the constant e ∈ (0, 1] be a discount
factor that determines the degree to which the difference
in the probabilities of transitions further in the future is
discounted: the smaller the value of e, the greater the
discount on future transitions. Next, we introduce some
useful notation. Let qq, qr ∈ Q and let ρqq and ρqr be the
distributions on Σ × Q induced by the states qq and qr,
respectively. Assume 0 ≤ i, j ≤ N − 1. For notational
convenience, we will write ρσ,i instead of ρqq (σ, qi), and,
similarly, ρ′σ,j instead of ρqr (σ, qj). As stated previously,
the pseudometric of Deng et al. (2006) is defined on the
states of automata as a fixed point of a function that
is given as a linear programming problem. For the case
of probabilistic generators, the function is simplified by
solving the linear programming problem (Pantelic and
Lawford, 2009, 2012a). Consequently, the pseudometric

1 A pseudometric on a set of states Q is a function d : Q × Q → R
that defines a distance between two elements of Q, and satisfies the
following conditions: d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x), and
d(x, z) ≤ d(x, y) + d(y, z), for any x, y, z ∈ Q. If all distances are in
[0, 1], the pseudometric is 1-bounded.



on states of probabilistic generators, dfp, is given as the
greatest fixed-point of the function D on M:

D(d)(qq, qr) =
∑
σ∈Σ

max(ρσ,i − ρ′σ,j + cijρ
′
σ,j , cijρσ,i) (5)

where cij = e · d(qi, qj), and i and j denote i(qq, σ)
and j(qr, σ), respectively, where i(qq, σ) = i such that
qi = δ(qq, σ) if δ(qq, σ)!, and i(qq, σ) = 0, otherwise.
We arbitrarily choose i(qq, σ) to be 0 when δ(qq, σ) is
not defined although we could have chosen any other
i ∈ {1, . . . , N − 1}. This is because when δ(qq, σ)! does
not hold, then ρσ,i(qq,σ) = 0 for any i(qq, σ) ∈ {1, . . . , N −
1}. Similarly, j(qr, σ) = j such that qj = δ(qr, σ) if
δ(qr, σ)!, and j(qr, σ) = 0, otherwise. Roughly speaking,
the distance sums up the differences between probabilities

Two efficient algorithms for calculation of the distances
in the pseudometric have been developed in Pantelic and
Lawford (2009, 2012a). The first algorithm reduces to find-
ing the (unique) solution of a system of linear equations.
The second algorithm approximates the distances with a
prespecified accuracy and is iterative.

The pseudometric is sensitive to all differences between
corresponding transition probabilities, as opposed to e.g.,
the pseudometric of Giacalone et al. (1990) that, roughly
speaking, considers only the maximum of the differences
between the corresponding probabilities. The logical and
trace characterization of the pseudometric were given
in Pantelic and Lawford (2010), Pantelic and Lawford
(2012b). In logical characterization, the pseudometric is
characterized via a real-valued logic: the distance in the
pseudometric between two systems is measured by a for-
mula that distinguishes between the systems the most.
Then, from this logical characterizations follows the trace
characterization: systems are similar if the probabilities
of their (appropriately discounted) traces, certain sets of
traces, and certain properties of traces are similar. The
goal of alternative characterizations is to deepen the un-
derstanding of what similarity between systems as mea-
sured by the pseudometric means in terms of similarities
of their logical properties, and similarities of their proba-
bilistic traces. Also, the pseudometric discounts the future.
The concept of discount has been widely applied in game
theory, economics and optimal control. From an engineer-
ing point of view, one cares more about an error in the
near future than the one in the distant future (de Alfaro
et al. (2003)).

2.6 Optimal Probabilistic Supervisory Control

In the case when the conditions for the existence of a solu-
tion of the PSCP are not satisfied, we search for a suitable
approximation. In Pantelic and Lawford (2012a,b), two
similar optimal probabilistic supervisory control problems
were defined and solved. Given the space limitations, we
define one problem and only sketch its solution as a com-
plete presentation of the algorithm is quite lengthy. We
define the problem first.

The Optimal Probabilistic Supervisory Control Problem
(OPSCP): Let Gp = (Qp, Σ, δp, qp0 , pp) be a plant PDES,
and let Gr = (Qr,Σ, δr, qr0 , pr) be a requirements specifi-
cation represented as a PDES. If there is no probabilistic

supervisor Vp such that Lp(Vp/Gp) = Lp(Gr) (i.e., the
conditions of Theorem 1 fail), find, if it exists, Vp such
that

(1) L(Vp/Gp) ⊆ L(Gr) and supervisor Vp is maximally
permissive and deadlock-free in the nonprobabilistic
sense (i.e., L(Vp/Gp) is the supremal deadlock-free
and controllable sublanguage of L(Gr) with respect to
Gp).

(2) The probabilistic behaviour of the controlled plant is
“as close as possible” to the probabilistic behaviour
of the requirements specification restricted to the
supremal deadlock-free and controllable sublanguage
of L(Gr) with the respect to Gp.

The requirement is considered a hard safety requirement.
Therefore, the supremal deadlock-free and controllable
sublanguage of the requirement with respect to the plant
is generated as the maximal deadlock-free behaviour of
the controlled plant. The requirements specification is con-
strained to the same sublanguage, with appropriately nor-
malized probabilities. The generators representing achiev-
able behaviour of the controlled plant and the modified
requirements specification are isomorphic. The distance
in the pseudometric from Section 2.5 between the two
generators is then minimized. The algorithm is iterative
and works for e ∈ (0, 1). In each iteration, for every two
isomorphic states, a linear programming problem is solved:
the distance between two states in the pseudometric is
minimized under the controllability conditions of Theo-
rem 1. The algorithm iterates until a prespecified accuracy
of the distance between the systems is reached.

The second optimal supervisory problem is very similar
to the OPSCP, without a restriction of the probabilistic
behaviour of the requirements specification to the supre-
mal deadlock-free and controllable sublanguage of L(Gr)
with the respect to Gp. Its solution is presented in Pantelic
and Lawford (2012b) and is similar to the solution of the
OPSCP.

3. THE FRAMEWORK AND MDPS

Markov Decision Processes (MDPs, also known as Markov
Controlled Processes) are commonly used to model sys-
tems that exhibit both probabilistic and nondeterminis-
tic behaviour. Most state-of-the-art probabilistic model
checkers support this model directly. MDPs also represent
the most widely used framework for control of PDES. The
generative model used in our framework can be straightfor-
wardly transformed into an MDP (with the introduction
of a special event) so that the probabilistic model check-
ing tools can be used for the analysis of these systems.
The details of the transformation will be discussed later
in this section. However, simply transforming our model
to an MDP and applying the control as defined in the
MDP framework on the resulting MDP is pointless: as
will be shown in this section, the control applied to the
transformed model in the MDP framework cannot change
the dynamics of the system. Also, as will be shown, any
probabilistic supervisor in our framework can be repre-
sented as an MDP, and any control policy or “adversary”
as defined in the MDP framework can be represented using
a (possibly nondeterministic) probabilistic generator. This
duality of the frameworks has the potential to connect



these two distinct research areas, allowing the transfer of
results between the communities, possibly leading to novel
results in both control theory and probabilistic verifica-
tion.

3.1 MDPs

An MDP is a tuple (S, ss, A, P ), where S is a finite set of
states, ss is the initial state, A is a finite set of actions,
and P : S × A × S → [0, 1] is a transition function such
that for every s ∈ S, a ∈ A, either

∑
s′∈S P (s, a, s′) = 1

or
∑
s′∈S P (s, a, s′) = 0 holds. P (s, a, s′) is interpreted as

the probability of the action a taking the system from the
state s to state s′. At least one action should be enabled
at each state.

A finite path through the MDP is the sequence h =
(s0, a0, . . . , st−1, at−1, st), t ∈ N, with P (si, ai, si+1) > 0
for i = 0, . . . , t − 1, where si ∈ S and ai ∈ A. Let H be
the set of all finite paths in the MDP. A (randomized)
policy (adversary or scheduler) is function π : H ×
A → [0, 1], such that

∑
a∈A π(h, a) = 1, for each finite

path h = (s0, a0, . . . , st−1, at−1, st) through the MDP, and
π(h, a) > 0 only if a is enabled in st. A memoryless
policy is a policy that does not depend on the finite path,
but only its last state st. Note that the defined policy is
probabilistic: the deterministic one is a special case (the
choice of action to be taken is deterministic).

An MDP often has an associated cost function, giving each
transition or state a cost. Alternatively, a reward function
can be defined. The optimal control problem is to find
the admissible control policy such that a certain criterion
is optimized (possibly with some additional constraints).
Different cost evaluation criteria have been used. Some
of the most commonly used are total cost, discounted
cost, average cost, and sample path average cost. For more
details, the interested reader is referred to Borkar (1991);
Arapostathis et al. (1993).

In the computer science community, there has been a lot of
effort in extending classical model checking techniques to
probabilistic transition systems. Quantitative properties
of MDPs can be expressed in probabilistic extensions of
temporal logic and checked on the model (Rutten et al.,
2004; Kwiatkowska et al., 2007).

3.2 Probabilistic Generators and MDPs

Compared to classical reactive models like MDP, genera-
tive models are more general: for every state, it contains
not only the information about relative probabilities of
transitions on a particular event, but also information
on the relative probabilities of transitions on different
events (Schröder and Mateus, 2002; Glabbeek et al., 1995).
Therefore, as a generative model contains more informa-
tion than a reactive one, a direct transformation of a gen-
erative model to a reactive model results in an abstraction
that loses this additional information. For example, a naive
transformation of the generator G on the left of Figure 5 to
an MDP would have all the probabilities of events’ occur-
rences become 1, effectively leaving out all the information
about the probabilistic language of the original generator.
However, a probabilistic generator can be transformed into
an MDP so that it is possible to reconstruct the generator’s

probabilistic language from the MDP (see Figure 5). The
transformation requires the introduction of a special event
τ , with a state expansion factor of O(|Σ|). The new model
is an MDP, with a special event τ . Let G be a probabilistic
generator representing a plant, and GMDP its equivalent
MDP, as in Figure 5. For every state s ∈ S of GMDP,
only one action is admissible from a state. That means
that a controller in the MDP framework would always
pick that one action available, and, consequently, would
not be able to affect the probabilistic behaviour of the
plant. Therefore, the control in the MDP framework would
not make sense for an MDP equivalent to a probabilistic
generator.

3.3 Duality

In general, a probabilistic supervisor is not a probabilistic
generator (an example is the probabilistic supervisor in
Figure 2). This comes from the fact that, with a prob-
abilistic supervisor, the probabilities attached to events
are the probabilities of the events being enabled, not the
probabilities of events occurring (see Section 2.2). There-
fore, the probabilities of enabling events from a state of
the supervisor in Figure 2 are not distributed according to
a probability distribution.

A probabilistic supervisor, however, can be represented
using a reactive model. In Figure 6, probabilistic super-
visor Vp from Figure 2 is represented using an MDP. The
probabilities in Figure 6 are denoted by symbols, instead
of their numerical values, to facilitate our exposition. The
transformation illustrated in Figure 6 will now be briefly
explained.

Each state q ∈ Q of probabilistic supervisor Vp maps
to a set of states {(q,Φ1)|Φ1 ⊆ Pos(q)\Σu}. Events
admissible from state (q,Φ1) are exactly those from Φ1

together with uncontrollable events possible from state
q. The probability attached to event σ going from state
(q,Φ1) to (q′,Θ) (where q′ ∈ Q, Θ ⊆ Pos(q′)\Σu) is
the probability of Θ being enabled at state q′ as given
in Equation 1 (not the probability of Φ1 being enabled
at state q). Event η 6∈ Σ and state r0 6∈ Q are used to
initialize the supervisor properly.

On the other hand, a probabilistic control policy in the
MDP framework cannot be represented with our proba-
bilistic generator in a straightforward manner. This comes
from the fact that, even when a memoryless policy is being
implemented (the control decision only depends only on
the current system state), there might be two different
paths corresponding to the same sequence of events leading
to two different states of the system. However, in that
case, a nondeterministic probabilistic generator can be
used, given that the states of the system are observable.
Alternatively, we would be able to encode two different
decisions at the states reached by the same string using
our probabilistic generator with event augmentation. More
precisely, it would be possible to encode information about
the two states through event labelling: transitions would
be labeled not only with events, but also the states of the
system that these events lead to.

Therefore, a probabilistic supervisor in our framework can
be represented as an MDP. Similarly, a policy as defined
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Fig. 6. Probabilistic supervisor Vp represented as an MDP V Rp

in the MDP framework can be represented using a (poten-
tially nondeterministic or augmented) probabilistic gener-
ator. This fact is potentially useful, as it might allow for
the exchange of results between the models and the frame-
works. For example, the following is an illustration of how
the duality between the frameworks could be exploited. In
our framework, a plant is represented as a probabilistic
generator and we solved the problem of finding a proba-
bilistic supervisor (equivalently, an MDP) that minimizes
the distance of the controlled plant from a specification
given as a probabilistic generator. In the MDP framework,
a plant is represented as an MDP, and a safety property
can be specified as a desired behaviour of the controlled
plant (typically in temporal logic). Probabilistic model
checking verifies whether the safety property is satisfied
with probability greater than a prespecified probability for
all schedulers (equivalently, probabilistic generators). The

verification can be reduced to finding the most adversarial
policy, i.e., the policy under which the behaviour of the
plant is probabilistically the farthest from the required
property. The duality between the two problems might be
used to apply the solution of one problem to the solution
of the other problem.

4. CONCLUSIONS

This work surveys the existing framework for control of
probabilistic discrete event systems and further equips it
with a concrete control application. Then, we present an
initial discussion on the relationship between our frame-
work and MDPs. The discussion should prompt further
research on the interplay of the two frameworks that we
hope to bring useful results in both control and verification
of PDES.
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