Hierarchical Interface-based
Supervisory Control: Parallel Case

R.J. Leduc,¹,² W.M. Wonham,¹ and M. Lawford²

¹Dept. of Electrical and Computer Engineering, University of Toronto
²Dept. of Computing and Software, McMaster University
email: leduc@control.toronto.edu, wonham@control.toronto.edu, lawford@mcmaster.ca

Abstract

In this paper we present a hierarchical method that decomposes a system into a high level subsystem which communicates with \(n \geq 1 \) parallel low level subsystems through separate interfaces, which restrict the interaction of the subsystems. We first define the setting for the serial case \((n = 1) \), and then generalise it for \(n \geq 1 \). We present a definition for an interface, and define a set of interface consistency properties that can be used to verify if a discrete-event system (DES) is nonblocking and controllable. Each clause of the definition can be verified using a single subsystem; thus the complete system model never needs to be constructed, offering significant savings in computational effort. Additionally, the development of clean interfaces facilitates re-use of the component subsystems.

1 Introduction

In the area of Discrete-Event Systems (DES), two common tasks are to verify that a composite system, based on a cartesian product of subsystems, is (i) nonblocking and (ii) controllable. The main obstacle to performing these tasks is the combinatorial explosion of the product state space. Although many methods have been developed to deal with this problem (modular control [1, 20, 24], decentralised control [14, 21, 25], model aggregation methods [2, 3, 6, 23, 26], and multi-level hierarchy [5, 9, 15, 16, 22, 27]), large-scale systems are still problematic, particularly for verification of nonblocking.

To deal with the complexity of large scale systems, the software engineering community has long advocated the decomposition of software into modules (components) that interact via well defined interfaces (e.g., [17, 18, 19]). Recently the supervisory control community has begun to advocate a similar approach [10, 13, 8, 11]. These approaches develop well defined interfaces between components to provide the structure to allow local checks to guarantee global properties such as controllability [8] or nonblocking [10].

In this paper, we present an interface-based hierarchical method to verify if a system is nonblocking and controllable, extending the work in [11]. For the purposes of the present paper, we restrict ourselves to bi-level systems where the system is split into a high level subsystem which interacts with \(n \geq 1 \) parallel low level subsystems via separate interface DES, which regulates the subsystems’ interaction. The most significant feature that distinguishes the work from [8] is the results regarding nonblocking.
In the remainder of the paper we first describe the setting for the serial case \((n = 1)\), which was introduced in [11]. We present a definition for an interface, and define a set of (local) consistency properties that can be used to verify if a discrete-event system is globally nonblocking and controllable. We then extend our definitions to the general case of \(n \geq 1\). In the companion paper [12] we discuss the application of the method to a large manufacturing example with an estimated closed-loop state space size of \(7 \times 10^{21}\).

2 Serial Case

With the serial case of hierarchical interface-based supervisory control, what we are proposing is a master-slave system, where a high level subsystem sends a command to a low level subsystem, which then performs the indicated task and sends back a reply. Figure 1 shows conceptually the structure and information flow of the system. We call this the serial case as communication occurs in a serial fashion between the two subsystems.

![Interface Block Diagram](image1)

![Interface Specification](image2)

![Two Tiered Structure of the System](image3)

To capture the restriction of the flow of information imposed by the interface, the alphabet of the plant (\(\Sigma\)) is split into four disjoint alphabets: \(\Sigma_H, \Sigma_L, \Sigma_R,\) and \(\Sigma_A\). The events in \(\Sigma_H\) are called high level events and the events in \(\Sigma_L\) low level events as these events appear only in the high level and low level models, respectively.

The alphabets \(\Sigma_R\) and \(\Sigma_A\) are called collectively interface events. These events are common to both levels of the hierarchy and represent communication between the two subsystems. The events in \(\Sigma_R\), called request events, represent commands sent from the high level subsystem to the low level subsystem. The events in \(\Sigma_A\) are answer events and represent the low level’s responses to the request events.

2.1 Interface Definitions and Notation

To define an interface, the designer selects a set of request events, and then for each request event, the designer defines a set of answer events. In essence, the designer defines a map \(\text{Answer} : \Sigma_R \rightarrow \text{Pwr}(\Sigma_A)\). For \(\rho \in \Sigma_R\), \(\text{Answer}(\rho)\) is the set of possible answers the low level subplant could provide after receiving request \(\rho\). For consistency, we add the constraints that the low level subsystem must provide at least one response for each request it receives, and that \(\Sigma_A\) does not contain any unused events. Figure 2 shows how
an interface is expressed as a DES. The required structure for an interface is given by DES G_I.

For our setting, we assume the high level subsystem is modelled by DES G_H (defined over event set $\Sigma_H \cup \Sigma_R \cup \Sigma_A$), the low level subsystem by DES G_L (defined over event set $\Sigma_L \cup \Sigma_R \cup \Sigma_A$), and the interface by DES G_I (defined over $\Sigma_R \cup \Sigma_A$). Also, the high level will mean $\text{sync}(G_H, G_I)$,\(^1\) and the low level $\text{sync}(G_L, G_I)$. The overall structure of the system is displayed in Figure 3.

To simplify the notation in proofs, we introduce the following event sets, natural projections, and useful languages:

$$
\begin{align*}
\Sigma_I & := \Sigma_R \cup \Sigma_A \\
\Sigma_{IH} & := \Sigma_H \cup \Sigma_R \cup \Sigma_A \\
\Sigma_{IL} & := \Sigma_L \cup \Sigma_R \cup \Sigma_A \\
PH & : \Sigma^* \to \Sigma_{IH} \\
PL & : \Sigma^* \to \Sigma_{IL} \\
PI & : \Sigma^* \to \Sigma_I \\
\mathcal{H} & := P_{IH}^{-1}(L(G_H)), \quad \mathcal{H}_m := P_{IH}^{-1}(L_m(G_H)) \subseteq \Sigma^* \\
\mathcal{L} & := P_{IL}^{-1}(L(G_L)), \quad \mathcal{L}_m := P_{IL}^{-1}(L_m(G_L)) \subseteq \Sigma^* \\
\mathcal{I} & := P_I^{-1}(L(G_I)), \quad \mathcal{I}_m := P_I^{-1}(L_m(G_I)) \subseteq \Sigma^*
\end{align*}
$$

Finally, we will be using the eligibility operator in our definitions. For a language $L \subseteq \Sigma^*$ and a string $s \in \Sigma^*$, the operator $\text{Elig}_L : \Sigma^* \to \text{Pwr}(\Sigma)$ is defined as follows:

$$
\text{Elig}_L(s) := \{ \sigma \in \Sigma | s\sigma \in L \}
$$

2.2 Serial Interface Consistency and Nonblocking

We now present the interface requirements that the system must satisfy to ensure that it interacts with the interface correctly. We then define the nonblocking requirements each level must satisfy. Refer to [11] for a more detailed explanation of the requirements.

Serial Interface Consistent: The system composed of DES G_H, G_L and G_I, is serial interface consistent with respect to the alphabet partition $\Sigma := \Sigma_H \cup \Sigma_L \cup \Sigma_R \cup \Sigma_A$, if the following properties are satisfied:

Multi-level Properties

1. The event set of G_H is Σ_{IH}, and the event set of G_L is Σ_{IL}.
2. G_I is an interface for the alphabet partition $\Sigma := \Sigma_H \cup \Sigma_L \cup \Sigma_R \cup \Sigma_A$

High Level Properties

3. $\mathcal{H}\Sigma_A \cap \mathcal{I} \subseteq \mathcal{H}$

Low Level Properties

4. $\mathcal{L}\Sigma_R \cap \mathcal{I} \subseteq \mathcal{L}$
5. $(\forall s \in \Sigma^*, \Sigma_R \cap \mathcal{L} \cap \mathcal{I}) [\text{Elig}_{\mathcal{L} \cap \mathcal{I}}(s\Sigma^*_L) \cap \Sigma_A = \text{Elig}_L(s) \cap \Sigma_A]$ where $\text{Elig}_{\mathcal{L} \cap \mathcal{I}}(s\Sigma^*_L) := \cup_{l \in \Sigma^*_L} \text{Elig}_{\mathcal{L} \cap \mathcal{I}}(s l)$

\(^1\)The operation sync is the synchronous product operation from CTCT [24].
6. \((\forall s \in \mathcal{L} \cap \mathcal{I}) \Rightarrow (\exists l \in \Sigma^*) \Rightarrow s \in \mathcal{L}_m \cap \mathcal{I}_m\)

Serial Level-wise Nonblocking: The system composed of DES \(G_H, G_L,\) and \(G_I,\) is said to be serial level-wise nonblocking if the following conditions are satisfied:

(I) \(\mathcal{H}_m \cap \mathcal{I}_m = \mathcal{H} \cap \mathcal{I}\) nonblocking at the high level

(II) \(\mathcal{L}_m \cap \mathcal{I}_m = \mathcal{L} \cap \mathcal{I}\) nonblocking at the low level

2.3 Serial Level-wise Controllability

For nonblocking we were only concerned with the high and low level subsystems, ignoring distinctions between plants and supervisors. For controllability, we need to split the subsystems into their plant and supervisor components. We will do so as shown in Figure 4.

![Diagram](image)

Figure 4: Plant and Supervisor Subplant Decomposition

We next define the high level plant to be \(G_H,\) and the high level supervisor to be \(S_H\) (both defined over event set \(\Sigma_{IH}\)). Similarly, the low level plant and supervisor are \(G_L, S_L\) (defined over event set \(\Sigma_{IL}\)). We can now define our flat supervisor and plant as well as some useful languages as follows:

\[
\text{Plant} := \text{sync}(G_H, G_L) \quad \text{Sup} := \text{sync}(S_H, S_L, G_I)
\]

\[
H := P_{IH}^{-1} L(G_H), \quad H_S := P_{IH}^{-1} L(S_H), \quad \subseteq \Sigma^*
\]

\[
L := P_{IL}^{-1} L(G_L), \quad L_S := P_{IL}^{-1} L(S_L), \quad \subseteq \Sigma^*
\]

We now define the controllability requirements for each level. We adopt the standard partition \(\Sigma = \Sigma_u \cup \Sigma_c,\) splitting our alphabet into uncontrollable and controllable events.

Serial Level-wise Controllable: The system composed of plant components \(G_H, G_L,\) supervisors \(S_H, S_L,\) and interface \(G_I,\) is said to be serial level-wise controllable with respect to the alphabet partition \(\Sigma := \Sigma_H \cup \Sigma_L \cup \Sigma_R \cup \Sigma_A,\) if the following conditions are satisfied:

(I) The alphabet of \(G_H\) and \(S_H\) is \(\Sigma_{IH},\) the alphabet of \(G_L\) and \(S_L\) is \(\Sigma_{IL},\) and the alphabet of \(G_I\) is \(\Sigma_I.\)
(II) \((L_S \cap I) \Sigma_u \cap L \subseteq L_S \cap I\)

(III) \(H_S \Sigma_u \cap (H \cap I) \subseteq H_S\).

3 Parallel Case

In Section 2, we described our method for the serial case where the number of low levels \(n\) is restricted to one. We now extend our work to the more general setting where we have \(n \geq 1\) low levels. Figure 5 shows conceptually the structure and flow of information of such a system. In this new setting, we still have a single high level, but this time it is interacting with \(n \geq 1\) independent low levels, communicating with each low level in parallel through a separate interface. We will refer to the number of low levels, \(n\), as the degree of the system.

![Figure 5: Parallel Interface Block Diagram.](image)

![Figure 6: Two Tiered Structure of Parallel System](image)

As in the serial case, in order to capture the restriction of the flow of information imposed by the interface, we partition the alphabet of the system into the following analogous pairwise disjoint alphabets: \(\Sigma_H, \Sigma_{R_j}, \Sigma_{A_j},\) and \(\Sigma_{L_j}\), with \(j = 1, \ldots, n\).

For an \(n^{th}\) degree parallel system, we assume the high level subsystem is modelled by DES \(G_H\) (defined over event set \(\bigcup_{j \in \{1, \ldots, n\}} [\Sigma_{R_j} \cup \Sigma_{A_j}] \cup \Sigma_H\)). For \(j \in \{1, \ldots, n\}\), the \(j^{th}\) low level subsystem is modelled by DES \(G_{L_j}\) (defined over event set \(\Sigma_{L_j} \cup \Sigma_{R_j} \cup \Sigma_{A_j}\)), the \(j^{th}\) interface by DES \(G_{I_j}\) (defined over event set \(\Sigma_{R_j} \cup \Sigma_{A_j}\)), and that the overall system has the structure shown in Figure 6. Furthermore, we will refer to the \(j^{th}\) low level to mean \(\text{sync}(G_{L_j}, G_{I_j})\) and we will assume that the alphabet partition is specified by \(\Sigma := \bigcup_{j \in \{1, \ldots, n\}} [\Sigma_{L_j} \cup \Sigma_{R_j} \cup \Sigma_{A_j}] \cup \Sigma_H\) and that the flat system is taken to be:

\[
G = \text{sync}(G_H, G_{L_1}, \ldots, G_{L_n}, G_{I_1}, \ldots, G_{I_n})
\]

In order to simplify the notation in proofs, we now introduce the following event sets, natural projections, and useful languages. For the remainder of this section, the index \(j\) is defined to have range \(\{1, \ldots, n\}\).

\[
\begin{align*}
\Sigma_{I_j} & := \Sigma_{R_j} \cup \Sigma_{A_j} \\
\Sigma_{IH} & := \bigcup_{j \in \{1, \ldots, n\}} \Sigma_{I_j} \cup \Sigma_H \\
\Sigma_{IL_j} & := \Sigma_{L_j} \cup \Sigma_{I_j}
\end{align*}
\]
$$P_{IH} : \Sigma^* \rightarrow \Sigma^*_H$$
$$P_{IL_j} : \Sigma^* \rightarrow \Sigma^*_{IL_j}$$
$$P_{I_j} : \Sigma^* \rightarrow \Sigma^*_{I_j}$$

$$\mathcal{H} := P^{-1}_{IH}(L(G_H)),$$
$$\mathcal{H}_m := P^{-1}_{IH}(L_m(G_H)) \subseteq \Sigma^*$$
$$\mathcal{L}_j := P^{-1}_{IL_j}(L(G_{L_j})),$$
$$\mathcal{L}_{mj} := P^{-1}_{IL_j}(L_m(G_{L_j})) \subseteq \Sigma^*$$
$$\mathcal{T}_j := P^{-1}_{I_j}(L(G_{I_j})),$$
$$\mathcal{T}_{mj} := P^{-1}_{I_j}(L_m(G_{I_j})) \subseteq \Sigma^*$$

3.1 General Form

As in the serial case, we need to be able to decompose the n^{th} degree ($n \geq 1$) parallel interface system into its plant and supervisor components.

We now define the high level plant to to be G_H, and the high level supervisor to be S_H (both defined over Σ_{IH}). Similarly, the j^{th} low level plant and supervisor are G_{L_j} and S_{L_j} (defined over Σ_{IL_j}). We now define the high level subsystem and the j^{th} low level subsystem as follows:

$$G_H := \text{sync}(G_H, S_H)$$
$$G_{L_j} := \text{sync}(G_{L_j}, S_{L_j})$$

The reader should note that the definition of a parallel interface system that we present here in terms of plant and supervisor components, is the general form of such systems. The form we defined above (in terms of high and low level subsystems) is a special case of the general form, achieved by applying the above identities for G_H and G_{L_j}. We will refer to the original form, used to simplify nonblocking definitions and proofs, as the parallel subsystem based form.

We can now define our flat supervisor and plant as well as some useful languages as follows:

$$\text{Plant} := \text{sync}(G_H, G_{L_1}, \ldots, G_{L_n})$$
$$\text{Sup} := \text{sync}(S_H, S_{L_1}, \ldots, S_{L_n}, G_{I_1}, \ldots, G_{I_n})$$

$$H := P^{-1}_{IH}L(G_H),$$
$$H_S := P^{-1}_{IH}L(S_H), \quad \subseteq \Sigma^*$$
$$L_j := P^{-1}_{IL_j}L(G_{L_j}),$$
$$L_{S_j} := P^{-1}_{IL_j}L(S_{L_j}), \quad \subseteq \Sigma^*$$

3.2 Serial System Extraction

As the event set of each low level is mutually exclusive from the event sets of the other low levels, we can consider the parallel interface system as n serial interface systems by choosing one low level and ignoring the others. This will allow us to reuse our existing definitions and results for serial interface systems.

In this section, we introduce the concept of serial system extractions for an n^{th} degree ($n \geq 1$) parallel interface system, shown conceptually in Figure 7 in terms of subsystems. Below we give the general form of the definition. The parallel subsystem form of the definition can be obtained by using the identities $G_H = \text{sync}(G_H, S_H)$, $G_L = \text{sync}(G_L, S_L)$, and $G_{L_j} = \text{sync}(G_{L_j}, S_{L_j})$.

j^{th} Serial System Extraction: For the n^{th} degree ($n \geq 1$) parallel interface system composed of DES $G_H, G_{L_1}, \ldots, G_{L_n}, S_H, S_{L_1}, \ldots, S_{L_n}, G_{I_1}, \ldots, G_{I_n}$, with alphabet
partition \(\Sigma := \cup_{k \in \{1, \ldots, n\}} [\Sigma_{L_k} \cup \Sigma_{R_k} \cup \Sigma_{A_k}] \cup \Sigma_H \), the \(j \)th serial system extraction, denoted by \(\text{system}(j) \), is composed of the following elements:

\[
\begin{align*}
G_H(j) & := \text{sync}(G_H, G_1, \ldots, G_{I(j-1)}, G_{I(j+1)}, \ldots, G_{I_n}) \\
S_H(j) & := S_H, \quad G_L(j) := G_{L_j}, \quad S_L(j) := S_{L_j}, \quad G_I(j) := G_{I_j} \\
\Sigma_H(j) & := \cup_{k \in \{1, \ldots, (j-1), (j+1), \ldots, n\}} \Sigma_{I_k} \cup \Sigma_H \\
\Sigma_L(j) & := \Sigma_{L_j}, \quad \Sigma_R(j) := \Sigma_{R_j}, \quad \Sigma_A(j) := \Sigma_{A_j} \\
\Sigma(j) & := \Sigma_H(j) \cup \Sigma_L(j) \cup \Sigma_R(j) \cup \Sigma_A(j) \\
& = \Sigma - \cup_{k \in \{1, \ldots, (j-1), (j+1), \ldots, n\}} \Sigma_{L_k}
\end{align*}
\]

After examining the definition of the serial system extraction, we see that for \(n = 1 \), a parallel interface system reduces to a single serial interface system. We thus see that a serial system is a special case of a parallel system.

3.3 Parallel Case Definitions and Theorems

In this section we present a set of properties that are equivalent to their serial interface counterparts.

Interface Consistent: The \(n \)th degree \((n \geq 1) \) parallel interface system composed of DES \(G_H, G_{L_1}, \ldots, G_{L_n}, G_{I_1}, \ldots, G_{I_n} \), is interface consistent with respect to alphabet partition \(\Sigma := \cup_{k \in \{1, \ldots, n\}} [\Sigma_{L_k} \cup \Sigma_{R_k} \cup \Sigma_{A_k}] \cup \Sigma_H \), if:

\[
(\forall j \in \{1, \ldots, n\}) \quad \text{The } j \text{th serial system extraction of the system is serial interface consistent.}
\]

Level-wise Nonblocking: The \(n \)th degree \((n \geq 1) \) parallel interface system composed of DES \(G_H, G_{L_1}, \ldots, G_{L_n}, G_{I_1}, \ldots, G_{I_n} \), is level-wise nonblocking with respect to the alphabet partition \(\Sigma := \cup_{k \in \{1, \ldots, n\}} [\Sigma_{L_k} \cup \Sigma_{R_k} \cup \Sigma_{A_k}] \cup \Sigma_H \), if:

\[
(\forall j \in \{1, \ldots, n\}) \quad \text{The } j \text{th serial system extraction of the system is serial level-wise nonblocking.}
\]
We now extend serial level-wise controllability to the parallel system case. We adopt the standard partition \(\Sigma = \Sigma_u \cup \Sigma_c \), splitting our alphabet into uncontrollable and controllable events.

Level-wise Controllable: The \(n \)th degree \((n \geq 1) \) parallel interface system composed of DES \(G_H, G_{L_1}, \ldots, G_{L_n}, S_{H}, S_{L_1}, \ldots, S_{L_n}, G_{I_1}, \ldots, G_{I_n} \), is level-wise controllable with respect to alphabet partition \(\Sigma := \bigcup_{k \in \{1, \ldots, n\}} [\Sigma_{L_k} \cup \Sigma_{R_k} \cup \Sigma_{A_k}] \sqcup \Sigma_H \), if:

\[
(\forall j \in \{1, \ldots, n\}) \text{ The } j \text{th serial system extraction of the system is serial level-wise controllable.}
\]

We now present our nonblocking theorem for parallel interface systems. It states that, to verify if a parallel system is nonblocking, it is sufficient to check that each of its serial system extractions is serial level-wise nonblocking and serial interface consistent.

Theorem 1 If the \(n \)th degree \((n \geq 1) \) parallel interface system composed of DES \(G_H, G_{L_1}, \ldots, G_{L_n}, G_{I_1}, \ldots, G_{I_n} \), is level-wise nonblocking and interface consistent with respect to the alphabet partition \(\Sigma := \bigcup_{k \in \{1, \ldots, n\}} [\Sigma_{L_k} \cup \Sigma_{R_k} \cup \Sigma_{A_k}] \sqcup \Sigma_H \), then

\[
L(G) = T_m(G), \quad \text{where} \quad G = \text{sync}(G_H, G_{L_1}, \ldots, G_{L_n}, G_{I_1}, \ldots, G_{I_n})
\]

Proof: See [13].

Next, we present our controllability theorem for parallel interface systems. It states that, to verify if a parallel system is controllable, it is sufficient to check that each of its serial system extractions is serial level-wise controllable.

Theorem 2 If the \(n \)th degree \((n \geq 1) \) parallel interface system composed of plant components \(G_H, G_{L_1}, \ldots, G_{L_n}, \) supervisors \(S_H, S_{L_1}, \ldots, S_{L_n}, \) and interfaces \(G_{I_1}, \ldots, G_{I_n} \), is level-wise controllable with respect to the alphabet partition \(\Sigma := \bigcup_{k \in \{1, \ldots, n\}} [\Sigma_{L_k} \cup \Sigma_{R_k} \cup \Sigma_{A_k}] \sqcup \Sigma_H \), then

\[
(\forall s \in L(\text{Plant}) \cap L(\text{Sup})) \quad \text{Elig}_L(\text{Plant})(s) \cap \Sigma_u \subseteq \text{Elig}_L(\text{Sup})(s)
\]

where \(\text{Plant} := \text{sync}(G_H, G_{I_1}, \ldots, G_{I_n}) \) is the system’s flat plant, and

\(\text{Sup} := \text{sync}(S_H, S_{L_1}, \ldots, S_{L_n}, G_{I_1}, \ldots, G_{I_n}) \) is the system’s flat supervisor.

Proof: See [13].

4 Conclusions

Hierarchical interface-based supervisory control offers an effective method to model systems with a natural client-server architecture. The method offers an intuitive way to model and design the system. Using multiple low level subsystems allows the subsystems to be independently modelled and verified, but still allowing a high degree of concurrent operation. As each requirement can be verified using only one subsystem, the entire plant model never needs to be constructed or traversed (in computer memory), offering potentially significant savings in computation.
It is clear from the definitions in Sections 2, and 3, that once we have defined our
interface and event partition, evaluating our high and low level subsystems for compliance
of the high-level subsystem and can be done independently of each other. This means we can evaluate one high (low) level subsystem and use it with any low (high) level subsystem that satisfies the low (high) level portion of our definitions for the given interface and event partition. This provides us with the infrastructure required for component reuse.

We present a full example application of the theory based on the automated manufacturing system of the Atelier Inter-établissement de Productique (AIP) [4, 7] in the companion paper [12]. The AIP system is broken down into a high level and seven low levels corresponding to the three assembly stations and four transport Units. In total, the example contains 181 DES, with an estimated closed-loop state space of 7×10^{21}.

The analysis in [12] finds the system to be interface consistent, level-wise nonblocking, and level-wise controllable. Thus we can conclude by Theorems 1 and 2, that the flat system is nonblocking and that the system's flat supervisor is controllable for the flat plant. For further details of the application, we refer the reader to [12].

References

