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Abstract

In this paper we present a hierarchical method that decomposes a system into a
high level subsystem which communicates with n > 1 parallel low level subsystems
through separate interfaces, which restrict the interaction of the subsystems. We
first define the setting for the serial case (n = 1), and then generalise it for n > 1.
We present a definition for an interface, and define a set of interface consistency
properties that can be used to verify if a discrete-event system (DES) is nonblock-
ing and controllable. Each clause of the definition can be verified using a single
subsystem; thus the complete system model never needs to be constructed, offering
significant savings in computational effort. Additionally, the development of clean
interfaces facilitates re-use of the component subsystems.

1 Introduction

In the area of Discrete-Event Systems (DES), two common tasks are to verify that a
composite system, based on a cartesian product of subsystems, is (i) nonblocking and (ii)
controllable. The main obstacle to performing these tasks is the combinatorial explosion
of the product state space. Although many methods have been developed to deal with this
problem (modular control [1, 20, 24], decentralised control [14, 21, 25|, model aggregation
methods [2, 3, 6, 23, 26], and multi-level hierarchy [5, 9, 15, 16, 22, 27]), large-scale
systems are still problematic, particularly for verification of nonblocking.

To deal with the complexity of large scale systems, the software engineering commu-
nity has long advocated the decomposition of software into modules (components) that
interact via well defined interfaces (e.g., [17, 18, 19]). Recently the supervisory control
community has begun to advocate a similar approach [10, 13, 8, 11]. These approaches
develop well defined interfaces between components to provide the structure to allow
local checks to guarantee global properties such as controllability [8] or nonblocking [10].

In this paper, we present an interface-based hierarchical method to verify if a system
is nonblocking and controllable, extending the work in [11]. For the purposes of the
present paper, we restrict ourselves to bi-level systems where the system is split into a
high level subsystem which interacts with n > 1 parallel low level subsystems via separate
interface DES, which regulates the subsystems’ interaction. The most significant feature
that distinguishes the work from [8] is the results regarding nonblocking.



In the remainder of the paper we first describe the setting for the serial case (n = 1),
which was introduced in [11]. We present a definition for an interface, and define a set
of (local) consistency properties that can be used to verify if a discrete-event system is
globally nonblocking and controllable. We then extend our definitions to the general case
of n > 1. In the companion paper [12] we discuss the application of the method to a
large manufacturing example with an estimated closed-loop state space size of 7 x 10%L.

2 Serial Case

With the serial case of hierarchical interface-based supervisory control, what we are
proposing is a master-slave system, where a high level subsystem sends a command to a
low level subsystem, which then performs the indicated task and sends back a reply. Fig-
ure 1 shows conceptually the structure and information flow of the system. We call this
the serial case as communication occurs in a serial fashion between the two subsystems.
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To capture the restriction of the flow of information imposed by the interface, the
alphabet of the plant (¥) is split into four disjoint alphabets: Yz, X1, X, and X 4. The
events in Xy are called high level events and the events in Y, low level events as these
events appear only in the high level and low level models, respectively.

The alphabets ¥z and ¥4 are called collectively interface events. These events are
common to both levels of the hierarchy and represent communication between the two
subsystems. The events in X g, called request events, represent commands sent from the
high level subsystem to the low level subsystem. The events in ¥4 are answer events and
represent the low level’s responses to the request events.

2.1 Interface Definitions and Notation

To define an interface, the designer selects a set of request events, and then for each
request event, the designer defines a set of answer events. In essence, the designer defines
a map Answer : X — Pwr(X,4). For p € ¥g, Answer(p) is the set of possible answers
the low level subplant could provide after receiving request p. For consistency, we add
the constraints that the low level subsystem must provide at least one response for each
request it receives, and that X 4 does not contain any unused events. Figure 2 shows how



an interface is expressed as a DES. The required structure for an interface is given by
DES G7.

For our setting, we assume the high level subsystem is modelled by DES Gy (defined
over event set g UXgrUX,), the low level subsystem by DES G (defined over event
set ¥, UX g U3, ), and the interface by DES G (defined over ¥z U X 4). Also, the high
level will mean sync(Gy, Gr),! and the low level sync(Gp, Gr). The overall structure of
the system is displayed in Figure 3.

To simplify the notation in proofs, we introduce the following event sets, natural
projections, and useful languages:

Z[ = ZRUEA
EIH = EHUERUEA
E[L = ELUERUZA

P ¥ — Sy
Py ¥ — %%,
Py — X
H = Pry(L(Gr)), Hm = Pry(Ln(Gr)) CT°
L= P (L(GL)),  Lm =P (Lm(G1)) C 3
T := P/ YL(G))), Tp:=P; Y(Ln(Gy) CX*

I

Finally, we will be using the eligibility operator in our definitions. For a language L C ¥*
and a string s € X*, the operator Elig; : ¥* — Pwr(X) is defined as follows:

Elig, (s) := {0 € X|soc € L}

2.2 Serial Interface Consistency and Nonblocking

We now present the interface requirements that the system must satisfy to ensure that it
interacts with the interface correctly. We then define the nonblocking requirements each
level must satisfy. Refer to [11] for a more detailed explanation of the requirements.

Serial Interface Consistent: The system composed of DES Gy, G, and Gy, is serial
interface consistent with respect to the alphabet partition ¥ := L5 U X, UX U Xy,
if the following properties are satisfied:

Maulti-level Properties

1. The event set of Gy is X1y, and the event set of G, is ¥yr.

2. G is an interface for the alphabet partition ¥ := Xz UX, UXzUX 4
High Level Properties

3. HXA NI CH
Low Level Properties

4. LYRNT CL

5. (Vs € ¥*.XpNLNTI) [Elig,~(s27) N X4 = Elig;(s) N X 4]
where EligﬁﬂI(SEZ) = UlEEZEligﬁﬂI(SZ)

1 The operation sync is the synchronous product operation from CTCT [24].



6. (VseLNI)[s€Z,= T eX;)sleLl,NL,

Serial Level-wise Nonblocking: The system composed of DES Gy, G, and Gy, is
said to be serial level-wise nonblocking if the following conditions are satisfied:

() HpnNZ, =HNI mnonblocking at the high level
(IT) £,,NZ, =LNT nonblocking at the low level

2.3 Serial Level-wise Controllability

For nonblocking we were only concerned with the high and low level subsystems, ignoring
distinctions between plants and supervisors. For controllability, we need to split the
subsystems into their plant and supervisor components. We will do so as shown in

Figure 4.
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Figure 4: Plant and Supervisor Subplant Decomposition

We next define the high level plant to to be Gy, and the high level supervisor to be
Sy (both defined over event set ;). Similarly, the low level plant and supervisor are
Gr, and Sy, (defined over event set Xr7). We can now define our flat supervisor and plant
as well as some useful languages as follows:

Plant := sync(Gy, G,) Sup :=sync(Sy, Si, Gy)
H .= P[_]-}L(gH)a HS = PI_}}L(SH), g *
L= PI_LIL(QL), Ls = PI_LIL(SL), c ¥

We now define the controllability requirements for each level. We adopt the standard
partition ¥ = X, UX,, splitting our alphabet into uncontrollable and controllable events.

Serial Level-wise Controllable: The system composed of plant components Gy, Gy,
supervisors Sy, Sy, and interface Gy, is said to be serial level-wise controllable
with respect to the alphabet partition ¥ := Yy UX, UXgrUX,, if the following
conditions are satisfied:

(I) The alphabet of Gy and Sy is Xrg, the alphabet of Gy, and Sy, is ¥, and
the alphabet of G is ¥



(1) LsNI)S,NLCLsNT
(IlT) HsX, N (HNT) C Hg.

3 Parallel Case

In Section 2, we described our method for the serial case where the number of low levels
(n) is restricted to one. We now extend our work to the more general setting where we
have n > 1 low levels. Figure 5 shows conceptually the structure and flow of information
of such a system. In this new setting, we still have a single high level, but this time it
is interacting with n > 1 independent low levels, communicating with each low level in
parallel through a separate interface. We will refer to the number of low levels, n, as the
degree of the system.
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As in the serial case, in order to capture the restriction of the flow of information
imposed by the interface, we partition the alphabet of the system into the following
analogous pairwise disjoint alphabets: Y, Xg;, ¥4;, and Xz, with j =1,...,n.

For an n'"* degree parallel system, we assume the high level subsystem is modelled by
DES Gy (defined over event set Ujeq,..n3[Sr;UY4,] U Xg). For j € {1,...,n}, the 5th
low level subsystem is modelled by DES G, (defined over event set X, UER]. UEAJ.),
the j'™ interface by DES G, (defined over event set Yp, UXy;), and that the overall
system has the structure shown in Figure 6. Furthermore, we will refer to the j* low
level to mean sync(Gyp,;,Gr;) and we will assume that the alphabet partition is specified
by ¥ = Ujeq,..n}[X1;UXk;US4;] U Xp and that the flat system is taken to be:

G = SynC(GH: GLla ey GLnaGIla .. ',GIn)

In order to simplify the notation in proofs, we now introduce the following event sets,
natural projections, and useful languages. For the remainder of this section, the index j
is defined to have range {1,...,n}.

E[j = ERj U EAJ.
Yrm:i= Uje,.ny2n U Xy
ZIL]- = ZLJ.UE[].



Pig:¥X— X3y
PILJ. X = ¥y,
Py, ¥ I
PH}( (Gn)),  Hm:=Ppy(Ln(Gg) CX*
Pfi (L(G1,))s Ly = Py} (Lm(Gr) CX°
PLYL(GY)),  Imy o= P (Ln(Gr)) C X

J

’H

3.1 General Form

As in the serial case, we need to be able to decompose the nth degree (n > 1) parallel
interface system into its plant and supervisor components.

We now define the high level plant to to be Gy, and the high level supervisor to be
Sy (both defined over ¥;4). Similarly, the j th low level plant and supervisor are ng

and S, (defined over ¥,). We now define the high level subsystem and the jth low level
subsystem as follows:

Gy :=sync(Gy, Sg) Gy, :=sync(Gz,, St;)

The reader should note that the definition of a parallel interface system that we present
here in terms of plant and supervisor components, is the general form of such systems.
The form we defined above (in terms of high and low level subsystems) is a special case
of the general form, achieved by applying the above identities for Gy and Gr;. We will
refer to the original form, used to simplify nonblocking definitions and proofs, as the
parallel subsystem based form.

We can now define our flat supervisor and plant as well as some useful languages as
follows:

Plant := sync(Gy, G1,,.-.,91,) Sup :=sync(Sy, Si,,-.-,S1,, Gr,,-.-,Gr,)
H:= P;; L(Gn), Hs := P;;L(Sy), CX*
Lj = PIiLle(ng)a LSj = PILjL(SLj): c X

3.2 Serial System Extraction

As the event set of each low level is mutually exclusive from the event sets of the other
low levels, we can consider the parallel interface system as n serial interface systems by
choosing one low level and ignoring the others. This will allow us to reuse our existing
definitions and results for serial interface systems.

In this section, we introduce the concept of serial system eztractions for an nth
degree (n > 1) parallel interface system, shown conceptually in Figure 7 in terms of
subsystems. Below we give the general form of the definition. The parallel subsystem
form of the definition can be obtained by using the identities Gy = sync(Gy, Sk),
G = sync(Gr, Sp), and G, = sync(Gy,, St;)-

jth Serial System Extraction: For the nth degree (n > 1) parallel interface system
composed of DES Gy, G, ..., G1,, Su, St,5---,SL,, Gry, - -.,Gp,, with alphabet
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Figure 7: The Serial System Extraction

partition ¥ := Ugeqr,..n}[2r,USR,US4,] U Sg, the 5™ serial system extraction,
denoted by system(j), is composed of the following elements:

gH(j) = sync(QH, G[l, ceey Gl(j—l)’ GI(j+1)’ e G[n)
Su(j) == Sy, GL(j) =G, , S(j) =8, , G1(j):=Gay,
u(d) = Uke(t, ., (j=1), (j+1), s nt or, U g
Yr(j) = Xz, Zr() =g, Zalj) =Xy
() = Zp(j)UBL(j) UZr() UXa()

= B — Uke{l,o (=1), (1), s} Bl

After examining the definition of the serial system extraction, we see that for n = 1,
a parallel interface system reduces to a single serial interface system. We thus see that a
serial system is a special case of a parallel system.

3.3 Parallel Case Definitions and Theorems

In this section we present a set of properties that are equivalent to their serial interface
counterparts.

Interface Consistent: The nth degree (n > 1) parallel interface system composed of
DES Gy, Gp,,..., GL,,Gyy, ..., Gy, is interface consistent with respect to alpha-
bet partition ¥ := Ugeq1,..n}[E1,UXR, U4, ] U Xy, if:

(V5 € {1,...,n}) The jth serial system extraction of the system is serial
interface consistent.

Level-wise Nonblocking: The nth degree (n > 1)parallel interface system composed
of DES Gy,Gyr,,...,GL,,Gy,,...,Gy,, is level-wise nonblocking with respect to
the alphabet partition ¥ := Ugeqr,.. .0} [2r, U R, UX 4,] U Ty, if:

(V5 € {1,...,n}) The jth serial system extraction of the system is serial
level-wise nonblocking.



We now extend serial level-wise controllability to the parallel system case. We adopt
the standard partition ¥ = X, U X, splitting our alphabet into uncontrollable and con-
trollable events.

Level-wise Controllable: The nth degree (n > 1) parallel interface system composed
of DES Gy, G1,,..-, G1,, Su, Sty ---,SL,,, G, - .., G, is level-wise controllable
with respect to alphabet partition ¥ := Ugeqy,.. 0} [Z1,UE R, U4, ] U Xy, if:

(V5 € {1,...,n}) The jth serial system extraction of the system is serial
level-wise controllable.

We now present our nonblocking theorem for parallel interface systems. It states that,
to verify if a parallel system is nonblocking, it is sufficient to check that each of its serial
system extractions is serial level-wise nonblocking and serial interface consistent.

Theorem 1 If the nth degree (n > 1) parallel interface system composed of DES Gy,
Gryy...,GL,,Gr,...,Gr,, is level-wise nonblocking and interface consistent with respect
to the alphabet partition ¥ := Uyeqr,. n3 (X1, UXR,UX 4, ] U Xg, then

L(G) = L,(G), where G =sync(Gy, Gri,---, Gra, Gr1,y - - -, Grn)
Proof: See [13].

Next, we present our controllability theorem for parallel interface systems. It states
that, to verify if a parallel system is controllable, it is sufficient to check that each of its
serial system extractions is serial level-wise controllable.

Theorem 2 If the nth degree (n > 1) parallel interface system composed of plant com-
ponents Gg, Gr,,-.-,9L,, supervisors Su, Si,,...,SL,, and interfaces Gy, ...,Gy,, 18
level-wise controllable with respect to the alphabet partition X := Uyeqr,.. 0} [Zr, U g, UL 4, ]
U Xy, then

(Vs € L(Plant) N L(Sup)) Elig,prant)(s) N Zu C Eligygup)(s)

where Plant := sync(Gy, Gr,,-..,GL,) is the system’s flat plant, and
Sup := sync(Syg, Si,,---,S8L,,Gr, .-, Gr,) is the system’s flat supervisor.

Proof: See [13].

4 Conclusions

Hierarchical interface-based supervisory control offers an effective method to model sys-
tems with a natural client-server architecture. The method offers an intuitive way to
model and design the system. Using multiple low level subsystems allows the sub-
systems to be independently modelled and verified, but still allowing a high degree of
concurrent operation. As each requirement can be verified using only one subsystem, the
entire plant model never needs to be constructed or traversed (in computer memory),
offering potentially significant savings in computation.



It is clear from the definitions in Sections 2, and 3, that once we have defined our
interface and event partition, evaluating our high and low level subsystems for compliance
can be done independently of each other. This means we can evaluate one high (low)
level subsystem and use it with any low (high) level subsystem that satisfies the low (high)
level portion of our definitions for the given interface and event partition. This provides
us with the infrastructure required for component reuse.

We present a full example application of the theory based on the automated man-
ufacturing system of the Atelier Inter-établissement de Productique (AIP) [4, 7] in the
companion paper [12]. The AIP system is broken down into a high level and seven low
levels corresponding to the three assembly stations and four transport Units. In total,
the example contains 181 DES, with an estimated closed-loop state space of 7 x 102

The analysis in [12] finds the system to be interface consistent, level-wise nonblocking,
and level-wise controllable. Thus we can conclude by Theorems 1 and 2, that the flat
system is nonblocking and that the system’s flat supervisor is controllable for the flat
plant. For further details of the application, we refer the reader to [12].
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